LOCALLY SYMMETRIC EINSTEIN KAEHLER MANIFOLDS AND SPECTRAL GEOMETRY

KAZUMI TSUKADA

(Received July 27, 1978, revised October 19, 1978)

1. Introduction. Let (M, g) be a compact connected Riemannian manifold with the metric tensor g, and Δ be the Laplacian acting on differentiable functions of M, that is,

$$\Delta f = -\sum g^{ji} \nabla_j \nabla_i f$$
,

where V_j denotes the covariant differentiation $V_{\partial/\partial x^j}$ with respect to the Riemannian connection. Let Spec $(M,g)=\{0=\lambda_0<\lambda_1\leq \lambda_2\leq \cdots\}$ be the set of eigenvalues of Δ , where each eigenvalue is repeated as many times as its multiplicity. It is an interesting problem to investigate relations between Spec (M,g) and Riemannian structures.

A useful tool is a formula of Minakshisundaram:

$$\sum_{k=0}^{\infty} e^{-\lambda_k t} \underbrace{\sim}_{t \to +0} (4\pi t)^{-n/2} \sum_{i=0}^{\infty} \alpha_i t^i ,$$

where $n = \dim M$.

Berger [1] has calculated the coefficients a_0 , a_1 and a_2 ,

$$a_{_0}={
m volume}\, M=\int_{_M} d\, V$$
 $a_{_1}=(1/6)\int_{_M} au d\, V$ $a_{_2}=(1/360)\int_{_M} 5 au^2-2\, |
ho|^2+2\, |R|^2 d\, V$,

where the notations τ , ρ , R denote the scalar curvature, the Ricci tensor and the curvature tensor, respectively. By difficult calculations, Sakai [4] derived a formula for a_3 .

In this paper we prove the following result, making essential use of Sakai's formula.

THEOREM. Let (M, g, J) and (M', g', J') be compact connected Einstein Kaehler manifolds with $\dim_c M = n(\geq 3)$ which have nonzero scalar curvatures τ , τ' , respectively. Assume that Spec $(M, g, J) = \operatorname{Spec}(M', g', J')$ (which implies $\dim_c M = \dim_c M'$) and that $c_1^{n-3}c_3[M] = \operatorname{Spec}(M', g', J')$

 $c_1^{\prime n-3}c_3^{\prime}[M^{\prime}]$. Then (M, g, J) is locally symmetric if and only if $(M^{\prime}, g^{\prime}, J^{\prime})$ is locally symmetric.

In this theorem $c_i \in H^{2i}(M, \mathbb{Z})$ is the *i*-th Chern class of M and $c_1^{n-3}c_3[M]$ is a Chern number of M. (Hirzebruch [3])

REMARK 1. The integer $c_1^{n-3}c_3[M]$ depends only on the complex structure of M.

REMARK 2. Let (M, g) and (M', g') be compact connected Einstein manifolds and assume that Spec (M, g) = Spec (M', g'). The following results are known.

- (1) For dim M=6, assume that $\chi(M)=\chi(M')$. Then (M,g) is locally symmetric if and only if (M',g') is locally symmetric. (Sakai [4])
- (2) For dim $M \le 5$, (M, g) is locally symmetric if and only if (M', g') is locally symmetric. (Donnelly [2])

The author wishes to thank Professor K. Ogiue for his many valuable comments.

2. Preliminaries. Let (M, g, J) be an *n*-dimensional Kaehler manifold, and $e_1, e_2, \dots, e_n, Je_1, Je_2, \dots, Je_n$ be local orthonormal frames. We set

$$Z_{lpha} = \{e_{lpha} - \sqrt{-1} J e_{lpha}\}/2$$

 $ar{Z}_{lpha} = \{e_{lpha} + \sqrt{-1} J e_{lpha}\}/2$

and we denote dual frames by θ^1 , θ^2 , \cdots , θ^n , $\bar{\theta}^1$, $\bar{\theta}^2$, \cdots , $\bar{\theta}^n$. With respect to these frames, local components of g are given by

$$g_{\alpha \overline{\beta}} = (1/2) \delta_{\alpha \beta}$$
.

Then the fundamental 2-form Φ is given by

$$arPhi = (\sqrt{-1}/2) \sum heta^lpha \wedge ar{ heta}^lpha$$
 .

