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1. Introduction. The development of the theory of functional dif-
ferential equations with infinite retardations depends on a choice of a
phase space. In fact, various phase spaces have been considered and
each different phase space has required a separate development of the
theory. In this paper, we consider an abstract phase space B and as-
sume that it satisfies suitable hypotheses. The beginning of such a
theory appeared in [3] for the first time. Though there were several
confusion and omissions, the ideas have been accepted and several papers
have appeared, [6], [7], [8], [9], [11]. The purpose of the present paper is
to study the Liapunov theory on the space B, especially exponential
asymptotic stability, and we apply our results to show the existence of
almost periodic solutions in almost periodic systems.

In Section 2, we introduce the phase space B which satisfies certain
general hypotheses, and the fundamental theorems on solutions will be
discussed. There are important phase spaces which satisfy all the hy-
potheses in this paper. One of such phase spaces is the Banach space
Cr, 7 > 0, of continuous functions φ having the limit lim^.^ ersφ(s) with
norm \φ\c = sup^0^

r s \ψ(s)\. Another phase space is the following. For
1 ^ P < °° and r ^ 0, let H be the Banach space of functions φ map-
ping (—o°, 0] into Rn which are measurable on (—°o, — r] and are con-
tinuous on [ — r, 0] with norm

φ\H = \ SUp I φ(θ) I* + I φ(θ) \pg(θ)dθ ,

where g(θ) is integrable, positive and nondecreasing on (—°°, 0], and
g(u + v) ^ g(u)g(v) for u, ve (— co, 0]. These phase spaces have been
considered in [1], [6], [13].

Section 3 is devoted to the construction of a Liapunov functional
under the assumption that the zero solution of a system is exponentially
asymptotically stable. Such a Liapunov functional plays an important role
in discussing perturbed systems (cf. [11]). For linear homogeneous
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systems, we show that uniform asymptotic stability is equivalent to
exponential asymptotic stability. As one of the applications, we obtain
a result on stability for a small perturbed system when the unperturbed
linear system is uniformly asymptotically stable.

In Section 4, we discuss the existence of an almost periodic solution
of an almost periodic system under the assumption that the system has
a bounded solution. To do this, we assume the existence of a Liapunov
functional which satisfies some conditions. In particular, if a linear
homogeneous almost periodic system is uniformly asymptotically stable,
we can show the existence of an almost periodic solution for the non-
homogeneous almost periodic system by using the Liapunov functional
constructed in Section 3. For the case where retardations are finite,
see [4], [14].

The author is very grateful to Professors Taro Yoshizawa and Junji
Kato for their criticisms and constructive comments.

2. The phase space. Let Rn be a real ^-vector space, and let
R — R1. We denote by B a real linear vector space of functions map-
ping (—°°, 0] into Rn with semi-norm | |. No confusion should arise if
we use the same symbol | | to denote the norm in Rn. For φ and ψ in
B, φ = ψ means that φ{θ) = ψ(θ) for all θ in (— ©o, 0]. Then the quotient
space 2?* = B/\ | is a normed linear space with the norm naturally in-
duced by the semi-norm. The topology of B is defined by the semi-
norm, that is, the family {U(φ, ε); φeB, ε > 0} is the open base, where
U(φ, ε) = {ψe B; \ψ — φ\ < ε}. B with this topology is a pseudo-metric
space.

For any φ in B and any β in [0, M), let φβ be the restriction of φ
to the interval (—<χ>, —β]. This is a function mapping (—<*>, —β] into
Rn. Denote the space of such functions by Bβ and define a semi-norm
\ \β in Bβ by

\V\β = mf{\φ\;ψeB, ψβ = η) , ηe Bβ .

If we let \φ\β = \φβ\β for φeB, then l ]̂  is also a semi-norm in B.
If x is an Rn-valued function defined on (—<χ>,0 ), we define the

function xt for each t in (— °°, tf) by the relation xt(β) = x(t + θ),
— oo < d <; 0.

Let Ω be an open set in R x B and f:Ω->Rn be a given continuous
function. A functional differential equation on Ω is the relation

(2.1) x(t) = M xt) ,

where the symbol "•" stands for the right hand derivative. For a (σ,
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ψ) in Ω, an unvalued function x defined on (— oo, a + A) with 0 < A^oo
is said to be a solution of (2.1) through (σ, φ) if xσ = ψ and if x is con-
tinuously differentiate and satisfies (2.1) for te[σ, σ + A). Then we
denote a? = α?(α, φ).

We assume that the space B satisfies the following hypotheses:

(Bx) For any φ in B and an A with 0 < A ^ oo, let x be an
Rn-valued function defined on (— oo, A) such that x0 = φ and x is con-
tinuous on [0, A). Then sct is in B for all £ in [0, A) and â  is continuous
in t.

(B2) There is a continuous function K(β) > 0 such that

sup

for any φ in B and any /3 in [0, oo).

Then the hypotheses (Bλ) and (B2) guarantee the existence of a
solution of (2.1) through (σ, φ) in Ω. This was proved by Kaminogo [9].

For any β in [0, oo) and any φ in B, the function φ(β + θ),θe
(—oo, — /9], belongs to Bβ by the hypothesis (Bx). Then we can define a
linear operator r̂ 9: B-> Bβ by [τV|(0) = (̂/9 + θ). We assume that the
space B satisfies the additional hypotheses:

(B3) There is a continuous function M(β) > 0 such that

for any φ in B and any β in [0, oo).
(B4) There is a positive number Kx such that

\φ{0)\ <, KΛφ\

for any φ in β.

We state some fundamental properties of solutions of equation (2.1)
on Ω.

