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SOME PROPERTIES OF MAR AND MANR
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Abstract. In this paper, we extend the concepts of movability, strong
movability, AWR and AWNR for arbitrary metrizable spaces and we show
that MAR and AWR are the same concept and that MANR, strong mov-
ability and movable AWNR are the same concept. And we prove that the
projection of the product X XY of a locally compact metric space X and
an MAR Y onto X induces the shape equivalence and that the inclusion of
a metric space X into a union XU Y of X and an MAR Y induces a shape
equivalence if X and Y are closed in XU Y and if XNY is an MAR.

0. Introduction. The notion of shape for compacta introduced by
K. Borsuk [5] was generalized to arbitrary metrizable spaces by K.
Borsuk [8] and by {R. H. Fox [12]. The concepts of FAR and FANR
were induced by K. Borsuk [6] and these are important and interesting
in his shape theory as well as AR and ANR in homotopy theory (refer
to the book of K. Borsuk [4]). Generalizing these concepts for compacta,
S. Godlewski [14] introduced the concepts of MAR and MANR in Fox’s
shape theory. Some basic properties of MAR and MANR were investi-
gated in [14], [15] and [16].

In Sect. 2 of this paper, we shall give a characterization of MAR
which is similar to one of FAR. Movability and strong movability
introduced by K. Borsuk [7], [9] can be defined for metrizable spaces.
In Sect. 3, we shall show that strong movability coincides with the
concept of MANR, as in the case of FANR. And the concepts of AWR
and AWNR introduced by S. A. Bogatyi [2] can be also defined for
metrizable spaces. In Sect. 4, we shall extend Bogatyi’s results in [2],
that is, MAR and AWR are equivalent concepts and movable AWNR’s
are MANR’s.

Y. Kodama [18] recently showed that the product of an FAR (resp.
a pointed FANR) and an MAR (resp. an MANR) is also an MAR (resp.
an MANR) and that the projection of the product X X Y of a metrizable
space X and an FAR Y onto X induces a shape equivalence. In Sect. 5,
we shall prove that the projection of the product X x Y of a locally
compact metrizable space X and an MAR Y onto X induces the shape
equivalence.
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In Sect. 6, we shall show that the inclusion map of a metrizable
space X into its union X UY with an MAR Y induces a shape equivalence
if X and Y are closed in X UY and if X NY is an MAR. As a corollary,
a sum theorem for MANR’s or movable metrizable spaces or AWNR’s
is obtained.

In this paper, AR and ANR mean those for metrizable spaces. As
concerns AR and ANR, refer to the books of K. Borsuk [3] or S-T. Hu
[17].

The author wishes to thank Professor Y. Kodama and his collabora-
tors for their helpful comments.

1. The shape in the sence of Fox. Now, we extend the basic notions
introduced by R. H. Fox in [12]. Let A be a subset of B. We denote
the inclusion map of A into B by 45, Let X be a subspace of a space
X’. The family Nbd (X, X’) of all open neighbourhoods of X in X' is
called the complete meighbourhood system of X in X’. Consider two
arbitrary complete neighbourhood systems Nbd (X, X’) and Nbd (Y, Y').
A mutation F: Nbd (X, X’) - Nbd (Y, Y’) from Nbd (X, X’) to Nbd (Y, Y")
is defined as a collection of continuous maps f: U —V, where Ue
Nbd (X, X’), VeNbd (Y, Y’) such that

(M-1) For each f: U—V in F and for each U’ eNbd (X, X’) and

V' eNbd (Y, Y’) such that U' cU and Vc V', iy vfigy € F.

(M-2) For each VeNbd(Y, Y’), there exists f: U —V in F.

(M-3) For each f, f': U—V in F, there exists U’ € Nbd (X, X’) such

that U' cU and fiy o ~ flig,y.

The mutation I z,: Nbd (X, X’) > Nbd (X, X’) is the collection of all
inclusions 4y, ,» where U’, U e Nbd (X, X'), U'cU. Consider two mutations
F:Nbd (X, X')— Nbd (Y, Y')and G: Nbd (Y, Y’) —» Nbd (Z, Z’'). The com-
position GF:Nbd (X, X')— Nbd (Z, Z’) of the mutations F and G is the
mutation being the collection of all compositions gf such that feF,
g€ G and gf can be defined. Then FI 5, = Iy v ,F = F.

Two mutations F, G: Nbd (X, X’) - Nbd (Y, Y’') are homotopic (or F
18 homotopic to G, notation: F' ~ G) if

(HM) For each feF and ge@G such that f, g: U —V, there exists

U’ eNbd (X, U) such that fiyy ~ giy o

Any metric space X can be embedded in an ANR as a closed subset
by the well-known Kuratowski-Wojdystawski theorem. We say that X
and Y are shape-equivalent (or have the same shape type, notation:
ShX =ShY) if there are ANR’s P and @ which contain X and Y as
closed subsets, respectively, and mutations F: Nbd (X, P) — Nbd (Y, Q)
and G:Nbd(Y, Q) — Nbd (X, P) such that GF ~ Iy and FG ~ Iyg.
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If the mutations F' and G satisfy only the condition F'G ~ Iy, then
we say that X shape-dominates Y (notation: Sh X=ShY). By Theorem
3.2 in [12], the choice of ANR’s P and @ and the manner of embeddings
of X and Y in P and Q, respectively, as a closed subsets, are immaterial.