Let $\Omega^{\alpha}_{\beta} = \sum R^{\alpha}_{\beta\gamma\bar{\imath}}\theta^{\gamma} \wedge \bar{\theta}^{\bar{\imath}}$ be the curvature form of M. Then the curvature tensor of M is the tensor field with local components $R^{\alpha}_{\beta\gamma\bar{\imath}}$, which will be denoted by R. The Ricci tensor ρ and the scalar curvature τ are given by

$$ho = \sum
ho_{lpha_{ar{
ho}}} heta^lpha igotimes ar{ heta}^eta + ar{
ho}_{lpha_{ar{
ho}}} ar{ heta}^lpha igotimes heta^eta \ au = 4 \sum
ho_{lpha_{ar{lpha}}} \, ,$$

where $ho_{lphaar{eta}} = \sum R_{lpha\gammaar{eta}}^{\gamma}$.

If we define a closed 2k-form γ_k by

$$\gamma_k = ((-1)^{k/2}/(2\pi)^k k!) \sum \delta_{\beta_1,\ldots,\beta_k}^{\alpha_1,\ldots,\alpha_k} \mathcal{Q}_{\alpha_1}^{\beta_1} \wedge \mathcal{Q}_{\alpha_2}^{\beta_2} \cdots \wedge \mathcal{Q}_{\alpha_k}^{\beta_k}$$

then the k-th Chern class c_k of M is represented by γ_k . By (,) we denote a local inner product in the space of p-forms. The inner product of θ^{α} and $\bar{\theta}^{\beta}$ is $2\delta_{\alpha\beta}$.

LEMMA 1.

$$egin{aligned} (arPhi^3,\gamma_3) &= (1/64\pi^3) \{ au^3 - 12 au\,|
ho|^2 + 3 au\,|R|^2 + 256\sum_{eta}
ho_{lphaar
ho}
ho_{ar
hoar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
hoar
ho}
ho_{ar
hoar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
hoar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho}
ho_{ar
ho}
ho_{ar$$

where |R| and $|\rho|$ denote the lengths of the curvature tensor and the Ricci tensor, respectively, so that

$$|R|^2=16\sum R^lpha_{etaar{ extstyle \beta}ar{ extstyle \eta}R^eta_{lphaar{ extstyle \beta}ar{ extstyle \gamma}}$$
 , $|
ho|^2=8\sum
ho_{lphaar{ heta}}
ho_{etaar{lpha}}$.

PROOF. By definition,

$$egin{aligned} \gamma_3 &= (-\sqrt{-1}/48\pi^3) \sum \left\{ arOmega_lpha^lpha \wedge arOmega_eta^eta \wedge arOmega_\gamma^eta + arOmega_lpha^lpha \wedge arOmega_eta^eta \wedge arOmega_eta^lpha \wedge arOmega_eta^lpha \wedge arOmega_\gamma^eta \wedge arOmega_eta^eta \wedge arOmega_\gamma^eta \wedge arOmega_\beta^eta \wedge arOmega_\gamma^eta \wedge arOmega_\beta^eta \wedge arOmega_\gamma^eta \wedge arOmeg$$

After calculations we get the result.

LEMMA 2. Let (M, g, J) be an n-dimensional $(n \ge 3)$ compact connected Einstein Kaehler manifold with a nonzero scalar curvature τ . Then

$$\int_{M} (\Phi^{3}, \gamma_{3}) dV = (4n\pi/\tau)^{n-3} (3!/(n-3)!) c_{1}^{n-3} c_{3}[M].$$

PROOF. c_1 is represented by

$$\gamma_{_1} = (\sqrt{-1}/2\pi) \sum \varOmega_{_{lpha}}^{^{lpha}} = (\sqrt{-1}/2\pi) \sum
ho_{_{lphaar{
ho}}} heta^{lpha} \, \wedge \, ar{ heta}^{eta}$$
 .

Since M is an Einstein manifold, we have $\rho_{\alpha\beta} = (\tau/2n)g_{\alpha\beta} = (\tau/4n)\delta_{\alpha\beta}$ and hence

$$\gamma_{_1} = (\sqrt{-1} au/8n\pi) \sum heta^lpha \wedge ar{ heta}^lpha = (au/4n\pi) heta$$
 .