THEOREM 2.1. Under the hypotheses (Bx) through (B4), we assume
that

(2.2) |/(ί, φ) - /(ί, ψ)| ^ n(t) \φ-ψ\ on Ω

for some continuous function n(t). Then there exists a continuous
function N(t, s) for which we have

(2.3) \xt(σ,φ)-xt(σ,φ)\^N(t,σ)\φ-<φ>\ for t^σ.

In particular, the solution is unique for any initial value under the
condition (2.2). Moreover, if n(t) is a constant, then N(t, s) can be
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chosen to depend only on t — s.

PROOF. From the hypothesis (BJ, the condition (2.2) and the equa-
tion (2.1), it follows easily that

!&(*, Ψ)(t) - x(σ, ψ)(t)\ ^ K, \φ - ψ\ + Γ n{s)\xs(σ, φ) - x£σ, ψ)\ds
Jσ

for t ^ σ. Therefore, using the hypotheses (B2) and (B3), for t ^ σ we
have

»tfo ψ)l^#(< - o") sup \x(σ, φ)(θ) - α(σ, f)(θ)\ + |r'-*(9> - t)l*-*

- σ) + M(t - σ)}\φ - ψ\ + K(t - σ) [ n(s)\xs(σ, φ) - xs(σ, ψ)\ds
Jσ

£ sup {KMΘ) + M{θ)}\φ - ψI + { sup #(<?)} Γn(s)\x$(σ, φ) - xs(σ, ψ)\ds .
QSOSt-σ Q^θ^t-σ Jσ

Set supίiξi^tf) + M(θ); O^θ^t - σ] = H(t - σ) and sup{ϋΓ(0); Q^ΘSt-σ}^
J(t — σ). H(t — σ ) and J(ί — σ) are monotone increasing in t. Applying
GronwalΓs inequality we have (2.3) with

N(t, s) = H(t - s)exp|J(t - s)^ n(u)du
( J s

which is continuous in (t, s). If n(t) is a constant, clearly N(t9 s) de-
pends only on t — s. This completes the proof.

THEOREM 2.2. Under the hypotheses (BJ and (B2), let Ω = RxUH,
0 < iΓ<; co, wίί/z, i/H = {φe B; \φ\ < H), and let f be completely con-
tinuous. If the solution x = x(σ, φ) of (2.1) satisfies \xt\ ^ h(t) < H as
long as x exists for a continuous function h(t) defined on [σ, co), then
x exists for all t ^ σ and satisfies \xt\ ^ h(t) for all t ^ σ.

PROOF. Suppose that x is noncontinuable at t = δ, σ < δ < c o . Let
S = {(ί, a?t); o ^ t < δ} and let r = sup{/t(ί); (7 ̂  ί g δ}. Then S c [ίT,
3]xCl(J7r) where 01(17,.) is the closure of Ur. Since / is completely con-
tinuous, / is bounded on S. Hence x(t) satisfies a Lipschitz condition on
[σ, δ), and thus x(δ - 0) exists. Define x(δ) by x(δ) = x(δ - 0). Then
(δ, xδ)eRxGl(Ur)c:Ω by the hypothesis (BJ. Since there exists a solu-
tion of (2.1) through (δ, xδ)9 x can be extended beyond δ. This is a con-
tradiction.

THEOREM 2.3. Under the hypotheses (BL) through (BJ, i/ ίAe solution
x(σ, φ) of (2.1) eccίsίs on [σ, σ + A], A > 0, αwd iί is unique, then for
any ε > 0 ίftere exists a δ(e) > 0 suc/i that

I a?ί(s, ^) — %t(
σf Φ) I < ε / o r α ^ * e [max{s, σ}, σ -\- A]
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if 0, ψ) e Ω, \s - σ\ < δ(ε) and \ψ - ψ\ < δ(ε).

This theorem was proved by Hino [7] under stronger conditions, and
was modified by Hale and Kato [6]. The phase space considered in [6]
is slightly different from ours, but our proof is the same as that of
Theorem 2.5 in [6].

3. Exponential asymptotic stability. For H with 0 < H <, °o and
/ = [0, oo), let Ω = Ix UH, and let f:Ω—>Rn be a continuous function
with f{t, 0 ) Ξ 0 . Consider the system

(3.1) x(t) = f(t, xt) .

DEFINITION 3.1. The zero solution of (3.1) is said to be uniformly
stable if for any ε > 0, there exists a δ = δ(e) > 0 such that | xt{t0, φ) \ < e
for any t0 ^ 0 and for all t ^ t0 if \φ\ <δ. The zero solution of (3.1)
is said to be uniformly asymptotically stable if it is uniformly stable
and if there exist a 7 with 0 < Ί <£ H and a function T(η) of Ύ] > 0
such that \φ\<Ί implies \xt(t0, φ)\<y for any t0 >̂ 0 and for all
t ^ to + T(τj). The zero solution of (3.1) is said to be exponentially
asymptotically stable if there are constants c > 0, 7 with 0 < 7 ^ H and
a nondecreasing function L(a) defined for a e [0, 7) such that L{a) —> 0
as α —> 0 and

(3.2) |̂ (ία,9>)I

for any t0 ^ 0 and for all ί ^ ίβ if \φ\ < 7. Moreover, if H = 7 = 00,
we say that the zero solution of (3.1) is exponentially asymptotically
stable in the large.

THEOREM 3.1. Suppose that the hypotheses (Bx) through (B4) are
satisfied and assume that for any ae [0, if), there is a function n(t, a)
which is continuous in t such that

(3.3) \f{t,φ)-f{t,ψ)\Sn{t,a)\φ-ir\ on IxUa.

