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In this paper, we take again the model of dynamical biochemical
system (cf. Section 1) which is concerned in genetics (cf. [2]). In parti-
cular, we borrow the description of the mathematical model leading to
a system of non linear differential equations.

We have drawn the genetic consequences (cf. Section 4) of this study
in this previous paper (cf. [2]), whereas in this paper we enter upon
mathematical problems involving the stability of the system (cf. Section
2) in the case of one enzyme.

When several enzyme species act competitively on the same substrates,
we show that there exists a unique equilibrium point (cf. Section 3).

1. Description of the model (cf. [2]). We consider the biochemical
associations involved in enzymatic activity. Let E denote the enzyme
and A, B, C, and D its substrates. The stereospecific association between
A and E is denoted AE, and AEB stands for the complex of the enzyme
with both substrates A and B. A priority rule is assigned to the as-
sociation AE relatively to the association AEB, so as to neglect such
associations as EB. Substrates C and D can be linked with E in the
same way and are considered as the output of the reaction. The graph
(elementary graph) connected with this enzymatic activity is the follow-
ing one (Figure 1) where the dotted arrows indicate the high energy
activity, of the enzyme.

o E

FIG. 1
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Let xA(t) be the concentration of the substrate A at time t. From
what happens in the neighborhood of each point of the graph, we derive
the kinetics during the time interval [tf t + h]. Let λ' be the dissocia-
tion constant of complex AE, so that X'xAE(t)h is the increase in the
concentration of A during the interval of time [t, t + h]; in the same
way, if λ stands for the association constant between A and E,
XxA(t)xE(t)h is the decrease in the concentration of A during the same
interval of time. In fact, we can write:

xA(t + h) = xA(f) + X'xAE(t)h - XxA(t)xE{t)h - O(h2) .

The limit of the foregoing equation, for h -» 0, gives the following
differential equation:

?§? = λ'x^(ί) - XxA(t)xE(t) .
at

If we denote each chemical species by one index as in the graph,
we get the following system of differential equations, which describe the
kinetics of the phenomenon as far as the system is closed:
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In these equations, the coefficients p', μ', v' are dissociation constants
like λ', and p, μ, v are association constants like λ. The coefficient a
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concerns the transition from complex AEB to complex CED, that is, the
high energy activity of enzyme E which depends on its association with
both substrates A and B. So does β for the reverse reaction, from
CED to AEB.

We have then the simplest graph (elementary graph) which describes
the activity of one enzyme working with an acceptor substrate A and a
giver substrate B. This graph was considered in [3] (pages 241-242) for
the study of reactions involving dehydrogenases requiring Nicotinamide
Adenine Dinucleotide (NAD) as a coenzyme.

We can generalize this situation in the case where several enzymatic
species act competitively on the same substrates. In fact, in the case
of a monocatenar enzyme in a diploϊd heterozygote, we have to consider
two elementary graphs connected in the following way (Figure 2):

A E E K ^ " ^ ^ A E B \

More generally when several polypeptidic chains build one enzyme, each
of them being coded by homologous or non homologous genes, there are
in the living cell several enzymatic classes competitive for the same
acceptor substrate A and the same giver substrate B. We assign the
index i to a given enzyme species. Then, the equations take the following
form, where n is the number of enzyme species:

^ - = λ;&8< - XιxOιx1 + p[xit - piXQix2 (i = 1, , n)
at

dt <=i

— — — Z-l \Pi%4ι

dt i=i

dt

^ΪL = -p'tχi% + piχ0tχ2 + v[xu - ViXtiXs (i = 1, , n)
dt
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= -v\xu + Wans - β&u + o:τxu (i = 1, , n)

dt

dxu

dt

dt

2. Equilibrium and stability conditions. For a closed system, in the
case of one enzyme, the equilibrium conditions dxjdt = 0 (i = 0,1, , 8)
has a unique meaningful solution. In fact, we have the obvious relations
x0 + x3 + x4 + xδ + x6 = 60, xι + #3 — x7 = 6X, ίc2 + x4 — α;8 = δ2 and a?0 — ̂  —
cc2 = 63, where the 6, (i = 0,1, 2, 3) are real constants and we get the
following algebraic equations in x1 and x2:

+ -^jx^x, + x2 + 63) -

where a = aμλ/μ'X' and 5 = βvp/v'p';

II) (^ + α2 + 63)(l + - V + -̂ flJ, + ^ ( α ? ! + ^xfa + x2 + 63) -

+ — a?2( x2 + ^-^(^i + x2 + &3) - 62)) = &o

We have in mind the search for sufficient conditions for the existence
of equilibrium points and to do this, we make, first of all, an extensive
qualitative study of the equations I and II.