Let Xc X' cX” and YCY' cY”. A mutation F’: Nbd (X, X")—
Nbd (Y, Y") is an extension of a mutation F: Nbd (X, X’) — Nbd (Y, Y)
if for each V'eNbd (Y, Y”) and each f:U—V'NY’ in F, there is an
[ U =V in F' such that f'iy.x = %y pnpSfiv.x.

LEMMA 1-1. Let X and Y be closed subsets of X' and Y’ respectively,
X" a metric space containing X' as a closed set and Q an ANR con-
tatning Y' as a closed set. (i) Fach mutation F:Nbd (X, X')—Nbd (Y, Y')
has an extension F:Nbd (X, X”)— Nbd (Y, Q). (ii) If F is homotopic
to a mutation G:Nbd (X, X") — Nbd (Y, YY), then F is homotopic to each
extension G:Nbd (X, X") —» Nbd (Y, Q) of G.

Proor. (i) Consider the collection of continuous maps

UeNbd (X, X”), VeNbd (Y, Q),
f:UNX' —-VNY in F s.t. f?;z;,zmx' = by rard )

Then we will show that F:Nbd (X, X”)— Nbd(Y, @) is a mutation.
(M-1): trivial. (M-2): For each VeNbd(Y, @), VNY eNbd (Y, Y’), so
there is an f: U,—»V NY in F. There is a U € Nbd (X, X"”) such that
UNX =U, Since V is an ANR and U, is closed in U’, there is an exten-
sion f: U —V of iy,ynpf to some U e Nbd (U,, U')cNbd (X, X”). Obvious-
ly UNX =U,. (M-3): Let f, f:U—V be in F. Thereare f, f: UN
X' -VNY in F such that fiyynx = tyyneS and Fivong = trrord
There exists a U” € Nbd (X, U) such that fiynz vrnx ~ fivnx vz, that
is, fiy,pinz: ~ Fiv,wrnx. Since V is an ANR and since U” N X’ is closed
in U”, there is some U’ € Nbd (U” N X', U”) c Nbd (X, U) such that fiy, ~
fiU,U,. Thus F is a mutation. Obviously, F is an extension of F.

(ii) Let f,§: U—V bein F and in G, respectively. Since VNY'e
Nbd (Y, Y’), there are f: U, -V NY in F and g: U,—»V NY in G. Ob-
viously, F' ~ G implies fiy,x ~ gy, x. Since F and G are extensions of
F and G, respectively, there are f: U.—V in F and ¢:U,—V in G
such that f'iy;,x = ty.yor S, x and §'tyy,x = ty,vnrgiv,r. Note that gy x~
Siv,x and ¢'iy,x ~ Giy,x, 80 fiy,x ~ Jiy,z. Since V is an ANR, there is
some U’ eNbd (X, U) such that fi,, ~ gigp. [

Let F:Nbd (X, X")— Nbd (Y, Y”) and G:Nbd (Y, Y”)— Nbd (Z, Z")
be extensions of F:Nbd (X, X’)— Nbd(Y, Y’) and G:Nbd (Y, Y')—
Nbd (Z, Z'), respectively, where Xc X' c X", YcY' cY" and ZC Z'C

F= {f:U—»V
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Z". Then GF is obviously an extension of GF. The following corollary
is obvious.

COROLLARY 1-2. Let X and Y be closed subsets of X' and Y’, respec-
tively, and let F:Nbd (X, X')—>Nbd(Y,Y) and G:Nbd(Y, Y’)—
Nbd (X, X’) be mutations. If FG ~ Iy,y, then Sh X = ShY and tf, n
addition, GF ~ Iy 5, then Sh X = Sh Y.

2. MAR and MANR. Let X be a closed subset of Y. A mutation
R:Nbd (Y, Y') —» Nbd (X, X’) is called a mutational retraction if r|X = id
for each r € R, where X’ and Y’ are metric spaces containing X and Y,
respectively, as closed subsets. We say that X is a mutational retract
of Y ([14]) if there exists a mutational retraction R:Nbd (Y, P)—
Nbd (X, P) for some ANR P containing Y as a closed subset. By
Theorem 3.1 in [14], the choice of an ANR P and the manner of an
embedding of Y in P as a closed subset are immaterial, and moreover
the notion of mutational retract is topological invariant. We say that
X is a mutattonal neighbourhood retract of Y ([14]) if X is mutational
retract of some closed neighbourhood of X in Y. Obviously, this notion
is also topological invariant.

. PROPOSITION 2-1. Let X be a closed subset of Y and let X and Y
be closed subsets of X' and Y’, respectively. If there is a mutational
retraction R:Nbd (Y, Y') — Nbd (X, X'), then X is a mutational retract
of Y. If there are a closed neighbourhood W of X in Y and a mutational
retraction R': Nbd{(W, Y') — Nbd (X, X'), then X is a mutational neigh-
bourhood retract of Y.