If the zero solution of (3.1) is exponentially asymptotically stable, that
is, (3.2) holds and if L(a) = O(a) as a —> 0, then there exists a con-
tinuous real-valued functional V(t, ψ) defined on IxUr which satisfies
the following conditions:

( i ) \φ\£ V(t,φ)£LQφ\).
(ii) I V{t, φ1) - V(t, φ*)\ ^ N(t, a) \φι - φ2\ for φι eUa,i = 1, 2, where

N(t, a) is a continuous function of t.
(iii) V[zΛ)(t,φ) ^—qcV(t,φ), where q is any given constant with

0 < q < 1. Here V'{3Λ)(t, φ) is defined by
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V'(3Λ)(t, φ) = lim sup{F(ί + d, xt+δ(t, Ψ)) - V(t, φ)}/δ ,
<3-»0+

where x(t, φ) is the solution of (3.1) through (t, φ)elx Ur.

PROOF. For q with 0 < q < 1, define V(t, φ) by

Obviously, we have (i) by (3.2). For any a e [0, 7), we can choose a
T{ά) > 0 so that L{β)e~{1-q)cτ ^ β if β ^ a and τ ^ T(a) since L(α) = O(α)
as a —> 0. Then for φe Ua and τ ^ Γ(α), we have

by (3.2). Hence the condition (i) implies that

V(t, φ) = sup I xt+r(t9 φ) |eg c r = sup | xt+τ(t, φ) \ eqcτ

for φe Ua. For φ*e Ua, i = 1, 2, we have |»t+r(ί, 9>«)| < L(α) by (3.2),
and thus in the same way as in the proof of Theorem 2.1 we have

|«t+τ(ί, φι) - xt+T(t, φ2)| ^ ( ίΓ^* + M*)|φ ι - 9 2 |exp{ίC*^(ί + β,

for re[0, T(a)], where iΓ* = sup{ϋΓ(τ); r e [0, T(a)]} and ikf* = sup{Λί(r);
r e [0, Γ(α)]}. For φι e Ua, i = 1, 2, it follows that

I V(«, Ψι) - V(t, φ2)\^\ sup Ix t+τ(t, φι) I e " - sup Ix t+τ(t, φ2)Ie""\

^ sup \xt+τ{t,φι)-xt+χt,^)\e"" .

Therefore we have (ii) with

N(t, a) = e^^i^K* + M*)exp ji^Γ*'' n(t + s, L(a))ds} .

Clearly, if n(t, a) is independent of t, so is N(t, a).
Since xt+δ+Xt + δ, xt+δ(t, φ)) = xt+δ+τ(t, ψ) for δ > 0, we have

V(t + δ, xt+δ(t, ψ)) = sup ]£w + r(£ + δ, αjί+5(ί, ?>))| e«τ = sup

= sup \xt+t(ί, φ)\e"{t-n ^

Therefore we have

{V(t + δ, α?t+ί(ί, φ)) - V(t, φ)}/δ £

which implies (iii).
Now we show that V(t, φ) is continuous. First, the continuity from

the left hand side will be proved. Let (t, φ)eIxUr be fixed. For a
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(ί — η,ψ)elx Ur with Ύ] > 0, we observe that

\V(t, φ) - V(t - η, ψ)\ g\V(t- η, Ψ) - V(t - η, ψ)\

+ \V(t,φ)~ V(t, Xt(t - V, φ))\

+ \V(t, Xt(t - V, φ)) - V(t-7],φ)\.

Since xt(t — η, ψ) is continuous in η by Theorem 2.3, the condition (ii)
implies that the first two terms tend to zero as η —> 0 and \φ — <f\ ~* 0.
Then it is sufficient to see that

(3.4) \V(t,xt(t-7],φ))-V(t-V,φ)\^0 as y^O.

Since xt+τ(t, xt(t - η, φ)) = xι+τ(t — η,φ), we have

\V{t,xt(t-V,φ))- V(t-η,φ)\

= |sup|a; i + Γ(ί - η, φ)\e"Cΐ - sup |«,_,+r(i - η, φ)\e"cτ\

= sup \xt+7(t - η, φ)\eqc(T+7ί) - sup \xt+r(t - η, φ)\ eqcτ .

When

sup I xt+τ(t - η, φ) I e9CΓ = sup I xt+τ(t - η, φ) \eqcr

for an η, we have

(3.5) I V(t, xt(t - η, φ)) -• F(ί - η, φ)\ £ (eq^ - l)sup \xt+r(f - ^, 9>)|β*- .

On the other hand when

sup \xt+r(t - Ύ], φ)\eqcτ = sup |a; t + r(ί - η, φ)\eqcτ

for an η, we have

(3.6) \V(fi, Xt(t - 27, φ)) - 7( ί - 2?, φ)\

^ \Xt-Λt - 7, φ)\eqc^f) - |a?,C* - 7̂, Ψ)\

for some ^'e[0,77]. Hence if we could show that the right hand side
of (3.6) tends to zero as ) ? ^ 0 , (3.4) would follow from (3.5) and (3.6).
Since \xt(t — η, φ)\ —> \φ\ as η—> 0 by Theorem 2.3, we should show that
xt-ψ{t — 7], φ) -> φ as 57 —> 0. Define φ by

φ{s) , s ̂  0

Then φs belongs to B for all s ^ 0 by the hypothesis (BJ. Let a be a
fixed positive constant and let r = sup{w(s, L(\φ\)); se [t — α, ί]}. If ^
is sufficiently small and #e [ί — 77, £ — 77'], then we have
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f(s, x.(t - V, φ))ds \xs{t-7),φ)\ds^rL{\φ\){η-η')

by (3.2) and (3.3). Therefore by the hypothesis (B2),

^K(Ύ)-Ύ]')^ SUP_^ ^ /(«, Xs(t - η, φ))ds +\φη_η>-φ\

^ K(η — rf)rL(\φ\)(η — ̂ ') + \φη-v — <p\ ,

which implies \xt_r(t — η, φ) — φ\ —» 0 as 57— >0 since Ύj — ηf—>Q and

| ^ _ ^ — <£>| —> 0 as 07 —> 0 by the hypothesis (BJ.