We remark that &0 is the total quantity of enzyme, hence is much
smaller than any sum of concentrations of chemical species among which
we have at least one of the species A, B, C or D. In particular,
Xι + x2 > &o > #o so that we can write —63 = xt + x2 — x0 > 0, thus 63 < 0
and &0 < |63|. In the same way we can show that b1 + 63 ^ 0, 62 + 63 ̂  0
and &! + 62 + 63 <; 0.

The expected solution, if it exists, lies in the convex set xx > 0,
x2 > 0, and —b3^x1 + x2^—bs + b0, in which we look for the intersection
points of curves I and II.

To get a simpler form of equations I and II, we make the following
change of coordinates: y = xt + x2 and x = x1 — x2. With these new
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coordinates, the preceding convex set is defined by — b3 ^ y ^ — δ3 + δ0

and \x\ <£ y. Equations I and II become respectively:

I) u(y)x2 - 2v(y)x + w(y) = 0

where

n{y) = b-a + (y + &,)(&-£. - <A) ,

v(y) = (α + b)y + (cΛ + &£)iί(v + 63) - (αδx + &62)

and

w(y) = (&4 - fl^W + &3) + (6 - d)t + 2(α&1 -

Π) p(y)x2 + 2?(»)a? + r(y) - 0 ,

where

( » + 63))),

q{y) = | ( y + 63)((^(l + £ ( „ + &3)) + A(l + £.(y

+ A _ P. - (bA - bΛ

and

+¥&+7
τ ( i ( x + ̂  + δ

») + ji1 +

There is only one branch of curve I lying in the region defined by
— 63 ̂  V ^ — &s + &o and |a?| ^ y. In fact, the intersection of curve I with
the straight line y = — 63 is composed of two points at finite distance
(the third one is at infinity), but only one has coordinates (£, — &3) with
\ξ\ ^ |68|. Moreover, it is easy to show that the following inequalities
hold: sup (δ3, bz + 2b,) ̂  ξ £ inf (-6., -bB - 26,).

For the values of y ^ — δ3 and near to — 63, we are sure to find an
intersection of the branch of I and those of II. In fact, for &0 = 0 (this
is the case without enzyme), the intersection of curves I and II is the
point of coordinates (£, — δ8). Now we can consider &0 as a parameter
and we have a family of curves Π(60) depending on the parameter b0.
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By continuity, for small values of δ0 (but this is the case) we have an in-
tersection point of curves I and II in a neighborhood of the point (£, — δ3).

In the following, we have to show that the y coordinate for this
intersection point lies between — δ3 and — δ3 + δ0. To do this, we observe
that the functions pf q, r of equation II can be written as functions of
the variable h = x0 = y + δ3 and p(h) = hP(h), q(h) — hQ(h) and r(h) =
— δ0 + hR(h), where P, Q, R are convenient functions of h. The equation
II can be written in the following way:

II) δ0 = h(P(h)x2 + 2Q(h)x + R(h)).
The development of P, Q, R by Taylor series in a neighborhood of

the orign shows that

δ0 = h(l + ±{u + v)(x> - bl) + ±QL - uφ, + bή(x - δ3)

- y ( 4 - v(b2 + bS)(x + 63) + O(Λ))

where u = μXjμ'X' and v = vp\vfp'. Now we have to show that the
quadratic function

F{x) — —(u + v)(x2 — δ3) + —(L — ubs)(x — δ3) — —(M — vb3)(x + δ3)4 2 2

is positive for values of x near to ξ, where

L = ubx and M = — — vb2 .
λ' p

By tedious but trivial calculations and owing to the four inequalities
δ3 < 0, δi + δ3 ^ 0, δ2 + δ3 ^ 0, b, + δ2 + δ3 ^ 0 it can be shown that F(ξ)
is strictly positive where

ζ = —^-γ((α + δ)δ3 + ab, + δδ2 + s)
a — b

if a Φ b and

δ, + δ2 + 2δ3

if a = δ, in which s = {(αδi + δδ2)
2 + Aabb^b, + δ2 •+ δ3)}

1/2. The Λ coordinate
of the intersection point is then positive and smaller than δ0.

