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SOME PROPERTIES OF MAR AND MANR
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Abstract. In this paper, we extend the concepts of movability, strong
movability, AWR and AWNR for arbitrary metrizable spaces and we show
that MAR and AWR are the same concept and that MANR, strong mov-
ability and movable AWNR are the same concept. And we prove that the
projection of the product XxY oί a locally compact metric space X and
an MAR Y onto X induces the shape equivalence and that the inclusion of
a metric space X into a union XU Y of X and an MAR Y induces a shape
equivalence if X and Y are closed in J U 7 and if XΠ Y is an MAR.

0. Introduction. The notion of shape for compacta introduced by
K. Borsuk [5] was generalized to arbitrary metrizable spaces by K.
Borsuk [8] and by [R. H. Fox [12]. The concepts of FAR and FANR
were induced by K. Borsuk [6] and these are important and interesting
in his shape theory as well as AR and ANR in homotopy theory (refer
to the book of K. Borsuk [4]). Generalizing these concepts for compacta,
S. Godlewski [14] introduced the concepts of MAR and MANR in Fox's
shape theory. Some basic properties of MAR and MANR were investi-
gated in [14], [15] and [16].

In Sect. 2 of this paper, we shall give a characterization of MAR
which is similar to one of FAR. Movability and strong movability
introduced by K. Borsuk [7], [9] can be defined for metrizable spaces.
In Sect. 3, we shall show that strong movability coincides with the
concept of MANR, as in the case of FANR. And the concepts of AWR
and AWNR introduced by S. A. Bogatyi [2] can be also defined for
metrizable spaces. In Sect. 4, we shall extend Bogatyi's results in [2],
that is, MAR and AWR are equivalent concepts and movable AWNR's
are MANR's.

Y. Kodama [18] recently showed that the product of an FAR (resp.
a pointed FANR) and an MAR (resp. an MANR) is also an MAR (resp.
an MANR) and that the projection of the product X x Y of a metrizable
space X and an FAR Y onto X induces a shape equivalence. In Sect. 5,
we shall prove that the projection of the product X x Y of a locally
compact metrizable space X and an MAR Y onto X induces the shape
equivalence.
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In Sect. 6, we shall show that the inclusion map of a metrizable
space X into its union X \JY with an MAR Y induces a shape equivalence
if Xand Yare closed i n l U Γ a n d if XΠ Y is an MAR. As a corollary,
a sum theorem for MANR's or movable metrizable spaces or AWNR's
is obtained.

In this paper, AR and ANR mean those for metrizable spaces. As
concerns AR and ANR, refer to the books of K. Borsuk [3] or S-T. Hu
[17].

The author wishes to thank Professor Y. Kodama and his collabora-
tors for their helpful comments.

1. The shape in the sence of Fox. Now, we extend the basic notions
introduced by R. H. Fox in [12]. Let A be a subset of JS. We denote
the inclusion map of A into B by iB)A. Let X be a subspace of a space
X'. The family Nbd (X, Xr) of all open neighbourhoods of X in X' is
called the complete neighbourhood system of X in X'. Consider two
arbitrary complete neighbourhood systems Nbd(X, X') and Nbd(Y, Y').
A mutation F: Nbd (X, Xf) -> Nbd (Y, T) from Nbd (X, X') to Nbd (Γ, T)
is defined as a collection of continuous maps /: Z7—>F, where Ue
Nbd(X, X'), FeNbd(Γ, T) such that

(M-l) For each /: U->V in F and for each t/'eNbd (X, X') and
FeNbd(F, T) such that U'aU and VaV, iv>,vfiu,u>zF.
(M-2) For each FeNbd(Γ, Y'), there exists /: U->V in F.
(M-3) For each /, f':U-+V in F, there exists Z7'eNbd(X, X') such
that U' c U and fiUtTjr ~ f'iu,u>-

The mutation I{x,xn: Nbd (X, X') -• Nbd(X, X') is the collection of all
inclusions iUtU, where U', t/eNbd(X, X'), UraU. Consider two mutations
F: Nbd (X, X') — Nbd (Y, T) and G: Nbd (Y, T) -> Nbd (Z, Z'). The com-
position GF: Nbd (X, X') -> Nbd (Z, Z') of the mutations ί7 and G is the
mutation being the collection of all compositions gf such that feF,
gβG and gf can be defined. Then FI{x>xn = I{YtYnF = JP.

Two mutations F, G: Nbd(X, X') -> Nbd (Γ, Γ') are homotopic (or ί7

is homotopic to G, notation: F ~ G) if
(HM) For each feF and g e G such that f,g:U-+ V, there exists
U' e Nbd (X, Z7) such that fiUtU, ~ giUyu>-
Any metric space X can be embedded in an ANR as a closed subset

by the well-known Kuratowski-Wojdyslawski theorem. We say that X
and Y are shape-equivalent (or have the same shape type, notation:
Sh X = Sh Γ) if there are ANR's P and Q which contain X and Y as
closed subsets, respectively, and mutations F: Nbd (X, P) —> Nbd (F, Q)
and G:Nbd(F, Q)-+Nbd(X, P) such that GF ~ I{X)P) and FG ~ I{γ>Q).
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If the mutations F and G satisfy only the condition FG ~ I(Y,Q), then
we say that X shape-dominates Y (notation: Sh X ^ Shy). By Theorem
3.2 in [12], the choice of ANR's P and Q and the manner of embeddings
of X and Y in P and Q, respectively, as a closed subsets, are immaterial.

