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Introduction. All analytic automorphisms of the Gaussian plane C
are given by linear polynomials. On the other hand, the two-dimensional
complex Euclidean space C2 has plentiful analytic automorphisms. An
analytic automorphism given by two polynomials is called algebraic and
an analytic automorphism given by two entire functions at least one of
which is a transcendental entire function is called transcendental. The
purpose of this paper is to present some conditions under which an
analytic automorphism of C2 is algebraic.

Recently, Nishino and Suzuki have given an interesting result on
the cluster set at z = 0 of an analytic mapping φ of the punctured disc
Γ'\ 0 < \z\ < 1 into a two-dimensional complex analytic manifold. By
means of their result, we can show the following: an analytic automor-
phism of C2 is algebraic if it maps an algebraic curve in C2, which is
not of exceptional type, onto an algebraic curve, and above-mentioned
algebraic curves of exceptional type can be determined in the concrete.

This paper consists of four sections. In §1, we show that an
analytic automorphism of C2 is algebraic if it transforms a polynomial
of general type into a polynomial. The polynomials of exceptional type
and the transcendental automorphisms which transform a polynomial
into a polynomial are determined in the concrete.

Consider an algebraic curve S in C2 and the two-dimensional complex
projective space P2 containing C2 as its afBne part. In §2, we prove
the fact that an analytic automorphism which transforms S into an
algebraic curve is algebraic if the closure of S in P2 intersects the line
at infinity of P2 at more than two distinct points. The above result
is contained in the principal theorem which is proved in §4. However,
we can prove this result without using the theory of cluster sets,
and this together with the result in §1 was the starting point of this
study.

By a method similar to that in the proof of the principal theorem
in §4, we can give a condition under which the complement of an
algebraic curve in P2 allows transcendental automorphisms. This will
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be published elsewhere.

1. Automorphisms of C2 and polynomials. An analytic automor-
phism T of the space C2 with coordinates x, y is given by two entire
functions/(a, y) and g(x, y) of x, y in the form (x', y') = (f(x, y\ g(x, y)).
We say that T is algebraic if both / and g are polynomials of x, y and
that T is transcendental if g or / is a transcendental entire function.
If T is algebraic, then T transforms an arbitrary polynomial P(x, y) into
a polynomial T*{P)(x, y) = P(f(x, y), g(x, y)) and conversely. If the genus
of the normalization § of an irreducible algebraic curve S in C2 is p
and if S has n boundary points, then S is called an algebraic curve of
(topological) type (p, n). Consider the level curve Sc: P=c for an arbitrary
complex value c, where P = P(x, y) is a polynomial of x, y. An irreduci-
ble component of Sc is called a prime surface of P. Types of prime
surfaces of P are constant with the exception of a finite number of
prime surfaces. If the type of general prime surfaces of P is (p, n),
then we call the polynomial P a polynomial of type (p, n) and if,
furthermore, p i> 1 or n ^ 3, then we call P a polynomial of general
type. The purpose of this section is to prove the fact that an automor-
phism of C2 which transforms "one" polynomial of general type into a
polynomial is algebraic and that we can determine the transcendental
automorphisms which transform a polynomial into a polynomial.

A polynomial P(x, y) for which the curves Sc: P(x, y) — c are ir-
reducible non-singular and of order one (i.e., P — c has a zero of order
one on Sc) with the exception of a finite number of constants c is called
primitive. Owing to Stein [7], we know that, for an arbitrary poly-
nomial P(x, y), there corresponds a polynomial Po(#, y) such that every
polynomial Q(x, y) with the jacobian J(P, Q) = 0 is decomposed in the
form Q(x, y) = φ(P0(x, y))9 where φ{z) is a polynomial of one complex
variable z. This polynomial Po is primitive and is uniquely determined
up to the multiplication and the addition of constants.

Suppose that a polynomial P(x, y) of general type is transformed
into a polynomial Q — T*(P) by an analytic automorphism T of C2. Then
we can assume without loss of generality that both P and Q are primi-
tive polynomials of general type.