Next we observe t h a t

9) - V(t + η,γ)\^ \V(t + 7)9φ)- V(t + η, ir)\

+ W(t + V, xt+v(t, 9)) - V(t + η9φ)\ + \V(t, φ) - V(t + η, xt+,(t, φ))\

for Ύ] > 0. Then the continuity from the right hand side follows from
the condition (ii), the continuity of xf+v(t, φ) in ΎJ and the argument
similar to that we had before. This completes the proof.

We now consider the linear system

(3.7) x(t) - A(t, xt) ,

where A(t, φ): IxB-^ Rn is continuous and linear in φ.

LEMMA 3.1. There exists a continuous function n(t) such that

\A(t,φ)\ ^ n(t)\φ\ on IxB .

PROOF. Let J be a compact interval on I. We show that \A(t, φ)\^
C\φ\ on JxB for some constant C > 0. Otherwise there would exist a
sequence {{tk, φ

k)} such that tke J, \φk\ = 1 and \A(tk, φ
k)\ ̂  k. Set ^* =

k~1/2φk. Since \ψk\ = fc~1/2 -> 0 as fc -> oo, the set S = fffc; Λ = l f 2, •} U
{0} is compact. Therefore A(t, φ) should be bounded on JxS, but

\A(tk,ψ
k)\ =k-

which implies \A(tkf ^rk)\ —• co as A?-> oo, a contradiction. Then it is not
difficult to construct a desirable n(t).

THEOREM 3.2. Suppose that the hypotheses (Bx) through (B4) are
satisfied. If the zero solution of (3.7) is uniformly asymptotically stable,
then it is exponentially asymptotically stable in the large. In this case
L(a) = 0{a) as a —> 0, where L(a) is the function in Definition 3.1.

PROOF. Let x(tOf φ) be a solution of (3.7). By Lemma 3.1 and
Theorem 2.1, x(t0, φ) is unique and satisfies
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\xt(t0,φ)\^N(t,t0)\φ\

as long as it exists for a continuous function N(t, s). Thus x(tOf φ) exists
for all t ^ to by Theorem 2.2. Therefore we can define a linear operator
Γ(ί, to):B->B by

T(t, to)φ = &«(*„ ?>) , φ e ΰ ,

for any t0 ^ 0 and any t ^ t0.
Since the zero solution of (3.7) is uniformly stable, there exists a

δ > 0 such that if |?>| ^ <5, then | T(t, s)φ\ < 1 for t :> s ^ 0, and hence

(3.8) || Γ(ί, β)|| - sup I Γ(ί, β)^| - sup |Γ(ί, s)(φ/δ)\ ̂  1/δ ,

where || || denotes the usual norm of linear operators.
Furthermore, since the zero solution of (3.7) is uniformly asymptoti-

cally stable, for any η > 0 there is a T(η) > 0 such that \φ\ ̂  1 im-
plies I T(t, s)φ\ < η for any s ^ 0 and for all t >̂ s + TO7). Consequently,
II Γ(ί, s)|| ^ 27 for all t ^ s + TO7). In particular, we have

(3.9) II T{t + T{7]\ t)\\ ^η for any ί ^ 0 .

Choose 57 < 1 and let c=-T(ηYι log η, M= ecT{7i)δ~\ For any t0 ^ 0 and
any ί^ ί 0 , there is an integer k^>0 such that
Then by (3.8) and (3.9), we have

+ JcT(7}), to)\\ S δ-ψ ^ r

which shows

(3.10) Ix t(t0, φ)\ = \ T(t, to)φ\^

for any t0 ^ 0 and all t ^ t0. This completes the proof.

By Theorems 3.1 and 3.2, we have the following.

THEOREM 3.3. Under the hypotheses (Bx) through (B4), if the zero
solution of (3.7) is uniformly asymptotically stable, then there exists a
continuous real-valued functional V(tf φ) defined on IxB which satisfies
the following conditions:

( i ) \φ\ <; V(t, φ) ^ M\φ\, where M is a constant.
(ii) \V(t,φ>)- V{t,φη\^M\φ'-φ*\.
(iii) F(3.7,(ί, φ) ^ — cF(ί, 9>), where c > 0 is a constant.

PROOF. Since the zero solution of (3.7) is exponentially asymptot-
ically stable by Theorem 3.2, there are constants c > 0 and M> 0 for
which we have (3.10). Define V(tf φ) by
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V{t,φ) = Sup|tf ί+r(ί, φ)\βcτ .

Then we have (i) by (3.10). Since Ait, φ) is linear in φ, it follows that

\V(t, φ1) - V(t, φ2)\ ̂  V(t, φ1 - φ2) S M\φ' - <p2\ .

This proves (ii). The remainder of the proof is the same as in the
proof of Theorem 3.1.

Now let V(t, ψ) be a continuous real-valued functional defined on
IxB which is locally Lipschitzian in φ. For an unvalued function z(s)
such that z8eB for s ^ t, we define V\t, zt) by

V\t, zt) = lim sup {V(t + δ, zt+δ) - V(t, zt)}/δ .
δ0+

LEMMA 3.2. Under the hypotheses (Bx) α^d (B2), Zeί x(s) and y(s) be
continuous Rn-valued functions of s with s Ξ> t such that xt = yt — φ e B.
Then if they have the right hand derivatives x(t) and y(t) at s = t, we
have

V'(t, yt) £ V\t, xt) + K(0)L\y(t) - i(ί) | ,

where L is a Lipschitz constant of V(t, φ) in the neighborhood of (t, φ).

PROOF. By the hypotheses (Bx) and (B2), we have

V'(t, yt) £ lim sup {V(t + 5, xt+δ) - V(t, φ)}/δ

+ lim sup {V(t + δ, yt+t) - V(t + δ, xt+s)}/8

^ V'(t, xt) + lim sup L | yt+δ - xt+δ \/δ
δ~>0 +

^ V\t, xt) + lim sup {LK(δ) sup \y(s) - x(s)\}/d

^ V'(t, xt) + K(d)L\y(t) - i(i)"|7

which proves the lemma.

