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1. Introduction. Let M be a continuous BMO-martingale with
M, =0, and Z(M) be the solution of the stochastic integral equation

(1) Z,=1+S:Z,dM,.

Then, as is proved in [4], Z(M) is an L*-bounded martingale for some
p>1. Now, let us fix a continuous BMO-martingale X. We call
JM) = E[X,.Z,(M)] the cost of X associated with M. In this paper
we are concerned with the following problem: if S is a subclass of BMO,
then does there exist an element M° of S such that J(M°) < J(M) for
all MeS? In Section 4 we shall determine a class S for which there
exists the optimal martingale M° achieving the minimum cost, and in
the last section we shall give a negative example for this existence
problem. We also give an example of the existence of the optimal
martingale in dynamical systems subject to random perturbations.

The results are based on two steps. The first is the theory of H?
and BMO-martingales developed by Getoor and Sharpe [2], and Kazamaki
and Sekiguchi [4]. The second is the stochastic control theory given by
Duncan and Varaiya [1].

The reader is assumed to be familiar with the martingale theory as
set forth in Meyer [6].

2. Preliminaries. Let (2, F, P) be a complete probability space
with a non-decreasing right continuous family (F),),s, of sub o-fields of
F such that F, contains all null sets and F' = VY, F,. Let L. be the
class of all continuous local martingales X over (F,) with X, =0. If
XeL,, then there exists a unique continuous increasing process <(X)
such that X? —<(X)eL,. If X, YeL,, then (X, Y) is defined by

X Y)=(X+Y)-<KX—-Y))4.

It is well-known that XY — (X, Y) belongs to L,. Let H?” be the
Banach space of all X e L, such that

X e = X[ < ooy p=1,
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where X* = sup, | X,|. Let BMO be the Banach space of all Xe L, such
that

1 Xllpxo = sUp | BKX Doy — (XD [ FUJ”]] o0 < oo

As is well-known, the solution Z(M) of (1) is given by the formula
Zy = Z(M) = exp(M, — {M>./2) .
Throughout, we assume that every M belongs to BMO.

DEFINITION 1. For any fixed constants C =1, » > 1, let R"(C) be
the class of all M e BMO such that

(2) sup, || E[(Z.(M)/Z,(M))" |Fi]ll . = C .

DEFINITION 2. Let XeBMO be fixed. Then, the cost J(M) of X
associated with Me R"(C) is defined by

J(M) = E[KX, Z(M) — 1).] = E[X.Z.(M)] .

Since Z(M) — 1€ H" for Me R"(C), it is well-defined by Fefferman’s in-
equality [2]. M°e R"(C) is called an optimal martingale if J(M°) < J(M)
for all Me R"(C).

3. Transformation of BMO-martingales. We recall in this section
the recent results of Kazamaki and Sekiguchi [4]. For any constant

K >0, let B(K) denote the class of all M e BMO such that ||M||syo < K.
For 1 < p < « and the solution Z = Z(M) of (1), let A,(Z) denote the

constant defined by
ANZ) = sup || E[(Z/Z.)""" | F ]|l o -
LeEmMMA 1.
(a) If Me B(K) for a constant K > 0, then
(3) A Z) = (1 = KWV D — 1)) /e

for p sufficient large.
(b) If A,_(Z) < K' for a constant K' =1 and p > 2, then

(4) Me B(K), where K = (2(p — 2)log K')"* .
The proof is identical with that of Lemma 5 in [4].

LEMMA 2. For any K > 0, there exist constants C=1 and » > 1
such that B(K)c R(C).

The proof is identical with that of Theorem 1 in [4].
Let M e BMO and P, be the probability measure defined by dP,=Z (M)dP.
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As Z_ (M) > 0, P, and P are mutually absolutely continuous. Let Ej
denote the expectation with respect to dP,. Let BMO(P,) and
[|*]lexotp,y denote the space BMO and its norm associa;ted with dP,, re-
spectively. As is stated in [4], if XeBMO, then X =X — (X, M)e
BMO(P,) and (X) = (X).

LEMMA 3. Let C=1 and » > 1. If MeR'(C), then
(5) ”XHBMO(PM) = ¢ || X|lsmo » X e BMO

where the positive constant ¢ depends only on C and 7.