Let I c Γ c X " and F c Γ c T \ A mutation Ff\ Nbd(X, X") ->
Nbd(y, Y") is an extension of a mutation F:Nbd(X, X')->Nbd(y, Yr)
if for each F 'eNbd(y, T') and each / : [ / - ^ 7 ' n Γ in F, there is an
/ ' : U' ->V in F ' such that f'iu>>x — iv>,vnγ'fiu,x-

LEMMA 1-1. Let X and Y be closed subsets of X1 and Yf respectively,
X" a metric space containing X1 as a closed set and Q an ANR con-
taining y as a closed set. (i) Each mutation F: Nbd (X, Xr)—>Nbd (Y, Y')
has an extension F: Nbd (X, X") -> Nbd (Yf Q). (ii) If F is homotopic
to a mutation G: Nbd (X, X') -> Nbd (Y, Y'), then F is homotopic to each
extension G: Nbd (X, X") -> Nbd (y, Q) 0/ G.

PROOF, (i) Consider the collection of continuous maps

U 6 Nbd (X, X"), V e Nbd (Y, Q),

"* 3/: ί/nx'-^Fn y m F s.t. /vil7ni, = ir,vnτ.
Then we will show that F: Nbd (X, X") -> Nbd (y, Q) is a mutation.
(M-l): trivial. (M-2): For each Ve Nbd (Y, Q), VnY'eNbά(Y, y ) , so
there is an f:UQ-+VnY' in F. There is a C/'eNbd(X, X") such that
Z7'ΠX' = Uo. Since V is an ANR and Uo is closed in U', there is an exten-
sion/: U->Vot ir,vnτ>Γ to some C7eNbd(i70, i7')cNbd(X, X"). Obvious-
ly U n X = Uo. (M-3): Let / L / ' : U -> y be in F. There are /, / ' : U n
X ' - ^ F n y in jP7 such that fiu,unx> = iv,vnγ>f and f'iUtΌViZ» = V,Fny/'
There exists a_Z7"eNbd(X, 17) such that fiunχ>,u>>nχ' ~ /'%nr,F»nr» ^ a t
is, fiu,u"nx> ~ f'iu,u"t\x' Since F is an ANR and since ί7" Π X' isclosed
in Z7", there is_some tΓ 6 Nbd ([/" Π X', ?7") c_Nbd (X, 17) such that /v,^ -
fiu.u' Thus F is a mutation. Obviously, JP is an extension of F.

(ii) Let f, g: U->V be in F and in G, respectively. Since VΓϊY' e
Nbd (y, y ) , there are f: U^VnY* in F and. ί/ ί ί ^ F ί l Γ in G. Ob-
viously, F ~ G implies fiUvZ ~ giU2,x- Since i*7 and G are extensions of
F and G, respectively, there are / ' : U[-^V in F and βf': U2-^V in G
such that / '% ί > x = ir.vnγ>fiuvx and flr'%έ>x = iv,vnγ>giu2,x- Note that f'iu>vx~
fiUtZ and g'iu>2,x ~ giu,x, so fiUyX_^ giUiX. Since y is an ANR, there is
some Ϊ7' 6 Nbd (X, Z7) such that /%iZ7/ ~ giUtu> D

Let F: Nbd (X, X") -> Nbd (y, T') and G: Nbd (y, Y") -> Nbd (Z, Z")
be extensions of F: Nbd (X, X') -> Nbd (Y9 Y') and G: Nbd (Y,Y')-+
m>ά(Z,Z'), respectively, where X c X ' c X " , Γ c Γ c Γ and ^ c ^ ' c
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Z". Then GF is obviously an extension of GF. The following corollary
is obvious.

COROLLARY 1-2. Let X and Y be closed subsets of X' and Yf, respec-
tively, and let F: Nbd (X, Xf) -> Nbd (Y, T) and G: Nbd (Y, T) ->
Nbd (X, X') be mutations. If FG ~ J(FfΓ,> then Sh X ^ Sh Y and if, in
addition, GF ~ /<*,*') then Sh X = Sh Y.

2. MAR and MANR. Let X be a closed subset of Y. A mutation
R: Nbd (Y, Y') -> Nbd (X, X') is called a mutatίonal retraction if r |X = id
for each r eR, where X' and Yf are metric spaces containing X and F,
respectively, as closed subsets. We say that X is a mutational retract
of Y ([14]) if there exists a mutational retraction R: Nbd (IT, P) —>
Nbd (X, P) for some ANR P containing Y as a closed subset. By
Theorem 3.1 in [14], the choice of an ANR P and the manner of an
embedding of Y in P as a closed subset are immaterial, and moreover
the notion of mutational retract is topological invariant. We say that
X is a mutational neighbourhood retract of Y ([14]) if X is mutational
retract of some closed neighbourhood of X in Y. Obviously, this notion
is also topological invariant.

PROPOSITION 2-1. Let X be a closed subset of Y and let X and Y
be closed subsets of X' and Y\ respectively. If there is a mutational
retraction i?:Nbd(F, Y') —> Nbd (X, X'), then X is a mutational retract
of Y. If there are a closed neighbourhood W of X in Y and a mutational
retraction J?':Nbd(Wr, Yr) —> Nbd(X, X'), then X is a mutational neigh-
bourhood retract of Y.