Consider the perturbed system of (3.7)

(3.11) x(t) = A(t, xt) + git, xt) ,

where g(t, <p): IxB —> Rn is a continuous function.
THEOREM 3.4. Under the hypotheses (BJ through (B4), assume that

for any ε>0, there exist a δ(ε)>0 α^d a continuous function bε(t): I-+R
such that \g(t, φ)\ ̂  bε(t)\φ\ for any φβ Uδ{ε) and that

(3.12) lim sup Γ+ 1 bε(s)ds < s .

If the zero solution of (3.7) is uniformly asymptotically stable, then the
zero solution of (3.11) is exponentially asymptotically stable.
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PROOF. Since the zero solution of (3.7) is uniformly asymptotically
stable, there is a continuous functional V(t, φ) defined on IxB and
satisfying the conditions (i), (ii) and (iii) in Theorem 3.3.

Choose an ε > 0 with c - MK(0)ε > 0. Then there exists a δ(ε) > 0
and a function be(t) which satisfies the assumptions. We can find a
constant r > 0 such that

(3.13) Γ bε(s)ds ^r + ε(t - t0)

for any t0 ^ 0 and all t ^ t0 by (3.12).
Let δ0 = δ(ε)/(MeK{0)Mr). For any ψ with \φ\ < δ0 and the solution

x = x(tof φ) of (3.11), it follows from Lemma 3.2 and the conditions (i),
(ii) and (iii) that

V'(t, xt)£-cV(t, xt) + K(0)MIg(t, xt)\

S(-e + K(0)Mb£t))V(t, xt)

as long as \xt\ <δ(s). Hence the comparison principle, the condition (i)
and (3.13) imply that

(3.14) \xt\ ^ V(t, xt) ^ V(t0, ^)exp{-c(ί - t0) + K(0)M^ b£s)ds

(c - jBΓ(O)Λfe)(t - to)}]\φ\

as long as \xt\<δ(ε). Since \φ\ < δ0 and c — K(0)Mε > 0, we have
\xt\ <δ(ε) by (3.14). Therefore (3.14) holds for any t0 ^ 0 and for all
t ^ t0 if I φ I < <50. This completes the proof.

4. Existence of an almost periodic solution. In this section, we
make the additional assumptions on the space B.

When a sequence of functions {φk(θ)}, φk e B, converges to a function
φ{θ) uniformly on any compact interval on (— °°, 0] as k —> oo, we say
that the sequence {φk} converges to φ locally uniformly on (—°°, 0].

The additional hypotheses are the following.

(B3) M{β) -> 0 as β -> 00, where M(β) is the function in the hypo-

thesis (B3).
(B5) If a sequence of functions {φk(θ)}, φk e B, is uniformly bounded

and converges to φ{β) locally uniformly on (—°^, 0], then φ belongs to
B and \φk — φ\—> 0 as k—>oo.

Under the hypotheses (BJ and (B5), any bounded continuous function
mapping (—<χ>,0] into Rn belongs to B. In fact, let ψ be a bounded
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continuous function. Then the functions φk(θ), k = 1, 2, , defined by

Ψiβ) , -fc ^ θ ^ 0

^ ( # ) = . (0 + A? + l)φ(-k) , -(fc + 1) ^ 0 ^ -Λ

belong to B by the hypothesis (BJ and the sequence {9fe(#)} is uniformly
bounded and converges to φ(θ) locally uniformly on (—°°,0]. Thus
φeB by the hypothesis (Bβ).

First of all, we prove the following lemma essentially due to Hale

[3].

LEMMA 4.1. Under the hypotheses (BJ through (B3), (BJ) and (B5),
let u: R —> Rn be a function which is bounded and uniformly continuous
on I with uoeB. Then the set S = Cl{ut; tel} is compact in B.

PROOF. Take any sequence {utk\, tk ^> 0. Since ut is continuous in
t e I by the hypothesis (BJ, it is sufficient to consider the case where
tk —> oo as k -> oo. For any integer N> 0, take A; so large that tk — N^ 0.
Then the sequence of functions {^(ίfc + θ)} is uniformly bounded and
equicontinuous on [ — N, 0]. Hence we can choose a subsequence which
converges uniformly on [—N, 0]. Therefore, using the diagonalization
procedure, we obtain a subsequence which converges to a function ψ
locally uniformly on (— co, 0]. The limit function ψ is bounded continu-
ous and belongs to B. We may assume that the sequence {u(tk + θ)}
converges to ψ locally uniformly on (—°°, 0].

Define v and w by

(U{S) , 8 > 0
v(s) = \

(u(0) , 8 ^ 0

and w(s) = u(s) — v(s) for all S G ( - O O J OO). Then vtJe is bounded continu-
ous on (— oo, 0] and belongs to B. Also, wtk belongs to B by the hypoth-
esis (BJ. Let <^(0)> be a constant function such that (u(0))(θ) = u(0)
for all 0 6 ( - ° o , 0]. From the hypotheses (B2) and (B3) it follows that

\utk - ψ\ ^ | ^ + Wtk - α/r| ^ \vtk - ψΊ + |wίjfe|

£\vtk-φ\ + | τ * * ( ^ - <w(0)»|tJfc

^ | ^ - t l + M(ί4) I wo - <M(0)>| .

Since the sequence {v(tk + <9)} is uniformly bounded and converges to
ψ(θ) locally uniformly on (—°°, 0], we have vtfc — ψ\ —> 0 as k —> oo by
the hypothesis (B5). Moreover, ikί^)-> 0 as k -» oo by the hypothesis
(B3). Consequently, | ̂ ί Λ — ψ\ •-> 0 as fc —> 00, which proves the lemma.
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Now, in order to discuss almost periodic systems, the space B is
assumed to satisfy one more hypothesis that

(Bβ) B is separable.