ProoF. We may assume that X’ NY’ = X. Then X' UY’ is a metric
space in which X’ and Y’ are closed (Lemma 4.7 in [14]). Embed X' U Y’
in some ANR P as a closed subset. By 1-1, there are extensions
R:Nbd (Y, P) — Nbd (X, P) and R': Nbd (W, P) — Nbd (X, P) of R and R,
respectively. Consider the subcollections of R and R’ consisting of all
member 7 such that 7| X = id, these are mutational retractions. [].

We say that X is a mutational absolute retract (shortly: MAR) (resp.
a mutational absolute neighbourhood retract (shortly: MANR)) if X is a
mutational retract (resp. a mutational neighbourhood retract) of each
metric space Y containing X as a closed subset ([14]). These concepts
of MAR and MANR are not only topological invariant but shape invariant
in both senses of Fox and of Borsuk ([15] 3.8, 3.11, 4.11 and 4.13) and
these are the extensions of the concepts of AR (FAR) and ANR (FANR)
respectively ([14] 4.2-5).
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The following characterizations are established by S. Godlewski [14],
[15].

THEOREM 2-2. MAR’s (resp. MANR’s) are the same as mutational
retracts of AR’s (resp. ANR’s) (Theorem 4.9 and 4.11 in [14]).

THEOREM 2-3. A metric space X ts an MAR +f and only +f ShX
ts trivial, that s, X has the same shape type as a one-point space
(Theorem 3.5 wn [15]).

As an extension of Theorem 6.1 and Corollary 6.3 in Ch. VIII of [4],
the following characterization of MAR holds.

THEOREM 2-4. Let X be a closed subset of an AR P. Then the
Sollowing conditions are equivalent.

(i) X %s an MAR.

(ii) Ewvery metghbourhood U of X contains a metghbourhood U, of
X which is contractible wn U.

(iii) X 1s contractible in each meighbourhood.

(iv) For each meighbourhood U of X, there is a continuous map
r: P—U such that r|X = id.

ProOF. (i) = (ii): There is a mutational retraction R: Nbd (P, P)—
Nbd (X, P). Then for each U eNbd (X, P), there is an »: P—U in R.
Since r(X) = X is contractible in 7(P) and since U is an ANR, it is easy
to see that there is some U,€ Nbd (X, P) which is contractible in U.

(ii) = (iii): trivial.

(iii) = (iv): For each U e Nbd (X, P), the inclusion %, , is homotopic
to a constant map. Since U is an ANR, there is an extension r: P —-U
of i, y by the Homotopy Extension Theorem.

(iv) = (i): This is a direct consequence of the following lemma:

LEMMA 2-5. Let X be a closed subset of Y and suppose that Y s
deformable into X. Then X is a mutational retract of Y if for each
netghbourhood U of X in Y there is a continuous map r:Y — U such
that r|X = id.

Proor. Consider the collection of continuous maps
R={r:Y—->U|UeNbd(X, Y), r|X =1id}.

Let d: Y x I—-Y be a deformation of Y into X. Since each re R is
homotopic to rd, = d,, it is easy to see that R: Nbd (Y, Y)— Nbd (X, Y)
is a mutational retraction. By 2-1, X is a mutational retract of Y. []

3. Movable and strongly movable metric spaces. Let X be a closed
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subset of Y. We say that X is movable wn Y if for each neighbourhood
Uof Xin Y, there is a neighbourhood U, of X in Y which satisfies the
following condition:
m(X, U): For each neighbourhood V of X in Y, there is a continu-
ous map f: U, — V NU such that iy ynof ~ tv,0,
and we say that X is strongly movable in Y if above U, satisfies the
following condition:
sm (X, U): For each neighbourhood V of X in Y, there is a con-
tinuous map f: U,— V N U such that f|X =1id and <yynof ~ tv,0,-
A metric space X is said to be movable (resp. strongly movable) if X is
movable (resp. strongly movable) in an ANR containing X as a closed
subset. (Compare with the definition in Ch. V of [4].) A movable
metric space defined above is movable in the sense of Kozlowski-Segal
[19], for if X is movable in an ANR P, then Nbd (X, P) is a movable
inverse system (cf. [13]). In the above definitions of movability and
strong movability, the choice of ANR P and the manner of an embedding
of X in P as a closed subset are immaterial, and moreover these concepts
are hereditary shape invariant, that is, the following theorem holds.

THEOREM 3-1. Let X and Y be closed subsets of ANR’s P and @
respectively, and ShX =ShY (i.e., X shape-dominates Y). If X 1is
movable (resp. strongly movable) in P, then Y 1is also movable (resp.
strongly movable) in Q.