PROOF. We may assume that X' Π Y' = X. Then X' U Y' is a metric
space in which X' and Yr are closed (Lemma 4.7 in [14]). Embed X' U Yf

in some ANR P as a closed subset. By 1-1, there are extensions
R: Nbd (Y, P) -> Nbd (X, P) and R'\ Nbd (W, P)_-+ Nbd_(X, P) of R and #',
respectively. Consider the subcollections of R and Rf consisting of all
member r such that r\X = id, these are mutational retractions. ••

We say that X is a mutational absolute retract (shortly: MAR) (resp.
a mutational absolute neighbourhood retract (shortly: MANR)) if X is a
mutational retract (resp. a mutational neighbourhood retract) of each
metric space Y containing X as a closed subset ([14]). These concepts
of MAR and MANR are not only topological invariant but shape invariant
in both senses of Fox and of Borsuk ([15] 3.8, 3.11, 4.11 and 4.13) and
these are the extensions of the concepts of AR (PAR) and ANR (FANR)
respectively ([14] 4.2-5).
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The following characterizations are established by S. Godlewski [14],
[15].

THEOREM 2-2. MAR's (resp. MANR's) are the same as mutational
retracts of AR's (resp. ANR's) (Theorem 4.9 and 4.11 in [14]).

THEOREM 2-3. A metric space X is an MAR if and only if Sh X
is trivial, that is, X has the same shape type as a one-point space
(Theorem 3.5 in [15]).

As an extension of Theorem 6.1 and Corollary 6.3 in Ch. VIII of [4],
the following characterization of MAR holds.

THEOREM 2-4. Let X be a closed subset of an AR P. Then the
following conditions are equivalent.

( i ) X is an MAR.
(ii) Every neighbourhood U of X contains a neighbourhood Uo of

X which is contractible in U.
(iii) X is contractible in each neighbourhood.
(iv) For each neighbourhood U of X, there is a continuous map

r: P^U such that r|X = id.

PROOF, (i) => (ii): There is a mutational retraction R: Nbd (P, P) ->
Nbd(X, P). Then for each £7eNbd(X, P), there is an r:P-^U in R.
Since r(X) = X is contractible in r(P) and since U is an ANR, it is easy
to see that there is some Z70 e Nbd (X, P) which is contractible in U.

(ii) => (iii): trivial.
(iii) => (iv): For each t/eNbd(X, P), the inclusion iu>x is homotopic

to a constant map. Since U is an ANR, there is an extension r: P —> U
of iUtX by the Homotopy Extension Theorem.

(iv) => (i): This is a direct consequence of the following lemma:

LEMMA 2-5. Let X be a closed subset of Y and suppose that Y is
deformable into X. Then X is a mutational retract of Y if for each
neighbourhood U of X in Y there is a continuous map r:Y-+U such
that r\X= id.

PROOF. Consider the collection of continuous maps

R = {r: Y-^U\UeNba(X, Y), r\X = id) .

Let d: Y x I-^Y be a deformation of Y into X. Since each reR is
homotopic to rdί = dlf it is easy to see that R: Nbd (Y, Y)-* Nbd (X, Y)
is a mutational retraction. By 2-1, X is a mutational retract of Y. •

3. Movable and strongly movable metric spaces. Let X be a closed
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subset of Y. We say that X is movable in Y if for each neighbourhood
U of X in Y, there is a neighbourhood £70 of X in Y which satisfies the
following condition:

m(X, U): For each neighbourhood V of X in Y, there is a continu-
ous map /: Uo -> V Π Ϊ7 such that iu>Vnuf ~ iu,u0,

and we say that X is strongly movable in Y if above UQ satisfies the
following condition:

sm (X, U): For each neighbourhood V of X in Y, there is a con-
tinuous map /: Uo —> V IΊ Ϊ7 such that / | X = id and iUtvr\uf ~ %,εv

A metric space X is said to be movable (resp. strongly movable) if X is
movable (resp. strongly movable) in an ANR containing X as a closed
subset. (Compare with the definition in Ch. V of [4].) A movable
metric space defined above is movable in the sense of Kozlowski-Segal
[19], for if X is movable in an ANR P, then Nbd (X, P) is a movable
inverse system (cf. [13]). In the above definitions of movability and
strong movability, the choice of ANR P and the manner of an embedding
of X in P as a closed subset are immaterial, and moreover these concepts
are hereditary shape invariant, that is, the following theorem holds.

THEOREM 3-1. Let X and Y be closed subsets of ANR's P and Q
respectively, and ShX^ShY (i.e., X shape-dominates Y). If X is
movable (resp. strongly movable) in P, then Y is also movable (resp.
strongly movable) in Q.