DEFINITION 4.1. Let f(t, φ) be a continuous function defined on
RxD into Rn, where D is an open set in B. f{t, φ) is said to be almost
periodic in t uniformly for ψ e D, if for any ε > 0 and any compact set
S in D, there is a positive number q(e, S) such that any interval of
length q(e, S) contains an h for which

I/(* + h,φ) - f(t, φ)\^ε for all t e R and all φe S .

Such a number h is called an ε-translation number of f(t, φ) and we
denote by E{e, f, S} the set of all ε-translation numbers of / for S.

Let fit, φ) be almost periodic in t uniformly for φ e D. Then / is
bounded and uniformly continuous on RxS, where S is any compact set
in D. Moreover, if the hypothesis (B6) is satisfied, then the normality
theorem holds and the set A defined by

Λ= \xeR; lim (l/Γ)Γ/(ί, φ)e-iλtdt, ί = l/"11!", is not
I T--*oo Jo

identically zero for φ e D\

is countable. The module of / is the set consisting of all real numbers
which are finite linear combinations of elements of the set A with
integer coefficients, and we denote it by m(f). For the details of these
facts, we refer the reader to [15]. The space considered in [15] is a
separable Banach space, but the completeness of the space is not utilized
for the properties of almost periodic functions. See also [10].

Now we show the module containment theorem.
Let fk(t,φ), k = 1, 2, •••, be almost periodic in t uniformly for

φe D. We say that a sequence {fk(t, φ)} converges c-uniformly on RxD
when it converges uniformly on R x S as k —> oo for any compact set S
in D.

THEOREM 4.1. Under the hypothesis (B6), let f(t, ψ) and g(t, φ) be
almost periodic in t uniformly for φ e D. Then the following five state-
ments are equivalent:

( i ) m(ίjr)cm(/).
(ii) For any ε > 0 and any compact set S in D, there exist a

o = δ(e, S) > 0 and a compact set S* in D such that S a S* and E{δ, f,
S*}aE{ε,g,S}.

(iii) {g(t + hk, φ)} converges c-uniformly on RxD for any real
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sequence {hk} such that {f(t + hk, φ)} converges c-unίformly on RxD.
(iv) {g(t + hk, φ)} converges to g(t, φ) c-nniformly on RxD for any

real sequence {hk} such that {f(t + hk, φ)} converges to f(t, φ) c-uniformly
on RxD.

(v) For any real sequence {hk} such that {f(t + hk, φ)} converges to
f(t, φ) c-uniformly on RxD, there exists a subsequence {hkj} of {hk} such
that {g(t + hkj, φ)} converges to g{t, φ) c-uniformly on RxD.

PROOF. AS in the case where f{t) and g(t) are almost periodic in t,
we can prove the following implications: (i) <=> (ii), (ii) => (iii) =^ (iv) =>(v).
Therefore we only show (v) => (ii).

There is a countable set E = {<p*; i = 1, 2, •} in D such that
Gl(E)Z)D by the hypothesis (B6). Suppose (ii) were false. Then for
some ε0 > 0 and some compact set So in D, there would exist sequences
{δk}, {tk}, {K} and {fk} such that δk -> 0 as k -+ oo,

(4.1) \f(t + hkf φ) - f(t, φ)\ S h for all t e R and any

ψeSoUφ, - ,φk} ,
and

(4.2) I g(tk + hk, ψk) - g(tk, fk) \ ̂  ε0 for ψk e So .

Let S be any compact set in D. For an integer m > 0, let
{U?, •••, U?J denote a (l/m)-net of S. UZ contains a φp{m>n)eE for any
m > 0 and n with 1 <̂  n ^ j m since E is dense in D. The set X = S U
{<pP(m,%). m — 1,2, , n = 1, , im} is compact, because for any σ > 0,
the number of φ e X with d(<ρ, S) ^ σ is finite. Since /(£, φ) is uniformly
continuous on RxX, for any ε > 0 there is a 5 = <5(ε, X) > 0 such that

(4.3) |/(ίf φ) - /(ί, t ) I ̂  e/3 for all ί 6 R

if 9 G l , f 6 l and \<p — φ\ <δ. Choose an m so large that 1/m < S/2.
Then there is an integer N = N(ε, S) > 0 such that δfc < ε/3 and
{φ\ •• ,<Pk}z){φp{m>n);n = 1, - , jj if k^N. Since Ϊ7(9>, δ) contains a
^P(«,») for a n y ^ i n s, it follows from (4.1) and (4.3) that

\f(t + hk, φ) - f(t, φ) I ̂  |/(ί + hk, ψ) - fit + hk, φ^n)) \

hk, 9̂ t . )) -/(«, ^ t " . ))|

^ ( * . >) - /(t, φ) I ̂  ε/3 + 8k + ε/3 < ε

for all ^ e S and all teR if fc ^ JV(ε, S). This shows that {/(ί + hk, φ)}
converges to f(t, φ) c-uniformly on RxD. Therefore there is a sub-
sequence {hkj} of {hk} such that {g(t + hkj, φ)} converges to g{t, φ) c-uni-
formly on RxD by our assumption (v), a contradiction to (4.2). Thus
(v) implies (ii). This completes the proof.
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For 0 < H ^ CXD f let f: RxUH-+ Rn be almost periodic in t uniformly
for φe UH. Assume that

(4.4) \f(jt,φ)\£n(\φ\) on RxUH

for an increasing function n(a) defined on [0, H). Consider the system

(4.5) x(t) = f(t, xt) ,

and its associated product system

(4.6) x(t) = f(t, xt) , y(t) = f(t, yt) .