Therefore

$$egin{aligned} (arPhi^3,\, \gamma_{_3}) d\, V &= \gamma_{_3} \, \wedge \, * \, arPhi^3 = \gamma_{_3} \, \wedge \, (3!/(n-3)!) arPhi^{n-3} \ &= (3!/(n-3)!) (4n\pi/ au)^{n-3} \gamma_{_3} \, \wedge \, \gamma_{_1}^{n-3} \; . \end{aligned}$$

Thus we have

$$\int_{M} (\varPhi^{3}, \gamma_{3}) dV = (3!/(n-3)!)(4n\pi/\tau)^{n-3} \int_{M} \gamma_{3} \wedge \gamma_{1}^{n-3}$$

$$= (3!/(n-3)!)(4n\pi/\tau)^{n-3} c_{1}^{n-3} c_{3}[M].$$

3. Proof of Theorem. Let R, ρ , τ (resp. R', ρ' , τ') be the curvature tensor, the Ricci tensor and the scalar curvature of M (resp. M'), respectively. It follows directly from the formulas for the coefficients a_0 , a_1 and a_2 , that $\tau = \tau'$ and that

$$\int_{M} |R|^2 dV = \int_{M'} |R'|^2 dV'$$
 .

Moreover since scalar curvatures are constant, we have

$$\int_{M} \tau^{3} dV = \int_{M'} \tau'^{3} dV'$$

and

(2)
$$\int_{M} \tau |R|^{2} dV = \int_{M'} \tau' |R'|^{2} dV'.$$

Next we notice the following:

$$\sum R_{ijkl}^* R_{ijuv}^* R_{kluv}^* = 64 \sum R_{etaar{\epsilon}}^{lpha} R_{etaar{\epsilon}}^{eta} R_{lphaar{\mu}}^{eta} R_{lphaar{\mu}ar{\delta}}^{eta} , \ \sum R_{ijkl}^* R_{iukv}^* R_{julv}^* = 16 \sum \left(R_{etaar{\epsilon}}^{lpha} R_{etaar{\lambda}}^{eta} R_{etaar{\lambda}}^{eta} R_{lphaar{\lambda}}^{eta} R_{lphaar{\lambda}}^{eta} R_{etaar{\lambda}}^{eta} R_{eta}^{eta} R_{$$

where R_{ijkl}^* denote the components of R with respect to the real local orthonormal frames. Since M and M' are Einstein, our assumption $a_3 = a_3'$, together with Sakai's formula in [4], implies

$$\begin{array}{ll} \left(\begin{array}{l} 3 \right) & \int_{_{M}} \left\{ \tau^{3}(5/9 \, - \, 1/3n \, - \, 4/63n^{2}) \, + \, \tau \, |R|^{2}(2/3 \, + \, 68/105n) \right. \\ & \left. + \, (3/5) \, |FR|^{2} \, + \, (14336/315) \, \sum_{} R^{\alpha}_{\gamma \delta \tilde{\lambda}} R^{\beta}_{\alpha \lambda \tilde{\mu}} R^{\gamma}_{\beta I \tilde{\delta}} \\ & \left. - \, (20992/315) \, \sum_{} R^{\alpha}_{\beta \delta \tilde{\lambda}} R^{\beta}_{\gamma \lambda \tilde{\mu}} R^{\gamma}_{\alpha \mu \tilde{\delta}} \right\} d \, V \\ & = \int_{_{M'}} \left\{ \tau'^{3}(5/9 \, - \, 1/3n \, - \, 4/63n^{2}) \, + \, \tau' \, |R'|^{2}(2/3 \, + \, 68/105n) \\ & \left. + \, (3/5) \, |FR'|^{2} \, + \, (14336/315) \, \sum_{} R'^{\alpha}_{\gamma \delta \tilde{\lambda}} R'^{\beta}_{\beta I \tilde{\lambda}} R'^{\gamma}_{\beta \mu \tilde{\delta}} \\ & \left. - \, (20992/315) \, \sum_{} R'^{\alpha}_{\beta \delta \tilde{\lambda}} R'^{\beta}_{\beta I \tilde{\mu}} R'^{\gamma}_{\gamma I \tilde{\mu}} R'^{\gamma}_{\alpha I \tilde{\mu}} \right\} d \, V' \, \, . \end{array}$$

Since $c_1^{n-3}c_3[M] = c_1'^{n-3}c_3'[M']$ and M, M' have the same nonzero constant scalar curvatures, Lemma 2 implies

$$\int_{M}(arPhi^3,\,\gamma_3)d\,V=\int_{M'}(arPhi'^3,\,\gamma'_3)d\,V'$$
 .