PROOF. There are mutations F: Nbd (X, P) -> Nbd (Y, Q) and G:
Nbd (Γ, Q) -> Nbd (X, P) such that FG - J(ΓiQ). For each Ve Nbd (Γ, Q),
there is an /: U -> V in F. Since X is (strongly) movable in P, there
is a Uo e Nbd (X, U) satisfying the condition m (X, U) (the condition
sm(X, U)). Then there is a g: V'o—>U0 in G and since FG ~ I^qu there
is a F oeNbd(Γ, Q) such that fiu,uQQiv^v0 ~ V,ro We will show that Vo

satisfies the condition m(Y, V) (the condition sm(Γ, V)).
Let F'eNbd(Γ, Q). There is an f':ir-+V'nV in F, and then

there is a £7" eNbd(Γ, U' Π 17) such that ir.vnvf'iu'.u" ~ fiu,v>>- By
the condition m (X, U) (the condition sm (X, U)), there is a continuous
map fo: Uo —• C7" such that v.^Λ ~ V,z70 ( a n (i Λ%0,χ = %",z)
f'iuf,w,hgiv,,yQ: Vo -* F ' n F. Then

V,F0
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Therefore Vo satisfies the condition m(F, V). (Since h\X and U" is an
ANR, there is a Uι e Nbd (X, Uo Π U") such that hiUQtUl ~ iu»tUl. There
is a gr': Fi—> Z7t in G and then %0>l7lf/'iFl,r ~ flrvj,y, so

Λ V 0 , F — / ^uf,

/ t * J *

Since FG — J<F,ρ>, f'iu^uβ'iv^ ~ VΠF,Γ, then Λ'iFo,F ~ VΠF.F

Homotopy Extension Theorem, there exists ft": Fo -^ 7 ' IΊ F such that
h"iVϋtY — iv>f)v,γ and h" ~ h'. Then iVtV,πvh" ~ iV)Vf[]Vh

f ~ iv,v0 Therefore

VQ satisfies the condition smίF, V).) •

By the following theorem, MANR is characterized by strong mova-
bility. This is a generalization of Theorem 7.6 in Ch. VIII of [4].

THEOREM 3-2. MANR's are the same as strongly movable metric
spaces.

PROOF. Let X be an MANR. By 2-2, there are an ANR P contain-
ing X as a closed subset and a mutational retraction R: Nbd (P, P) —>
Nbd (X, P). For each U e Nbd (X, P), there is an r0: P -> Z7 in R. Since
U is an ANR and ro\ X = id, there is a C70 e Nbd (X, I/) such that rQίPfUo ~
iUfUo. For each F e Nbd (X, P), there is an r: P - * F Π ί7 in i2. Since i?
is a mutation, iUiVmr ~ r0. Then iu,vnuriP,u0 ~

 r^p,u0 ~ iu,uo Note that
iu,vnurip,uo(%) = r(^) — ̂  for e a c h ίc e X. Therefore X is strongly movable
in' P.

Conversely, let X be strongly movable. Then there is an ANiϋ P in
which X is strongly movable. There are W, W e Nbd (X, P) which
satisfy the conditions sm (X, P) and sm (X, W), respectively. Consider
the collection of continuous maps

UeNbd(X, W),r\X= id, iw,tUr - iw,tW

r: W-+U r( W) is contained in some UQ e Nbd (X, W) \

satisfying sm (X, U)

Then we will show that i?:Nbd(TF, T7)->Nbd(X, W) is a mutational
retraction. (M-l): trivial. (M-2): This is easily seen from the strongly
movability of X and the condition sm (X, W) of W. (M-3): Let r, r':
W -> ί7 be in ϋJ. Since there is a continuous map &: W -+U such that
AJ IX = id by the condition sm (X, P) and since U is an ANR, there are
a F e Nbd (X, W7) and a continuous map fo: W —> U such that h \ V = id.
Since r 6 i?, there are a Ϊ7O 6 Nbd (X, W) satisfying sm (X, 17) such that
r(W)aU0. From the condition sm (X, 17) of U09 there is a continuous



358 K. SAKAI

map /: UQ-+ V such that iu>vf ~ V,^o Define a continuous map r: W-+V
by ψ(x) = f(r(x)) for each & e W. Then r ~ %,Γr. Since iw,tUr ~ iW',w>
then r ~ v , F r = hiw,tUiUtVr ~ hiw,>υr ~ hίw,fW. Similarly, r ' ~ hiw,}W.
Thus r — r\ Π

4. AWR and AWNR. Let X be a closed subset of Γ and of X\
We say that X is a weαfe retract of Y in Xf if for each neighbourhood
U of X in X', there is a continuous map r:Y->U such that r | X = id
and that X is a weαfc retract (resp. a weαfc neighbourhood retract) of Y
if X is a weak retract of Y (resp. of a closed neighbourhood of X in Y)
in an ANR P containig X as a closed subset. (Compare the definition
in [2] Sect. 3.) It is easy to see that if X is a weak retract of Y in
some metric space X' containing X as a closed subset, then X is a weak
retract of Y. Thus the choice of an ANR P and the manner of an
embedding of X in P as a closed subset are immaterial in the above
definition.

A metric space X is said to be an absolute weak retract (shortly:
AWR) (resp. an absolute weak neighbourhood retract (shortly: AWNR))
if X is a weak retract (resp. a weak neighbourhood retract) of each
metric space Y containing X as a closed subset (see [2]). The following
characterization of AWR and AWNR is an extension of Theorem 4 in [2]
Sect. 3.

THEOREM 4-1. AWR's (resp. AWNR's) are the same as weak retracts
of AR's (resp. ANR's).