THEOREM 4.2. Under the hypotheses (BJ through (B6) and (Br

3), as-
sume that there is a continuous real-valued functional V(t, φ, ψ) defined
on IxUHxUH which satisfies the following conditions:

( i ) a(\φ — α/r|) ̂  V(t, φ, ψ) ^ b(\φ — ψ\), where a{s) and b(s) are
continuous increasing functions such that α(0) = 6(0) = 0 and a(s) > 0
for s > 0.

(ii) For any αe[0, H), there is a constant La such that

\V(t, Ψ\ ψ1) - V(t, Ψ\ ψ*)\ ^ La{\φι - ΨΛ + W - r\)

on Ix Uax Ua.
(iii) F('4.β)(ί, φ, ψ) ^—cV(t9 φ, ψ), where c > 0 is a constant.

If there is a solution u = u(t0, φ°), t0 Ξ> 0, of (4.5) such that \ut\ <* r<H
for all t^t0 and for some constant r, then there exists a uniformly
asymptotically stable almost periodic solution P(t) of (4.5) such that
\pt\^^ for all teR and m(p) is contained in m(f). In particular, when
f(t, ψ) is periodic in t of period ω, there exists a periodic solution of
(4.5) of period ω which is uniformly asymptotically stable.

PROOF. First of all, we show the existence of an asymptotically
almost periodic solution of (4.5). We may assume t0 = 0. Define So by
So = Cl{ut;tel}. For ίe/,we have \ύ(t)\ = |/(t, ut)\ ^ n(\ut\) ̂  n(r) by
(4.4), and \u(t)\ ^ kx \ut\ £ Kγr by the hypothesis (B4). Therefore So is
compact by Lemma 4.1. Then the condition (ii) implies

(4.7) I V(t, φ\ f1) - V(t, φ\ ψ2)\^ L{\φι - φ>\ + |ψ1 - ^2|} on IxSoxSo

for a constant L.
Let {hk} be any real sequence such that hk —> oo as k -H• oo. We may

assume that {fit + hk, φ)} converges uniformly on RxS0 as k—> oo. Then
for any ε > 0, choose an integer N = N(e, So) > 0 such that if m ^ k ^ N,
we have

(4.8) b(2r)e-ch* < α(ε)/2
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and

(4.9) \f(t + hk, Ψ) - f{t + hmy φ)\ £ a(e)c/(2K(0)L)

for all t e R and any φ e So .

Using the condition (iii), (4.7) and (4.9), and applying Lemma 3.2, we have

V\t + K Ut+hk, Ut+hJ^-cV(t + K ut+κk, Ut+hJ

+ K(0)L\f(t + hm, ut+hm) - /(* + hk, ut+hj

^-cV(t + hky ut+hk, ut+hj + α(ε)/2

for all £ G / , if m ^ k ^N. Then the comparison principle and (4.8)
imply that

V(t + hk9 ut+hk, ut+hj ^ e-c^h^{V(0, φ\ uhm_hk) - α(ε)/2} + α(ε)/2 < α(ε)

for all tel. Therefore we see that

I u t + h n - u t + h k \ < e f o r a l l t e l

by the condition (i), which then implies that

I u ( t + h m ) - u ( t + hk)\ < K , ε f o r a l l t e l i f m ^ k ^ N ,

by the hypothesis (B4). Thus {%(£ + /&Λ)} converges uniformly on / as
fc—> co, and u(t) is asymptotically almost periodic.

Now we show the existence of an almost periodic solution. Let
{hk} be any real sequence such that hk —> co and {/(ί + hk, φ)} converges
to fit, φ) uniformly on RxS0 as k —» co. Since u(ί) is asymptotically
almost periodic, it has the decomposition u(t) ~ s(t) + q(t), where s(t) is
almost periodic in t and q(t) is a function which is continuous on / and
tends to zero as ί—> oo. Taking a subsequence, if necessary, we can
assume that {s(t + hk)} converges to an almost periodic function p(t)
uniformly on R. Since pit) is bounded continuous on R, pt belongs to
B for all t e R.

Define v and w by

(u{σ) , a > 0

( σ £ 0 ,

and w(σ) = u(σ) — v(σ) for all σe(— °o, oo). For a fixed teR, let k be
so large that t + hk^ 0. Then vt+Λjfc and wt+hk belong to B for all k by
the same argument as in the proof of Lemma 4.1. For a compact in-
terval J on (— co, 0] and any ε > 0, there is an integer N = JV(ε, /) > 0
such that Ja[-it + hk), 0], \p(t + θ) - s(t + hk + θ)\ < ε/2 and
\q(t + hk + θ)\ < ε/2 on J if k ^ JV. Thus we have |p(ί + <9) - v(t + fefe +
<9)| < ε on J if & ̂  ΛΓ, since
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v(t + hk + θ) = s(t + hk + θ) + q(t + hk + θ)

for # e [ — (ί + feA), 0]. This implies that the sequence {v(t + hk + θ)} con-
verges to p(t + 0) locally uniformly on (— co, 0]. Clearly, the sequence
is uniformly bounded on (—°°, 0]. Hence \vt+hfc — pt\ —> 0 as k —> oo by
the hypothesis (B5). Using the hypotheses (B2) and (B3), we see that

-Pt\+M(t + K) \φ° - <

Since | vt+hjc — pt \ —> 0 as k —> oo and Λf(ί + y - ^ 0 as ί -^co by the hy-
pothesis (B.0, we have \ut+hk — pt \ —> 0 as k -> oo. Thus pt^S0 for any

For any fixed ί 6 i?, choose Λ so large that £ + hk ^ 0. Since
{/(s + hk, φ)} converges to /(«, 9?) uniformly on RxS0 and /(s, 9>) is uni-
formly continuous on RxS0, we see that lim^^fis + Λfe, us+hk) = f(s, ps)
for any seR. Also, w(ί + λΛ) —> p(t) as ft-> 00 by the hypothesis (B4).
Therefore, by Lebesgue's dominant convergence theorem, we have

= lim w(ί + fcfc) = lim \ u(hk) + I f(s, us)ds
k^co k-yoo ( } h k

= Πm| w(feA) + ^f(s + Λft, us+hk)ds

hk, ua+h)ds
JO

for any fixed £ei2. Thus p(ί) is an almost periodic solution of (4.5).
By using the functional V(t, φ, ψ), it is easily shown that p(t) is

uniformly asymptotically stable and every solution remaining in UH ap-
proaches p(t) as t-^ co, which implies the uniqueness of p(t).