PROOF. There are mutations F:Nbd (X, P)— Nbd(Y,Q) and G:
Nbd (Y, @) — Nbd (X, P) such that FFG ~ Iy ,. For each VeNbd(Y, Q),
there is an f: U —V in F. Since X is (strongly) movable in P, there
is a U,eNbd (X, U) satisfying the condition m (X, U) (the condition
sm (X, U)). Then there is a g: Vi — U, in G and since F'G ~ Iy, there
is a V,eNbd (Y, Q) such that fiyy0%v;,v, ~ vy, We will show that V,
satisfies the condition m (Y, V) (the condition sm (Y, V)).

Let V'eNbd(Y, Q). There is an f: U'—V'NV in F, and then
there is a U”eNbd (Y, U NU) such that %, ,npf gy ~ figyr. By
the condition m (X, U) (the condition sm (X, U)), there is a continuous
map h: U,—U" such that iy y.h ~iyy, (and hiy,x = tyr,x). Put b’ =
Sy prhgivgp: Vo— V' N V. Then

. ;s . .
tryiarh’ =ty yarf Lor,u Ry v,
~ f’bv,v"hgzv(,.vo
~ f"'U,UogZV(,.Vo

~ lyyy »
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Therefore V, satisfies the condition m (Y, V). (Since /X and U” is an
ANR, there is a U,eNbd (X, U,NU") such that hiy oy, ~ ity There
isa ¢ V,—U, in G and then 4y 4,9y, v ~ Giy;,vs SO

h’ivo,y = f'iU’,U”h‘giVé,Y
~ f’iU’,U”hiUO,Ulg,iVl,Y
~ f”l:v',vlg’ivl,y .
Since FG ~ Iy,qg), f,iU’,Ulg’iVl,Y ~ tyayy, then Aty vy ~ iyapy. By the
Homotopy Extension Theorem, there exists &”: V,—V'NV such that
h”iVo,Y e iylny,y and h" ~ h’- Then iy,ylnyha" ~ iV,'V’ﬂVh, ~ iV,VO‘ Therefore
V, satisfies the condition sm (Y, V).) [

By the following theorem, MANR is characterized by strong mova-
bility. This is a generalization of Theorem 7.6 in Ch. VIII of [4].

THEOREM 3-2. MANR’s are the same as strongly movable metric
spaces.

PrRoOF. Let X be an MANR. By 2-2, there are an ANR P contain-
ing X as a closed subset and a mutational retraction R: Nbd (P, P) —
Nbd (X, P). For each Ue€Nbd (X, P), there is an r,: P—U in R. Since
U is an ANR and 7| X = id, there is a U, e Nbd (X, U) such that 7., ~
ty,u,» For each VeNbd (X, P), there is an »: P—V NU in R. Since R
is a mutation, iy,yau” ~ 7. Then iy yau7ipy, ~ Tolpu, ~ tv,v,» Note that
ty,wnu?ip,u,(®) = r(w) = & for each x € X. Therefore X is strongly movable
in P.

Conversely, let X be strongly movable. Then there is an ANR P in
which X is strongly movable. There are W’, We Nbd (X, P) which
satisfy the conditions sm (X, P) and sm (X, W’), respectively. Consider
the collection of continuous maps

UeNbd (X, W), r| X = id, two” ~ tw,w
R=4{r: W—U|r(W) is contained in some U,eNbd (X, W)
satisfying sm (X, U)

Then we will show that R:Nbd (W, W) — Nbd (X, W) is a mutational
retraction. (M-1): trivial. (M-2): This is easily seen from the strongly
movability of X and the condition sm (X, W’) of W. (M-3): Let =, 7'":
W —U be in R. Since there is a continuous map k: W — U such that
k)X = id by the condition sm (X, P) and since U is an ANR, there are
a VeNbd (X, W) and a continuous map h: W — U such that »|V = id.
Since ¢ R, there are a U,c Nbd (X, W) satisfying sm (X, U) such that
r(W)c U, From the condition sm (X, U) of U, there is a continuous
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map f: U, — V such that iy,,f ~ iy,4,. Define a continuous map 7: W -V
by 7(x) = f(r(x)) for each x€ W. Then 7= ~ 4, ,7. Since iy ;7 ~ Ty ws
then 7 ~ 9,7 = hiy vy ¥ ~ hiy T ~ Rig: . Similarly, 7' ~ hip,w.
Thus » ~ +'. [

4. AWR and AWNR. Let X be a closed subset of Y and of X'.
We say that X is a weak retract of Y in X' if for each neighbourhood
U of X in X', there is a continuous map 7: Y — U such that »|X =id
and that X is a weak retract (resp. a weak meighbourhood retract) of Y
if X is a weak retract of Y (resp. of a closed neighbourhood of X in Y)
in an ANR P containig X as a closed subset. (Compare the definition
in [2] Sect. 3.) It is easy to see that if X is a weak retract of Y in
some metric space X’ containing X as a closed subset, then X is a weak
retract of Y. Thus the choice of an ANR P and the manner of an
embedding of X in P as a closed subset are immaterial in the above
definition.

A metric space X is said to be an absolute weak retract (shortly:
AWR) (resp. an absolute weak meighbourhood retract (shortly: AWNR))
if X is a weak retract (resp. a weak neighbourhood retract) of each
metric space Y containing X as a closed subset (see [2]). The following
characterization of AWR and AWNR is an extension of Theorem 4 in [2]
Sect. 3.