PROOF. It is obvious that AWR's are weak retracts of AR's con-
taining those as a closed sets. Conversely, let X be a weak retract of an
AR P and suppose X is a closed subset of a metric space Y. For each
neighbourhood U of X in P, there is a continuous map r: P -+U such
that r\X — id. Since P is an AR, there is a continuous map /: F—>P
such that f\X= id. Then rf:Y->U is a continuous map such that
rf\X = id. Thus X is a weak retract of Y, therefore X is an AWR.

Next, let X be an AWNR and let P be an ANR containing X as a
closed subset. Then X is a weak retract of some closed neighbourhood
W of X in P. Clearly, X is a weak retract of intW. Since intW is
open in the ANR P, intW is an ANR. Conversely, let X be a weak
retract of an ANR P and suppose X is a closed subset of a metric space
Y. Then there exist a closed neighbourhood W of X in Y, a continuous
map /: W—>P such that f\X= id and for each neighbourhood U of X
in P, there is a continuous map r:P^>U such that r | X = i d . This
implies that X is a weak neighbourhood retract of Y. Therefore X is
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an AWNR. •

By 2-4, we have

COROLLARY 4-2. AWE's are the same as MAR's.

For AWNR, the following theorem holds. This was established by
S. A. Bogatyi [2] in the case of compacta.

THEOREM 4-3. Movable AWNR's are the same as MANR's.

PROOF. By 3-2, MANR's are the same as strongly movable metric
spaces and then clearly these are movable and AWNR's.

Let X be a movable AWNR. By 4-1, X is a weak retract of an ANR
P. For each U e Nbd (X, P), X is also a weak retract of U. From the
movability of X, there is a Uoe Nbd (X, U) satisfying the condition
m(X, U). For each FeNbd(X, P), there is a continuous map r: Ϊ7 —>
VΓ\U such that r | X = i d . Since VΓ\U is an ANR, r\V ~ iVΓiUtV> for
some V e Nbd (X, V Π U). By the Homotopy Extension Theorem, there
is a continuous map rr: U->Vf]U such that r'\V = id. From the con-
dition m (X, 17) of Uo, there is a continuous map / : Uo —> V such that
iu.vf ~ W o Since ivm,v>f\X = r'iUtV,fiUo,z ~ r'iu>x = ivnUtX, by the
Homotopy Extension Theorem, there is a continuous map h: UQ—>VΠU
such that h\X = id and h ~ iVr\u,vf> so iUtVnuh ~ iu.vf ~ %,EΓO Thus ί70

satisfies the condition sm (X, U). Therefore X is strongly movable. •

The concept of AWR is shape invariant by 4-2. Here we will
prove that the concept of AWNR is hereditary shape invariant in all
metric spaces.

THEOREM 4-4. Let Sh X ^ Sh Y. If X is an AWNR, then Y is so.

PROOF. By 4-1, X is a weak retract of some ANR P. Let Q be an
ANR containing 7 as a closed subset. Since ShXΞ>ShY, there are
mutations F: Nbd (X, P) -> Nbd (Γ, Q) and G: Nbd (Γ, Q).-* Nbd (X, P) such
that FG ~ I{Y>Q). There is a #: W->P in G (from (M-2)). Then it is
enough to show that 7 is a weak retract of W in Q, because W is an
ANR.

Let FeNbd(Γ, Q). There are an /: U-+V in F (from (M-2)) and
a continuous map r:P—>U such that r | X = id. Since U is an ANR,
r\U'~ iUtU> for some Z7' 6 Nbd (X, U). By the Homotopy Extension
Theorem, there is a continuous map rf\P—>U such that r'|C7' — id-
There is a g':V—>U' in G (from (M-2)), and then iP,u>g'iv>,γ ~ ffV.r
(from (M-3)). Thus fr'giw,γ ~ fr'iP>u,g'iv,tY — fiUtϋ,g'iv,tY. Since FG ~
I(Y,Q)> fiu,u>g'ir',γ ~ ir,γf that is, / r ' # | Y ~ v > Γ . By the Homotopy Ex-
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tension Theorem, there is a continuous map r":W-*V such that
r" IY = id. Therefore Γ is a weak retract of TF in Q. •

REMARK 4-5. Recently, K. Tsuda [26] extended the notion of
AWNR for arbitrary topological spaces which is equivalent to the notion
ofM-condition introduced by T. Watanabe [27] and he proved that AWNR
is a hereditary shape invariant for arbitrary topological spaces. And
he show that AWNR is a concept different from movability; there exists
a non-movable locally compact separable metrizable AWNR.

5. Product of an MAR and a locally compact metric space. Y.
Kodama [18] showed that if Y is an FAR (i.e. a compact MAR), then
for any metric space X, the projection of the space 1 x 7 onto X
induces a shape equivalence (Corollary 2 in [18]) and that the product
of an MAR (resp. an MANR) and an FAR (resp. a pointed FANR) is also
an MAR (resp. an MANR) (Theorem 2 in [18]). In this section, we will
prove an analogous result: If Y is an MAR and X is a locally compact
metric space, then the projection of X x Y onto X induces a shape
equivalence. And as its corollary, we shall see that the product of an
MAR and a locally compact MAR (resp. a locally compact MANR) is an
MAR (resp. MANR).

The result of Michael's paper [20] is our tool. Let & be a topologi-
cal property of spaces. We say that a space X has property & locally
if each point of X has a neighborhood in X which has property ^* A
property & is F-hereditary for X if every subspace Xf of X satisfies
condition (F-l) below, and if every closed subspace X' of X also satisfies
conditions (F-2) and (F-3): (The term "closed" will mean "closed with
respect to Xf" and similarly for "open" and "interior").