PrROOF. Let us assume that 0 < || X||lsmo < = and set a = 1/(20
| X ||4m0), where 1/r + 1/ =1. As ||[(a7")"?X|Zx0 = 1/2, Lemma 4 of [4]
yields

Elexp(ar' (XD, — CXONIF] = A — [[(@r)”X]lhmo) " = 2.
By using a simple inequality x < ¢**/a and Holder’s inequality,
E (X).. — (XD F] = Bl(Z(M)|Z(M)(X).. — {X))|F)]
= E[(Z(M)]Z(M))exp(a({X )., — (XD F]/a
S E[(Z(M)]Z(M))|F,]'"E[exp(ar’ KX ). — (XD DIF ] [a
< Cr2vlg = Y2V 20" || X || 3vo-
Thus we obtain (5).

LEMMA 4. For any constants C =1, r > 1, there exists a constant
K > 0 such that R"(C)c B(K).

PROOF. Let Me R'(C) and define M=—M=—M + (M). Then we
have MeBMO(P,) and (M) =<(M)>. Under P, the unique solution
Z' = Z'(M) of the equation

7 =1+ S’ 741,
0
is given by
Z(I) = exp(M, — (M) ,/2) = exp(—M, + (M),/2) = 1/Z(M) ,
so that Z.(M)dP, = dP and

Eu[(Z(ID)) Z(3) | F)] = E[(Zo(M)] Z(M))(Z:(M)] Z(BD)) | F)
= E[(Z.(M)|Z(M))|F]1=C.

Then by (4), taking 1/(p —2) =» — 1,
(6) I ||exop,y < (2(log C)/(r — 1))2 = G .
Thus by Lemma 2,
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sup | Bul(Z.(M)| Z:(B))™" |F]],. < C”

for some constants C” =1, 7" > 1 which depend only on C’. Further-
more, by Lemma 3 we have
(7) Y — <Y, M) |leworm < ¢ ]| Y |lsvowe,y » Y/ € BMO(Py)
where the positive constant ¢ depends only on C” and 2”. Then (7)
yields, taking Y’ = M,

|| M||gymo = € “MHBMO(PM) .
Therefore, combining this inequality with (6), the lemma is proved.

4. Existence of optimal martingales.
LEMMA 5. Let 1 <p < c. Then the Banach space H” is reflexive.
ProoF. As is well-known, the class H? of all L?-bounded right con-

tinuous martingales X with X, = 0 is a reflexive Banach space with the
norm || X]|,, = || X*||,,. Clearly, H” is a closed subspace of H*. Then

it follows from the theorems of Eberlein-Shmulyan and Mazur [8] that
H? is also reflexive.

From now on, we fix the constants C =1 and » > 1.

THEOREM 1. The set D(C) = {Z(M) — 1; Me R"(C)} 1s weakly com-
pact in H.

ProoF. To prove the theorem, we show that D"(C) has the follow-
ing properties: (a) boundedness, (b) convexity and (¢) closedness. The

details are as follows.
(a) By Doob’s inequality and (2),

El(sup, | Z(M)))'] = (v/(r — D)) E[Z(M)] = (r/(r —1))C .

Thus the boundedness of D"(C) follows.
(b) Let M“eR(C), »N=0, 2=1,2, with A, + 7, =1, and let
70 —1=Z(M"?P) — 1€ D"(C). Define the process Me L, by

M, = 3| (MBS0 )M
i=1J0 j=1

Then it is easy to see that (C2_, M, Z{) is a solution of (1), that is,
SN2 = Z(M) .

1‘9 s ()\11:233(‘ /Z k’iz;g] ) d<“4(l)> [F < H n[(i)H2\O ,L' ] 2
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we have M e BMO. From Minkowski’s inequality it follows that
E[(Z.(00) | F]" £ 3 El0Z9) | FI" = SYMEIZ9Y IR
= SICWEOY) = C 2 M) .