THEOREM 4-1. AWR’s (resp. AWNR’s) are the same as weak retracts
of AR’s (resp. ANR’s).

ProOF. It is obvious that AWR’s are weak retracts of AR’s con-
taining those as a closed sets. Conversely, let X be a weak retract of an
AR P and suppose X is a closed subset of a metric space Y. For each
neighbourhood U of X in P, there is a continuous map 7»: P — U such
that 7| X = id. Since P is an AR, there is a continuous map f: Y — P
such that f|X =1id. Then 7f: Y —U is a continuous map such that
rf|X = id. Thus X is a weak retract of Y, therefore X is an AWR.

Next, let X be an AWNR and let P be an ANR containing X as a
closed subset. Then X is a weak retract of some closed neighbourhood
W of X in P. Clearly, X is a weak retract of intW. Since intW is
open in the ANR P, intW is an ANR. Conversely, let X be a weak
retract of an ANR P and suppose X is a closed subset of a metric space
Y. Then there exist a closed neighbourhood W of X in Y, a continuous
map f: W — P such that f|X = id and for each neighbourhood U of X
in P, there is a continuous map 7: P— U such that »|X = id. This
implies that X is a weak neighbourhood retract of Y. Therefore X is
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an AWNR. []
By 2-4, we have
COROLLARY 4-2. AWR’s are the same as MAR’s.

For AWNR, the following theorem holds. This was established by
S. A. Bogatyi [2] in the case of compacta.

THEOREM 4-3. Movable AWNR’s are the same as MANR’s.

ProOOF. By 3-2, MANR’s are the same as strongly movable metric
spaces and then clearly these are movable and AWNR’s.

Let X be a movable AWNR. By 4-1, X is a weak retract of an ANR
P. For each UeNbd (X, P), X is also a weak retract of U. From the
movability of X, there is a U,eNbd (X, U) satisfying the condition
m (X, U). For each VeNbd (X, P), there is a continuous map 7: U —
V' NU such that | X =id. Since VNU is an ANR, 7|V’ ~ 4yqp,y for
some V'eNbd (X, VNU). By the Homotopy Extension Theorem, there
is a continuous map 7': U —V N U such that |V’ = id. From the con-
dition m (X, U) of U,, there is a continuous map f: U,— V' such that
Ty, f ~ Ty,vge Since tynp,f 1 X = T,":U,V’fiUO,X ~ 1"y, x = tyou,x, BY the
Homotopy Extension Theorem, there is a continuous map h: U,—V NU
such that »|X = id and h ~ %y v f, SO tyyavh ~ typf ~ tv,v,. Thus U,
satisfies the condition sm (X, U). Therefore X is strongly movable. []

The concept of AWR is shape invariant by 4-2. Here we will
prove that the concept of AWNR is hereditary shape invariant in all
metric spaces.

THEOREM 4-4. Let Sh X =ShY. If X is an AWNR, then Y s so.

Proor. By 4-1, X is a weak retract of some ANR P. Let @ be an
ANR containing Y as a closed subset. Since Sh X = Sh Y, there are
mutations F: Nbd (X, P) — Nbd (Y, Q) and G: Nbd (Y, @) — Nbd (X, P) such
that FG ~ Iy q. There is a g: W— P in G (from (M-2)). Then it is
enough to show that Y is a weak retract of W in Q, because W is an
ANR.

Let VeNbd (Y, Q). There are an f: U—V in F (from (M-2)) and
a continuous map 7: P— U such that 7|X = id. Since U is an ANR,
r|U ~ iy for some U’ eNbd (X, U). By the Homotopy Extension
Theorem, there is a continuous map 7': P—U such that ' |U’ = id.
There is a ¢": V' —=U" in G (from (M-2)), and then %p 49"ty y ~ Gliwy
(from (M-3)). Thus fr'giy,y ~ f"%p,0:9" %y = fiy,p 9 ty.y. Since FG ~
Iy.os fiyu g,y ~ vy, that is, fr'g|Y ~ 4, . By the Homotopy Ex-
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tension Theorem, there is a continuous map +": W—V such that
7"|Y = id. Therefore Y is a weak retract of W in Q. []

REMARK 4-5. Recently, K. Tsuda [26] extended the notion of
AWNR for arbitrary topological spaces which is equivalent to the notion
of M-condition introduced by T. Watanabe [27] and he proved that AWNR
is a hereditary shape invariant for arbitrary topological spaces. And
he show that AWNR is a concept different from movability; there exists
a non-movable locally compact separable metrizable AWNR.

5. Product of an MAR and a locally compact metric space. Y.
Kodama [18] showed that if Y is an FAR (i.e. a compact MAR), then
for any metric space X, the projection of the space X XY onto X
induces a shape equivalence (Corollary 2 in [18]) and that the product
of an MAR (resp. an MANR) and an FAR (resp. a pointed FANR) is also
an MAR (resp. an MANR) (Theorem 2 in [18]). In this section, we will
prove an analogous result: If Y is an MAR and X is a locally compact
metric space, then the projection of X X Y onto X induces a shape
equivalence. And as its corollary, we shall see that the product of an
MAR and a locally compact MAR (resp. a locally compact MANR) is an
MAR (resp. MANR).