(F-l): If X' has property ^* then every closed subset of X' has
property ^ .

(F-2): If X' is the union of two closed sets, both of which have
property ^ , and whose interiors cover Xf, then Xr has property &.

(F-3): If X' is the union of disjoint collection of open subsets all
of which have property ^* then X' has property &.

THEOREM 5-1 ([20] Theorem 5.5). Let X be a paracompact Hausdorff
space and & a property which is F-hereditary for X. If X has
property & locally, then X has property &.

Let Y be an MAR and a closed subset of an AR Q and let y0 e Y.
For any space X, let ix: X-+ X x Y be the injection defined by ix(x) =
(x, y0) for each xeX, let px: X x Q -> X be the projection, and let j U t X —
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iu,xχγiχ9 Qχ,u = PχiχχQ,u for each Ϊ J e N b d ( X x Y, X x Q). We will define

the topological property p(Y, Q) of X as follows: X has property
p( Y, Q) if for each U e Nbd (XxY,XxQ) there exist C70 e Nbd (X x Γ, Z7)
and an X-preserving homotopy f:UoxI-*U (i.e., qx>ϋft = gjr>ε7() for each
ί e /) such that f0 = %)C,0 and f1jϋo>xqx>UQ = /i

PROPOSITION 5-2. The property p{ Y, Q) is F-hereditary for a metric
space X.

PROOF. (F-l): Let Xo be a subset of X which has property p(Y, Q),
and Xx a closed subset of Xo. For each Ue^bd(X1 x Y, Xt x Q), U' =
U U (X0\Xi) x Q 6 Nbd (Xo x Γ, Xo x Q), so there are a U[ e Nbd (Xo x Γ,
C77) and an X0-preserving homotopy / ' : U[x I-+Ur such that f'o = i^,.^
and f[jH%zjtz^Όh = f[. Note that C/o Ξ C/J n Xi x Q e Nbd (Xx x Γ J ^ Q).
Restricting / ' to Z70 x >̂ we can obtain an Xi-preserving homotopy
f:Uox I-^U such that f0 = iu>Uo and fju^z^z^u^ = Λ Therefore Xi has
property p(Γ, Q).

(F-2): Let Xo be a closed subset of X, let Xx and X2 be closed
subsets of Xo which have property p{Y, Q) and let Xo = intXo XiUint^ X2.
For each C/eNbd(X0 x Y, Xo x Q), EΓ = Ϊ7 n Xi x Q e N b d ^ x Γ , ! ^ Q),
so there are a Z7J e Nbd (Xx x Y, Uf) and an XΓpreserving homotopy
/': EΓo x I->EF such that /J - %,.^ and f'JHtZιqZvH = /ί. Since C/" =
(EΓo n X2 x Q) U (U n (X0\Xi) x β ) e N b d ( X 2 x Γ, X2 x Q), there are C/J' e
Nbd(X2 x Γ, U") and an X2-preserving homotopy / " : U" x I-*U" such
that / " = iu,,tUn and f['Ju>>,x2Qx2,u()> = /ό' Since Xo\intXo X 2cintX o X1? there
is an open subset W of Xo such that Xo\intXo X 2 c WCZC\XQ WamtXo Xt.
Then there are continuous maps k19 k2: Xo -* / such that (̂Xo înt̂ Q XJ = 0,
Aά(clχ0 TF) = 1, Λ2(Xo\intXo X2) = 0 and k2(X0\W) - 1. Put Uo = U'o

f U
(E7ίn(Xo\X2)xQ)eNbd(Xox Γ, Ϊ7) and define an Xo preserving homotopy
/: Uo x I -> Z7 by

(f'{x,y,t) if *

/ ' (/"(a, 0, ftt(aj)ί), ̂ (aj)*) if xeX,f]X/(«, y, t) =

[f'\χ, y, t) if

Then /o = iUfUo and fJUotzoqzOtuo = /i Therefore Xo has property p(Γ, Q).
(F-3): trivial. Q

PROPOSITION 5-3. Locally compact metric spaces have property

P(Y,Q).

PROOF. Let X be a locally compact metric space. By 5-1, it is
sufficient to see that X has property p(Y, Q) locally. For each xeX,
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there is a compact neighbourhood V of x in X. For each Ue Nbd ( 7 x 7 ,
V x Q), there is a U' e Nbd (Γ, Q) such that V x EΓ c U. By 2-4, there
is a C/; e Nbd (Y, Uf) which is contractible in U'. Put C70 = V x UJ. We
can easily construct a desired X-preserving homotopy f:U0 x I—>U.
Then X has property p(Y, Q) locally. •

THEOREM 5-4. Let Y be an MAR. For any locally compact metric
space X, the projection p: X x Y —>X induces a shape equivalence.