Finally we show that m(p)am(f). Let {hk} be any real sequence
for which {/(ί + hk, φ)} converges to f(t, φ) c-uniformly on Rx UH. Since
p(ί) is almost periodic, there exists a subsequence {hkj} of {hk} for which
{p(t + ^fci)} converges uniformly on R as j —> 00. Let Q(t) = lim^^
P(* + ΛΛy). Then by the same argument as in the above, Q(t) is an
almost periodic solution of (4.5). The uniqueness of p(t) implies Q(t) =
p(t), and so we see m(p)am(f) by (v) in Theorem 4.1. This completes
the proof.

Now we consider the linear system

(4.10) 4(ί) = A{t, xt) ,
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and the nonhomogeneous system

(4.11) x(t) = A(t, xt) + 6(ί) ,

where A{t, φ): RxB-» Rn is continuous and linear in ψ, and b(t):R-^Rn

is continuous and 1δ(ί) | <̂  r for allί 6 R and for a constant r. Then we
have the following.

THEOREM 4.3. (I) Suppose that the hypotheses (BJ through (B4)
are satisfied. If the zero solution of (4.10) is uniformly asymptotically
stable on I, that is, (3.10) holds for some constants M>0 and c > 0,
then all solutions of (4.11) are bounded on /. In particular, we have
xt(t0, φ)\ ^ K(0)Mr/e for any to^0 and for all t ^ t0 if \φ\ ̂  K(fi)r/c,
where x(t0, φ) is the solution of (4.11).

(II) Suppose that the hypotheses (Bx) through (Bβ) and (BJ) are
satisfied, and assume that A{t, φ) and b(t) are almost periodic in t uni-
formly for φeB. If the zero solution of (4.10) is uniformly asymtoti-
cally stable, then there exists an almost periodic solution of (4.11),
which is uniformly asymptotically stable and bounded by K(0)Mr/c, and
its module is contained in the module of A(t, φ) + b(t). Particularly,
when A(t, φ) and b(t) are periodic in t of period co, there exists a peri-
odic solution of (4.11) of period ω which is uniformly asymptotically
stable.

PROOF. (I) Since the zero solution of (4.10) is uniformly asymptoti-
cally stable, there is a continuous functional V(t, φ) satisfying the
conditions (i), (ii) and (iii) in Theorem 3.3. Then the condition (iii) and
Lemma 3.2 imply that

V'(t, xt) £ n.io)(ί, yt) + J8Γ(0)Λf|*(ί) - y(t)\

where x is a solution of (4.11) through (t0, φ)e IxB and y is a solution
of (4.10) through (t, xt). Since xt = yt, we have

V'(t, xt) S-cV(t, xt) + K(0)M\b(t)\ .

Then, using the comparison principle and the condition (i), we have

\xt\£ V(t, xt) ^ e-c{t'^V(t09 φ) + Γ e"c{t-s)K(O)M\b(s)\ ds

^ Me-'W \φ\ + (K(0)Mr/c)(l - e"^*"'^) .

Therefore x is bounded. In part icular, \xt\ ^ Kίϋ)Mrjc for all t ^ t0 if

(II) Since A(t, φ) is bounded on R x S for any compact set S in B,
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we see that \A(t9φ)\ <Z N\φ\ on Λ x B for a constant N>0 by the
argument similar to that in Lemma 3.1. Then we have

\A(t,φ) + 6(ί)l £N\φ\ + r on RxB,

that is, (4.4) holds for /(ί, φ) = A(t, φ) + b(t).
Let V(t, φ) be the continuous functional satisfying the conditions

(i), (ii) and (iii) in Theorem 3.3. Define W(t, φ, ψ): IxBxB -> R by

W(t, φ, f) = V(t, φ-ψ).

Then we have

\φ - ψ\ ^ W(t, φ, ψ) ^ M\φ - ψ\

and

\W(t, φ\ r) ~ W(t, φ\ ψη\ £ M{\φi - <p2\ + \ f1 - ^\)

on IxBxB. Let x and y be solutions of (4.11) and (4.10), respectively.
Then the condition (iii) implies that

TF<4.ii>(ί, <P, f) = lim sup {V(t + δ, xt+8(t, φ) - a?t+,(ί, f)) - V(t, φ -

- lim sup {F(ί + δ, yt+δ(t, φ - ψ)) - V(t, φ - ψ)}/δ

φ- ψ) ^ -cW{t, φ, ψ) .

Therefore W(t, φ, ψ) satisfies the conditions (i), (ii) and (iii) in Theorem
4.2. Moreover, the conclusion in (I) shows the existence of a solution
of (4.11) bounded by K(0)Mr/c. Thus we can apply Theorem 4.2 to
obtain the conclusion in (II).

REMARK. For an almost periodic functional differential equation
with infinite delay, Hino [8] also showed the existence of an almost
periodic solution under the existence assumption of a bounded solution
with some stability property, but the phase space considered in [8] is
slightly different from ours. His hypothesis corresponding to (B2) is
stronger than ours, but (BJ) is stronger than his corresponding hypo-
thesis.
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