The result of Michael’s paper [20] is our tool. Let < be a topologi-
cal property of spaces. We say that a space X has property < locally
if each point of X has a neighborhood in X which has property . A
property < is F-hereditary for X if every subspace X' of X satisfies
condition (F-1) below, and if every closed subspace X’ of X also satisfies
conditions (F-2) and (F-3): (The term ‘“closed” will mean “closed with
respect to X'’ and similarly for “open” and “interior”).

(F-1): If X' has property % then every closed subset of X’ has
property .

(F-2): If X' is the union of two closed sets, both of which have
property &7, and whose interiors cover X', then X’ has property Z.

(F-8): If X' is the union of disjoint collection of open subsets all
of which have property &%, then X’ has property 2.

THEOREM 5-1 ([20] Theorem 5.5). Let X be a paracompact Hausdorff
space and F a property which is F-hereditary for X. If X has
property Z locally, then X has property .

Let Y be an MAR and a closed subset of an AR @ and let y,eY.
For any space X, let ¢,: X — X X Y be the injection defined by i, (x) =
(¢, y,) for each x € X, let py: X X @ » X be the projection, and let j, ; =



MAR AND MANR 361

To,xxvVxs Qx,v = Pxlzxeu for each Ue Nbd (X X Y, X X Q). We will define
the topological property »(Y, @) of X as follows: X has property
(Y, Q) if for each U € Nbd (X X Y, X X Q) there exist U,e Nbd (X x Y, U)
and an X-preserving homotopy f: U, X I - U (i.e., qxuf; = qx.y, for each
t e I) such that f, = iy,y, and fiJy,xqx,0, = fi-

PROPOSITION 5-2. The property p(Y, Q) is F-hereditary for a metric
space X.

Proor. (F-1): Let X, be a subset of X which has property »(Y, @),
and X, a closed subset of X,. For each UeNbd(X, XY, X, X @), U’ =
UU (X\X,) X QeNbd (X, X Y, X, X @), so there are a Uye Nbd (X, X Y,
U’) and an X,-preserving homotopy f': U; X I — U’ such that fi = i,y
and fijp;x9x,v; = fi. Note that U, =U;N X, X Qe Nbd (X, X Y, X, X Q).
Restricting f’ to U, x I, we can obtain an X, -preserving homotopy
J:U, x I - U such that f, = iy, and fijy,x0x,0, = fi- Therefore X, has
property p(Y, Q).

(F-2): Let X, be a closed subset of X, let X, and X, be closed
subsets of X, which have property p(Y, Q) and let X, =int, X,Uinty X,.
For each UeNbd (X, XY, X, xQ), U =UNX,xQeNbd(X, XY, X, XQ),
so there are a U,eNbd(X, x Y, U') and an X,-preserving homotopy
S Uy x I—-U" such that fi =iy and fijy,x4x,0; = fi. Since U” =
(Up)n X, x QU (UNX\X) X QeNbd (X, xY, X, X Q), there are U; €
Nbd (X, x Y, U") and an X,-preserving homotopy f": U, X I —-U" such
that f¢ = iy,pp and f1'Jvy,x8x,0y = fo. Since X,\inty X,Cinty, X, there
is an open subset W of X, such that X\int, X,C Wcely, WCinty X,.
Then there are continuous maps k,, k,: X, — I such that k,(X,\inty, X,) =0,
kcly, W) =1, k(X\inty, X;) =0 and k(X\W)=1. Put U,= UjU
(U N(X\X,) X Q) € Nbd (X,x Y, U) and define an X, preserving homotopy
f:U, x I-U by

S (@, y, t) if xeX\X,
flx, y, t) = {f" (f"(x, ¥, kao(2)2), u(2)t) if zeX,NX,
Sz, y, t) if zeX\X,.

Then f, = ty,y, and fiJv,,x,9x,0, = Ji- Therefore X, has property »(Y, Q).
(F-3): trivial. [

PrROPOSITION 5-3. Locally compact metric spaces have property
(Y, Q).

ProoF. Let X be a locally compact metric space. By 5-1, it is
sufficient to see that X has property p(Y, Q) locally. For each z¢ X,
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there is a compact neighbourhood V of # in X. For each UeNbd(V x Y,
V X @), there is a U’ e Nbd (Y, @) such that V x U’ cU. By 2-4, there
isa U, e Nbd (Y, U’') which is contractible in U’. Put U,= V x U,. We
can easily construct a desired X-preserving homotopy f: U, x I —U.
Then X has property p(Y, Q) locally. []

THEOREM 5-4. Let Y be an MAR. For any locally compact metric
space X, the projection p: X X Y — X induces a shape equivalence.