PROOF. Let Y be embedded in some AR Q as a closed subset.
Consider the collection of continuous maps

U, Uo 6 Nbd (X x Y, X x Q), Uo c J7 ,

/: Z70 x / —> ί7 is an X-preserving homotopy

such that fjj

F =

From the property j>( F, Q) of X, it is easy to see that F: Nbd (X, X) —•
Nbd (X x Y, X x Q) is a mutation such that P F = {idx}, FP ~ / ( J X F > J X ( 2 ),
where P: Nbd (X x F, X x Q) -> Nbd (X, X) is the mutation consisting
of all projections qXtU: U->X, ?7eNbd(X x Y, X x Q). From 1-2, we
obtain the theorem. •

COROLLARY 5-5. Let X be a locally compact metric space and Y an
MAR. X x Y is an MAR, an MANR, movable, or an AWNR if and
only if X is so.

In Theorem 5-4, we do not know whether local compactness of X is
essential or not:

PROBLEM. Let Y be an MAR. For any metric space X, does the
projection p: X x Y —>X induce a shape equivalence?

6. Union of an MAR and a metric space with an MAR intersection.
In this section, using the technique of infinite-dimensional manifolds, we
will show that the inclusion of a metric space X into a union X U Y of
X and an MAR Y induces a shape equivalence if X and Y are closed
in X U Y and if X Π Y is an MAR.

Let E be a linear metric space (LMS) which is homeomorphic (=)
to the countable infinite product Eω of itself or to the subspace Efω =
{(xi)eEω\xi = 0 for almost all ieN} of Eω. A space X is E-stable if
X x E = X. Every E-manifold (i.e., manifold modelled on E) is E-
stable (the Schori's Stability Theorem [23]). A subset K of an ^-stable
space X is E-deficient in X if there is a homeomorphism h: X—+ X x E
such that Λ(If) c X x {0}. If K is JS'-deficient in X, then for each open
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subset U of X, U Π K is JS'-deficient in U (e.g., this follows from Lemma
2.1 in [22]). First, we will show the following lemmas.

LEMMA 6-1. Let E = Eω or =E? be an AR, LMS and Y a metric
space. If Y Π E is an MAR and an E-deficient closed subset of E and
if Y and E are closed in Y U E, then the inclusion i: Y ^ Y U E induces
a shape equivalence.

PROOF. Let J: Nbd (F, Y (J E) -> Nbd (Y\JE, Y[jE)he the mutation
consisting of inclusions. We must show that J is a shape equivalence.
Consider the collection of continuous maps

C / e N b d ( F , Y\jE), g\Y = id, )

g IE: E —> U Π E is an open embedding}

We will show that G:Nbά(Yl)E, Y U E) -> Nbd (Γ, 7Uί?) is a muta-
tion. (M-l): trivial. (M-2): For each Z7eNbd(Γ, Y U E), UnEe
Nbd(ΓΠ E, E). Since 7 n E is an MAR (an AWR), there is a continu-
ous map r:E-^UnE such that r\YΠ E = id. By Corollary 4.3 in [22],
there is an open embedding g'\ E-+U Π E such that g'\Y Π E = r\Y Π
E' = id. Then we can obtain an embedding g: Y U E —> Z7 defined by
g\E = g' and ^ | Γ = id. (M-3): Let g, g':Yl)E-^U be in G. Since
Γ Π J B is an MAR and since #(#) Π flr'(J5) e N b d ( Γ n E, E), there is a
continuous map r: E -> g(E) Π 0'(2ϊ) such that r | Y (Ί ̂  = id. Since
g(E) = E is an AR, there is a homotopy f:ExI—>g(E) such that
/ t IY Π £7 = id for each tel, fQ = r and fι = g\E. Then # is homotopic
to r: F U E-^ U defined by r \ Y = id and r\E — r because the homotopy
f:(YΌE)x I->U defined by

if xeY
f{Xft)- (f(x,t) if xeE.

connects g and f. Similarly, gf is also homotopic to r.
Now we must show that GJ ~ I{Y,Y[JE) and JG ~ I{γ[jE.γΌE). Let g:

YVE-+U be in G and £7'eNbd(Γ, Γ u S ) . Because ^(£r) is an AR,
giγϋE,u>\U Π U' Π ̂ (^): 17 Π Ϊ7' Π ̂ (£Γ) —> ̂ (-E) is homotopic to the inclusion
igίEUΌWME) fixing YΠE. By the same argument as (M-3) above,
giγuE,u>iu',ur)u>r)(g(E)uγ) ~ iu,unu>r)(g(E)ΌY) Similarly, iγ{jE,uQ ~ id, because E

is an AR. Thus GJ ~ I{Y,YΌE) and JG ~ /(ru^,ru^) D

LEMMA 6-2. Let P be an AR and X a metric space. If X and P
are closed in X U P and if X Π P is an MAR, then the inclusion
i: X —> X U P induces a shape equivalence.

PROOF. By the Arens-Eelles' theorem ([1], [21] and [24]), there exists
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a Banach space B which contains an isometric copy P' of P such that
P' is linearly independent in B and closed in span Pf. Then span P' is
an AR, LMS with dens P 5j dens (span Pr) and P is an AR admitting a
closed embedding into span P'. By the Toruήczyk's result (Theorem 3.1
in [25]), put E = (span P % then P x E = E. Since X x {0} f) P x E =
(X Π P) x {0} is an MAR and an .E'-deficient closed subset of P x E
(= £7 = .£?/), the inclusion i : I x { 0 } - ^ I x { 0 } U P x ί ? induces a shape
equivalence by 6-1. Since the projection p: X x {0} [J P x E-> X x {0} U
Pχ{0} = (XuP)x{0} is a homotopy equivalence, the inclusion pi:Xx{0}—>
(X U P) x {0} induces a shape equivalence. •

THEOREM 6-3. Let X be a metric space and Y an MAR. If X and
Y are closed in X{JY and if X ΓΊ Y is an MAR, then the inclusion
i: X-> X U Y induces a shape equivalence.