Approximate values of the coordinates of this equilibrium point are,
for a Φ δ:

Δ\CL — 0)
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> & ' + bb*
a)

ίf xs = x2 - b2 , xo = —b0 ,

—

where

= —b0VX2X8

D — 1 + —»! j
p

can be identified as D = 1 + JF(£).
If α = & we can obtain the corresponding expressions for the xτ

(i = 0,1, •••, 8) by using the corresponding values of ξ (Figure 3).

FIG. 3

THEOREM 2.1. In the domain of biological significance, that is,
h < 0, b, + δ3 <: 0, b2 + δ3 ^ 0, δι + 62 + δ3 ^ 0 and 0 < b0 < |68|, tΛere
exists a unique equilibrium point. Moreover, this equilibrium point
is an asymptotic stable point.

The first part of the theorem was proved by the above considera-
tions. For the second one let (x0, xlf •• ,#8) be the coordinates of the
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equilibrium point and consider the new variables y1 = x1 — xl9 y2 = x2 — x2,
2/3 = x7 — x7J y4 = xs — x8 a n d y6 = (l/2)((xδ — xδ + x7 — x7) — (xβ—xQ+x8—5&8))
We can write:

at

- -^r

We look for a Liapunov function of the form F=Σί=i7ϊi/? with 7i>0
(i = 1, β ,5). If we replace in dVldt = 2^i^Ίiy%dyijdt the values of
the derivatives dyjdt given above, we have:

+ 2/3 - 2/i)2/32 + T4^(^4 + 2/4 ~

+ (2/ι +

+ (2/2 - 2/4X72^2/2 - 74ra8?/4) + (2/3 - V*)(Ύsμ'Vz - 750:2/5)

+ (2/4 + 2/5)(74l/2/4 + ^ 2 / 5 )

B u t w e have 2/1 + 2/2 + ^0 = #0 > 0, xz + 2/3 — 2/i = #3 > 0 and # 4 + 2/4 — 2/2 =

ίr4 > 0 and if we put λ ^ = ^^2τ2, 7Λ' = 73/̂ 7̂> 72^' = 74w8, yzμ' = 7δa
and 74P' = 75/3, this implies that dV/dt < 0. It is enough now to take
Ti = (α/λ)x7, 72 = (b/ρ)xs, 73 = α/i"'f 74 = βlv' and 75 = 1.

The inequalities V > 0 and d F/dί < 0 are verified in the whole domain
of biological significance and V and d V/dt are zero only in the equilibrium
point, provided that all association and dissociation constants are different
from zero.

3. Equilibrium conditions in the case of several enzymes. In the
case of polymeric enzymes or monomeric enzymes in heterozygote cells,
different enzymatic species Et (ί = 1, , n) act competitively on the same
substrates A, B, C, and D. The corresponding equations have been given
at the end of Section 1. From them, we deduce trivial relations which
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s t a t e the conservation laws of chemical species E% (i = 1, •••, n), A, B,

C, and D:

#1 + Σ ^St - 0?7 = &!
i = l

Λ

£2 + Σ &* - £8 = δ2
i=l

where boi (i = 1, , w), 6X, δ2, &3 are real constants submitted to analogous
inequalities as in Section 2.

The conditions dxiόjdt = 0 (i = 0, 3, 4, 5, 6; i = 1, , r&) and the con-
servation of enzymatic species Eό (j = 1, •••, tι) show that

and

where Aέ = atxhx — βiXu (i = 1, , n). If we solve the above system we
can express for each i, At and xoi as functions of the constants boί, of
biophysical parameters of enzymes Et and of concentrations xlf x2, x7,
x8 of substrates. If we report such expressions of At in the equation
dx8/dt = Σ?=i A.% we obtain a generalization of Michaelis equation.