PROOF. Let Y be embedded in some AR @ as a closed subset.
Consider the collection of continuous maps

U, UeNd( X XY, X x@Q), U,cU,
F = {fijyy,x: X—-U|f: Uy x I-U is an X-preserving homotopy
such that fljUO,XqX,UO = fi

From the property »(Y, @) of X, it is easy to see that F: Nbd (X, X) —
Nbd (X X Y, X X Q) is a mutation such that PF = {idy}, F'P ~ I xxy,xxa»
where P:Nbd(X x Y, X X Q) — Nbd (X, X) is the mutation consisting
of all projections ¢y,,: U—X, UeNbd(X x Y, X X Q). From 1-2, we
obtain the theorem. []

COROLLARY 5-5. Let X be a locally compact metric space and Y an
MAR. X xY s an MAR, arn MANR, movable, or an AWNR if and
only +f X s so.

In Theorem 5-4, we do not know whether local compactness of X is
essential or not:

ProBLEM. Let Y be an MAR. For any metric space X, does the
projection p: X X Y — X induce a shape equivalence?

6. Union of an MAR and a metric space with an MAR intersection.
In this section, using the technique of infinite-dimensional manifolds, we
will show that the inclusion of a metric space X into a union XU Y of
X and an MAR Y induces a shape equivalence if X and Y are closed
in XUY and if XNY is an MAR.

Let E be a linear metric space (LMS) which is homeomorphic (=)
to the countable infinite product E“ of itself or to the subspace E,w =
{(x,)e E°|x, = 0 for almost all 1€ N} of E°. A space X is E-stable if
X x E= X. Every E-manifold (i.e., manifold modelled on E) is E-
stable (the Schori’s Stability Theorem [23]). A subset K of an E-stable
space X is E-deficient in X if there is a homeomorphism #: X — X X F
such that A(K)c X x {0}. If K is E-deficient in X, then for each open
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subset U of X, U N K is E-deficient in U (e.g., this follows from Lemma
2.1 in [22]). First, we will show the following lemmas.

LEMMA 6-1. Let E = E° or =E¢ be an AR, LMS and Y a metric
space. If YNE is an MAR and an E-deficient closed subset of E and
oWf Y and E are closed in Y U E, then the inclusion 1: Y —Y U E induces
a shape equivalence.

PrOOF. Let J: Nbd (Y, YU E)— Nbd(Y U E, Y U E) be the mutation
consisting of inclusions. We must show that J is a shape equivalence.
Consider the collection of continuous maps

UeNbd(Y, YUE), ¢g|Y = id,

G=lgYUE-U ,
{g Y ’QIEIEHUOE is an open embedding

We will show that G:Nbd (YU E, YUE)—Nbd(Y, YU FE) is a muta-
tion. (M-1): trivial. (M-2);: For each UeNbd(Y, YUE), UNnEe
Nbd (Y N E, E). Since YN E is an MAR (an AWR), there is a continu-
ous map 7. E—U N E such that »|Y N E =id. By Corollary 4.3 in [22],
there is an open embedding ¢': E—~UN E such that ¢'|YNE =7|YN
E =id. Then we can obtain an embedding g¢g: Y U E— U defined by
g|E=¢g and ¢g|Y =id. (M-3): Let ¢g,9: YUE—U be in G. Since
YNE is an MAR and since g(E)N ¢'(E)eNbd(Y N E, E), there is a
continuous map 7: E — g(E)N g¢'(E) such that »|YNE =id. Since
g(E)= FE is an AR, there is a homotopy f:E X I— g(E) such that
flYNE =id for each tel, f,=1r and f, = g|E. Then ¢ is homotopic
to 7: Y U E — U defined by 7|Y = id and #|E = » because the homotopy
F(YUE) x I -U defined by

- @ if 2eY
@O =1ty it sek.

connects g and 7. Similarly, ¢’ is also homotopic to 7.

Now we must show that GJ ~ Iy vy, and JG ~ Lyypyum. Let g:
YUE—U be in G and U'eNbd(Y, YU E). Because g(E) is an AR,
9tyuro | UNU NgE): UNU N g(E)— g(KE) is homotopic to the inclusion
Tymuorngm NXing Y N E. By the same argument as (M-3) above,
Qyur,u o vnvnemun ~ wriraemun.  Similarly, tyypyzg ~ id, because E
is an AR. Thus GJ ~ Iy vux and JG ~ Lyyzyum- [

LEMMA 6-2. Let P be an AR and X a metric space. If X and P
are closed in XUP and if XNP is an MAR, then the inclusion
2: X — X U P induces a shape equivalence.

ProOF. By the Arens-Eelles’ theorem ([1], [21] and [24]), there exists
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a Banach space B which contains an isometric copy P’ of P such that
P’ is linearly independent in B and closed in span P’. Then span P’ is
an AR, LMS with dens P < dens (span P’) and P is an AR admitting a
closed embedding into span P’. By the Torunezyk’s result (Theorem 3.1
in [25]), put E = (span P’)%, then P X E = E. Since X X {0}NP X E =
(XNP)x {0} is an MAR and an E-deficient closed subset of P X E
(=2 E = E?2), the inclusion %: X X {0} - X X {0} UP X E induces a shape
equivalence by 6-1. Since the projection p: X X {0JUP X E— X X {0} U
Px{0}=(XUP)x{0}is a homotopy equivalence, the inclusion pi: X X {0}—
(X U P) x {0} induces a shape equivalence. []

THEOREM 6-3. Let X be a metric space and Y an MAR. If X and
Y are closed in XUY and +f XNY 4s an MAR, then the inclusion
1. X—> X UY induces a shape equivalence.