PROOF. Let P be an AR such that P contains F a s a closed subset
and i n P ^ I ί l Γ . By 6-2, the inclusions j : X -> X (J P and f: X U
7 - ^ I l j P induce shape equivalences. Since j = j'i, it is easy to see
that i induces a shape equivalence. •

Informally, J. Ono has proved that two closed subspaces Xι and X2

of an FANR X = X, U X2 with Xo = X,n X2 an FAR are FANR's. This
result is extended as follows:

COROLLARY 6-4. Let Xλ and X2 be closed subsets of a metric space
X = X, U X2 with Xo = X, (Ί X2 an MAR. If X is an MANR, an AWNR
or movable, then both X1 and X2 are so.

PROOF. Let P be an AR such that X Π P = Xo is closed in P. It
is easy to see that Xt U P is a retract of X U P f or i = 1, 2. By 6-2,
Sh X U P = Sh X and Sh X, U P = Sh X, for i = 1, 2. Hence if X is an
MANR, an AWNR or movable, then X U P and then its retracts Xι U P
and X2 U P are so, therefore Xx and X2 are so. •

Moreover, for AWNR, the following holds:

COROLLARY 6-5. If X is a union of two closed AWNR's Xγ and X2

with Xo = Xx Π X2 an AWR (i.e., an MAR), then X is an AWNR.

PROOF. We can easily find AR's Pt(i = 0,1, 2) such that Xt is a
closed subset of P, for i = 0, 1, 2 and Po = Px Π P2. Then P = P1 U P2 is
an AR. For i = 1, 2, since Sh X, u Po = Sh X, by 6-2, X, U Po is an
AWNR. Hence Xί U Po is a weak retract of some ^ e N b d ί X i U Po, PJ . We
shall show that XU Po is a weak retract of W = W, U W2 e Nbd (XU Po, P).
For each C7eNbd(XU Po, P), there is a continuous map r*: ^ - ^ ί
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that r£ \Xt i) P0 = id (i = 1, 2). Since W1 Π W2 = Po, we can define a con-
tinuous map r: W-> U by r | TF, = r, for i = 1, 2. Since r |X U Po = id,
X U Po is a weak retract of an ANR W. By 4-1, X U Po is an AWNR.
Since Sh X U Po = Sh X by 6-2, X is an AWNR. •

REMARK 6-6. The movable version of this corollary is not true. In
fact, C. Cox [10] constructed a non-movable compactum which is a one-
point union of two movable compacta. The MANR version is not known
yet. Recently, K. Tsuda [26] proved that a union of two compact AWNR's
XI and X2 with Xι Π X2 a pointed FANR is an AWNR. And J. Dydak,
S. Nowak and M. Strok [11] proved that a union of two pointed FANR
X1 and X2 with X^ Π X2 a pointed FANR is also a pointed FANR.

For MAR, we give an elementary proof.

THEOREM 6-7. Let Xλ and X2 be two closed subspaces of a metric
space X = Xι U X2 and let Xo = X1 Π X2.

( i ) If Xo, Xi and X2 are MAR's, then X is also an MAR.
(ii) If X and Xo are MAR's then both Xι and X2 are MAR's.

PROOF. Let Pt (i = 0, 1, 2) be AR's such that Xi is a closed subsets
of Pi and P0 = P1ΠP2 and let P = Pί\JP2. Then P is an AR and X is a
closed subset of P. Recall that MAR and AWR are the same concept (4-2).

( i ) : For each *7eNbd(X, P), there are Ut e Nbd (X,, U n P«) and
continuous maps rt: Pi-^U Π Pi such that rt\Ui = id (ΐ = 1, 2). Put
U0=U1f]U2e Nbd (Xo, ί7ίΊ Po). There is a continuous map r0: PQ-^U0 such
that ro |X0 — id. Since P^ are AR's, there are continuous maps rί: P^ —> P^
such that r; | Po = ΐP<f^oro and rj | Xf = id. Put rϊ = r.r^: P, -> J7 Π P*. Then
r " | P 0 = rtr't\P0 = riiP.,UQr0 = ip.>ε,oro and r^X* = nrilX, = r'i\Xt = id.
Define a continuous map r: P —> U by r | Pt = r" (i = 1, 2). Then r | X = id.
Thus X is a weak retract of an AR P, therefore X is an AWR, i.e., an
MAR.

(ii): For each U1 e Nbd (X19 PJ, there is a continuous map r0: P2-^U1

such that r01 Xo = id. Since ί/x is an ANR, there are a U e Nbd (X U P2, P)
and a continuous map r'o: U' —> Σ7X such that r ί |P 2 = r0 and rJl-X",. = id. On
the other hand, there is a continuous map r:P-+U such t h a t r | X = id.
Then r[r:P-^U1 is a continuous map such that r[r\Xx = τ[\X^ = id.
Thus Xi is a weak retract of an AR P, therefore XL is an AWR, i.e.,
an MAR. Similarly, X2 is also an MAR. •
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