To obtain the equilibrium conditions, we must consider, in addition,
the following equations: dxjdt = 0 (i = 1, 2, 7, 8). These conditions are
equivalent to Σ?=i A — 0.

By analogy with the case when n = 1 (see Section 2), we can obtain
an approximate equilibrium point by neglecting Σ?=i #<>*> Σ*=i ^ a n d
Σ?=i 4̂t w ί t h respect to xu x2, x7, and a;8 in the last three trivial relations.

We get x2 = — a?! — 63, ίc7 = xx — blf x8 = — xx — b2 — δ3 so that, the
sum Σ?=i -̂ i is a function of a single variable x1 and it is enough to find
the zeros of the function f(xλ) = ΣΓ=i Λ Denote by S1£ the approximate
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equilibrium value of xx if we suppose that only the enzyme Et works.
Then we can show that f{xx) has a unique zero xx in the domain of
biological significance (see Theorem 2.1, for the definition of this domain).
In fact, we have

inf x1% 5* Xι ^ sup xu .

4. Discussion (cf. [2]). In the present paper we have worked on a
single enzymatic step, which can be seen as an arche type for any
metabolic path (Dixon and Webb, 1964). This rather complicated
enzymatic model was chosen because it involves several stereospecific
associations, and thus embodies the main property of biological systems,
and it can be used for polymetric enzymes as well as for monomeric
enzymes. The model makes also a clear distinction between purely
genetic parameters and environmental conditions. The genetic parameters
are coefficients of association and dissociation λ, λ', , v, i/, and enzymatic
activity coefficients a and β: their hereditary transmission follows the
usual rules of population genetics, although their values are temperature
dependent. Environmental conditions are expressed by initial values in
the medium of substrates concentrations bίf 62, 63 and total enzyme con-
centration 60. Although restricted to the simplest case of a closed system
with only one class of enzyme, the foregoing results are worth bringing
to light:

( i ) An equilibrium exists and it is stable, so that the model allows
us to give an explicit expression of a quantitative genotype as function
of absolute biophysical parameters a and 6, and of environmental condi-
tions bίf b2f and 63.

(ii) The hereditary parameters a = aXμjX'μ' and b = βpv/p'v' in-
volve, on the one hand, the stereospecific capacities of the genetically
coded enzyme molecule and, on the other hand, its capabilities of exchange
of high energy bounds (a, β) which concern its strictly enzymatic
properties. Therefore, we can understand the action of a mutation at
the level of the phenotypic expression of a mutated gene, by some
handling of the values of these parameters.

The ratio g = a/b takes in consideration not only all the hereditary
information of the coefficients a, β, λ, λ', but also the direction of
the removing from the equilibrium A + B ^ C + D, and is identical with
the coefficient K = [C][D]/[A][B], in kinetics.

(iii) The present approach can be linked with the usual approach
of quantitative genetics if we consider a population of cells which are
living in the same medium, but carry different allele genes coding for
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the enzyme E.
If we suppose that the parameters g of the enzymes are not very

different from a standard value gr, each having the form gi = gr + o)i9

then the equilibrium values x^gj are the sum of two terms: the first
one, x^gj, is common to every enzyme of this class, and the second one
is specific of an enzyme and is the deviation of a given gene from the
standard phenotypic value x^gr).

For instance, if gr — 1, we get:

x, = - o2 + 263 (&! + 62 + 263)3

where # = 1 + ω. These expressions allow us to put in a concrete form
the idea of substitution effect of a gene; for two genes having the
hereditary characteristics co, ω', the effect of the substitution of one by
the other is:

(ω _

for x,.
Such a quantity involves the action of the gene interacting with the

environment. Moreover, it is clear that random fluctuations in the
environmental conditions could be taken into account.

(iv) The study of the case with many enzymes indicates that no
overdominance might arise for a reaction controlled by one monocatenar
enzyme. Overdominance would necessitate that the enzyme is at least
dimeric, so that a hybrid cell may carry a new enzymatic species, which
cannot be found in the homozygous parental cells, and whose biophysical
parameters cannot be related to those of the parental cells.

We have now to prove that the model is also relevant to other
situations and can describe such phenomena as allosteric regulation,
feedback regulations and strictly genie regulations.
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