Then, using Lemma 1 in the Einstein case, we get the following equation.

$$egin{aligned} \left(egin{aligned} 4 \,
ight) & \int_{_{M}} \{ au^{3} \! (1 - 6/n \, + \, 10/n^{2}) \, + \, (3 - 12/n) au \, |R|^{2} \ & + \, 128 \sum R^{lpha}_{_{7}ar{lpha}} Z^{eta}_{_{etaar{lpha}}} + \, 128 \sum R^{lpha}_{_{etaar{lpha}}} Z^{eta}_{_{7}ar{lpha}} R^{eta}_{_{7}ar{lpha}} Z^{eta}_{_{lpha}ar{lpha}} \} d\, V \end{aligned}$$

$$egin{aligned} &= \int_{M'} \{ au'^3 (1 - 6/n + 10/n^2) + (3 - 12/n) au' |R'|^2 \ &+ 128 \sum_{\sigma_1, \sigma_2} R'^{\sigma}_{\sigma_1, \sigma_2} R'^{\sigma}_{\sigma_2, \sigma_2} R'^{\sigma}_{\sigma_1, \sigma_2} + 128 \sum_{\sigma_1, \sigma_2} R'^{\sigma}_{\sigma_2, \sigma_2} R'^{\sigma}_{\sigma_1, \sigma_2} R'^{\sigma}_{\sigma_2, \sigma_2} R'^{\sigma}_{\sigma_1, \sigma_2} R'^{\sigma}_{\sigma_2, \sigma_2}$$

By computing $\Delta |R|^2$ and applying Green's theorem, we obtain

$$egin{align} egin{align} \left(\left. 5
ight) & \int_{\mathbb{M}} \left\{ \left(au/4n
ight) |R|^2 + \left(1/4
ight) |ec{\mathcal{V}} R|^2 + 16 \sum_{lpha} R_{eta \delta ar{ar{\mu}}}^{lpha} R_{lpha ar{ar{\mu}}}^{eta} R_{eta ar{ar{\mu}}}^{eta} R_{eta ar{ar{\mu}}}^{eta}
ight. \ & - 32 \sum_{lpha} R_{lpha ar{eta}}^{lpha} R_{eta ar{ar{\mu}}}^{eta} R_{ar{ar{\mu}} ar{ar{ar{\mu}}}}^{eta} \partial_{ar{ar{
u}} ar{ar{ar{\mu}}}} \partial_{ar{ar{
u}} ar{ar{ar{\mu}}}} \partial_{ar{ar{
u}} ar{ar{ar{
u}}}} \partial_{ar{ar{
u}} ar{ar{ar{
u}}}} \partial_{ar{ar{
u}} ar{ar{
u}}} \partial_{ar{ar{
u}} ar{ar{
u}}} \partial_{ar{ar{
u}} ar{ar{
u}}} \partial_{ar{ar{
u}} ar{ar{
u}}} \partial_{ar{ar{
u}}} \partial_{ar{ar{
u}} ar{ar{
u}}} \partial_{ar{ar{
u}}}$$

Similarly we have

$$egin{align} egin{align} \left(\ 6 \
ight) & \int_{M'} \left\{ (au'/4n) |R'|^2 + (1/4) |ec P R'|^2 + 16 \sum_{i} R'^{lpha}_{\, 7 \, ar{ heta} ar{ heta}} R'^{eta}_{\, eta \, ar{ heta} ar{ heta}}
ight. \ & - 32 \sum_{i} R'^{lpha}_{\, eta \, ar{ heta} ar{ heta}} R'^{eta}_{\, ar{ heta} \, ar{ heta}} dV' = 0 \; . \end{split}$$

By (1), (2), (3), (4), (5) and (6) we have

$$\int_{\mathcal{M}} |\mathcal{V}R|^2 dV = \int_{\mathcal{M}'} |\mathcal{V}R'|^2 dV'$$
 ,

from which Theorem follows.

REFERENCES

- [1] M. Berger, Le spectre des variétés riemanniennes, Rev. Roum. Math. Pure et Appl., XIII (1968), 915-931.
- [2] H. DONNELLY, Symmetric Einstein spaces and spectral geometry, Indiana Univ. Math. J., 24 (1974), 603-606.
- [3] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
- [4] T. SAKAI, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., 23 (1971), 589-603.

DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN UNIVERSITY SETAGAYA, TOKYO, 158 JAPAN