Therefore, M e R"(C) and
S AZD — 1) = SINZD —1 = Z(M) —1e D(C) .
=1 i=1

(¢) Let {M™} be a sequence from R"(C) and let Z™ —1 =
Z(M™) —1eD"(C). Let Z —1 be in H" such that

lim|| Z® — Z||,. =0,

n-—00

and
limsup |Z® — Z,| =0 as. P.

n-—c0 t

Since by Lemma 4 there exists some constant K > 0 such that every
M™ belongs to B(K), we have for all =,

E[(M2)] = E[M™).] = [|M™ ||t = K* .
Hence,
B[|lim (M2 — <M™).[2)|] = lim inf B[| M2 — {M™).[2]]
= lim inf {E[| M2[] + EKM™).]/2}
= lim inf {E[(M2)]" + E[KM™)..]/2}
=K+ K*2.
Thus we obtain
P(lim (M — (M) [2)=—0c0) =0,

n—oo

so that Z_, = lim,_. exp(M®™ — {M™>_/2) >0 a.s. P. By Theorem 15
of [5, §VI], Z, >0 for all ¢ a.s. P. Thus we can define the process

MeIL, by M,=| Z*dZ. Then Z is a solution of (1), i.e., Z = Z(M).
0
By (3), for p sufficient large,
EI(Z/2.)"°|F)] < lim inf B[(Z]Z2)/*|F]

< liminf A, ,(Z™)

n—00

=1- KZ/(2(1/p — 1 — 1))~ /s=/e-1t |
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which implies M€ BMO by (4). Furthermore, it is clear that
E(Z./Z)|F] £ liminf E[(Z2[Z") | F] = C.

Therefore, Me R"(C) and then, Z — 1 = Z(M) — 1€ D"(C).

Now we prove that D"(C) is a weakly compact subset of H". Let
{Y,} be a sequence from D’(C). By (a) and Lemma 5, D"(C) is a bound-
ed subset of the reflexive Banach space H™ (» >1). Then it follows
from Eberlein and Shmulyan’s theorem that there exists a subsequence
{Y,,} of {Y,} such that {Y, } converges weakly to an element Y of H".
On the other hand, by Mazur’s theorem, there exists a convex combina-
tion Y™ =31 MY, (™ =0, S, p™ =1) of Y,,’s such that {Y™}
converges strongly to Y. Therefore, by (b) and (¢), Ye D(C). This
completes the proof.

THEOREM 2. There exists an optimal martingale M° in R7(C).

Proor. Let us fix XeBMO. We first show that the cost J(M)=
E[X.Z (M)] of X associated with Me R"(C) is bounded. Let us assume
that it is not bounded. Then there exists a sequence {M ™} R"(C) such
that |J(M )| > n for each n. By Theorem 1, the sequence {Z(M ™) — 1}C
D7(C) contains a subsequence {Z(M"+) — 1} which converges weakly to
Z(M) —1e D"(C) for some Mec R"(C). Hence,

|JM)| = | E[X.Z(M)]| = lim | B[ X Z.(M"#)]|
= lim | J(M0) | = o= ,

which is a contradiction.

Next, set J° = inf{J(M); Me R (C)} and let {M™}c R(C) be a
sequence such that lim,_. J(M ™) = J°. By the above argument, taking
a subsequence {M ¥} of {M™} we can find M°e R (C) such that
lim, .., J(M ") = J(M°). Thus the theorem is proved.

5. Examples. Let (B, P) be a Brownian motion with B, = 0, and
let F', be the o-field generated by (B,, s < t). Let G be the class of all
predictable processes f with

< oo

L®

| [ i)

and
oo (s ([ am. - ) ]

By the integral representation theorem of martingales, R"(C) can be

=C.
LOO
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identified with the class of all processes M = (St f,dB,) for every feG.

Let (¢, -) be a bounded measurable function 0;1 [0, 1]x R and let T=
inf{t < 1; B,e I'} for a Borel set I" of R'. Define the cost J(M) associated
with Me R"(C) by

J(M) = E,,B:x(s, B,)ds:l :

Then, by Theorem 2 there exists an fe€ G such that f minimizes J(M).

Finally we give a negative example for the existence problem. Let
@ be the class of all processes M‘“ e L, defined by M® = aB,,, for
acR'. Then, ®cBMO and || M‘“||smo = |a|, because

M), = a*(tAL)
and
E[{M“), — (M), |F] =a® — a’(tA]) .

Let Z‘ Dbe the unique solution of
20 =1+ | Z0dMe .
0

Then the cost J(M®) = E[{M™, Z'* — 1)_] associated with M‘“ €@ has
no minimum. Indeed, since Z‘® is a martingale, we have

J(M(a)) — Eligmzéu)d<M(1), Mm>':l - E[a Sl Z;“)ds] =a.
0 0
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