ProOF. Let P be an AR such that P contains Y as a closed subset
and XNP=XNY. By 6-2, the inclusions j7: X > X UP and 5: XU
Y — X U P induce shape equivalences. Since j = j'¢, it is easy to see
that ¢ induces a shape equivalence. []

Informally, J. Ono has proved that two closed subspaces X, and X,
of an FANR X = X, U X, with X, = X,N X, an FAR are FANR’s. This
result is extended as follows:

COROLLARY 6-4. Let X, and X, be closed subsets of a metric space
X=X UX, with X,= X, NX, an MAR. If X is an MANR, an AWNR
or movable, then both X, and X, are so.

PrROOF. Let P be an AR such that XN P = X, is closed in P. It
is easy to see that X, U P is a retract of X UP for 7 =1,2. By 6-2,
ShXUP=ShX and ShX,UP=ShX, for t=1,2. Hence if X is an
MANR, an AWNR or movable, then X U P and then its retracts X, U P
and X, U P are so, therefore X, and X, are so. []

Moreover, for AWNR, the following holds:

COROLLARY 6-5. If X is a union of two closed AWNR’s X, and X,
with X, = X, N X, an AWR (i.e., an MAR), then X is an AWNR.

PrROOF. We can easily find AR’s P;(1 = 0,1, 2) such that X, is a
closed subset of P, for ¢t =0,1,2 and P, = P,NP,. Then P=P,UP, is
an AR. For 72=1,2, since ShX,UP,=ShX, by 6-2, X,UP, is an
AWNR. Hence X;U P, is a weak retract of some W, ¢ Nbd(X,UP,, P;,). We
shall show that XU P, is a weak retract of W=W,UJ W,e Nbd (XU P, P).
For each UeNbd (X U P, P), there is a continuous map 7;: W, — U such
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that »,| X, UP,=1id (¢ =1, 2). Since W, N W, = P,, we can define a con-
tinuous map . W—-U by »|W, =17, for 1 =1,2. Since r| XU P, =1id,
X U P, is a weak retract of an ANR W. By 4-1, XU P, is an AWNR.
Since Sh XU P, = Sh X by 6-2, X is an AWNR. []

REMARK 6-6. The movable version of this corollary is not true. In
fact, C. Cox [10] constructed a non-movable compactum which is a one-
point union of two movable compacta. The MANR version is not known
yet. Recently, K. Tsuda [26] proved that a union of two compact AWNR’s
X, and X, with X, N X, a pointed FANR is an AWNR. And J. Dydak,
S. Nowak and M. Strok [11] proved that a union of two pointed FANR
X, and X, with X, N X, a pointed FANR is also a pointed FANR.

For MAR, we give an elementary proof.

THEOREM 6-7. Let X, and X, be two closed subspaces of a metric
space X = X, U X, and let X, = X, N X,.

(1) If X,, X, and X, are MAR’s, then X is also an MAR.

(ii) If X and X, are MAR’s then both X, and X, are MAR’s.

Proor. Let P, (1 = 0,1, 2) be AR’s such that X, is a closed subsets
of P, and P,.=P,NP, and let P=P,UP,. Then P is an AR and X is a
closed subset of P. Recall that MAR and AWR are the same concept (4-2).

(i): For each UeNbd (X, P), there are U,ecNbd (X,, UNP,) and
continuous maps 7;: P,—UNP;, such that »,|U,=id (: =1,2). Put
U=U,NU,eNbd (X,, UNP,. There is a continuous map r,: P,—U, such
that »,] X, = id. Since P, are AR’s, there are continuous maps r:: P, — P,
such that 7;| P, = %p,5,7 and 7;| X; = id. Put »; = r,r;: P, - U N P,. Then
| Py = vl Py = 7ilp,u,00 = tp,0,70 and )| X; =rri| X, = r| X, = id.
Define a continuous map »: P—U by »|P, = r; (41 =1, 2). Then r| X = id.
Thus X is a weak retract of an AR P, therefore X is an AWR, i.e., an
MAR.

(ii): For each U, € Nbd (X,, P,), there is a continuous map »,: P, —»U,
such that r,| X, = id. Since U, is an ANR, there are a U € Nbd (X U P,, P)
and a continuous map 7;: U — U, such that »;|P, = r, and 7| X, =id. On
the other hand, there is a continuous map 7r: P — U such that | X = id.
Then 7yr: P— U, is a continuous map such that 7 |X, = r| X, = id.
Thus X, is a weak retract of an AR P, therefore X, is an AWR, i.e.,
an MAR. Similarly, X, is also an MAR. []
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