Now we consider an affine algebraic variety Mo: z — Q(x, y) = 0 in
the space C x C2 of the direct product of the 2-plane C and the £2/-space
C2. The canonical projection ώ0 of C x C2 onto the xy-space C2 defines
a birational biregular isomorphism between Mo and C2. For each value
z\ S°z> denotes the section of Mo cut out by the complex line z = zf. The
section S°z> corresponds biholomorphically to the curve Sβ>: Q = z'.
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Now we consider a two-dimensional analytic space V and a Riemann
surface R. If there exists a proper analytic mapping π of V onto R
and if a triple <βr = (V,π,R) satisfies the following two conditions,
then &~ is called an analytic family of compact Riemann surfaces of
genus p over R.

(1) For an arbitrary point q on R, the fibre Sq = π~\q) is a com-
pact connected one-dimensional analytic surface in V.

(2) For an arbitrary point q on R with the exception of the points
in a discrete set on R, the fibre Sq is irreducible, non-singular and of
order one and Sq is a Riemann surface of the same genus p. (We call
a fibre satisfying this property a regular fibre and a fibre not having
this property is called a critical fibre.)

We shall construct an analytic family of compact Riemann surfaces
by the compactification of the algebraic variety Mo. Let P 2 be the two-
dimensional projective space containing C2 as its affine part and let
(x0: xλ\ x2) be the homogeneous coordinate of the point with the inhomo-
geneous coordinate (x,y), i.e., x = xjxo, y = x2l%o Let (z0: zj be the
homogeneous coordinate of the point with the inhomogeneous coordinate
z on the one-dimensional projective space P=CU{°°}, i.e., z = zjzo.
Let us denote by m the degree of the given polynomial Q. Consider
the projective algebraic variety M defined by the equation x?{zQQ(xJxOf

XJXQ) — 2i) = 0 in the space P x P 2 . The canonical projection ώ of
P x P2 onto P2 defines a birational isomorphism between M and P 2 .
For the canonical projection π of P x P2 onto P and for each point q
on P, Sg = π"1^) is a compact, connected, one-dimensional algebraic
curve and, if q Φ ©o, then Sg Π -Mo = S^, where 2' denotes the inhomo-
geneous coordinate of q. Noting that P is primitive and, if necessary,
by applying a suitable birational transformation to ikf, we see that the
triple &~ = (AT, TΓ, P) is an analytic family of compact Riemann surfaces
over P.

Assume that the automorphism T is given by two entire functions
f(x, y) and g{x, y). If the holomorphic function ώo*(/) = /°ώ 0 on Mo is
analytically continued to a rational function on ikf, then f(x, y) is a
polynomial of x, y. If the closure sc in M of sc: <30*(/) = c is an algebraic
curve on M for at least two complex values c, then a theorem of
Thullen [9] implies that ώo*(/) can be analytically continued to a rational
function on M (and, therefore, / is a polynomial).

Here we state a theorem due to Nishino on the analytic continuation
of an analytic section of a fibre space.

We consider a two-dimensional analytic space V and an analytic
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projection π of V onto a Riemann surface R. Suppose that a triple
j r = (V, π, R) is an analytic family of compact Riemann surfaces over
R. Let D be a subdomain of R. A finitely multivalent analytic mapping
η of D into F satisfying TΓO)? = id. is called a finitely multivalent analytic
section of JΓ over D.

THEOREM N. (Nishino [3]). Consider an analytic family
of compact Riemann surfaces of genus p over the disc Γ:\z\ < r which
has no critical fibre except at z = 0. An unramified finitely multivalent
analytic section rj of ά^ over the punctured disc Γ': 0 < | z \ < r is
analytically continued to a finitely multivalent analytic section over Γ
if ^ and rj satisfy one of the following three conditions:

(1) P^2,
(2) p = 1 and there exists a finitely multivalent analytic section

ξ over Γ, which is unramified on Γr and satisfies ξ(zf) Φ 7){z') for all
branches of rj and ξ at every zf in Γ',

(3) p == 0 and there exists a finitely multivalent analytic section
ξ over Γ, which is unramified on Γr and has branches ξj9 j = 1, 2, ,
v(^3) over Γ, satisfying ξά{z') Φ ξk(z') (j Φ k) and η(zr) Φ ξj(z') for all
branches of Ύ] at every z' in Γ'.

Let us continue our discussion. For a fixed complex value c, we
consider the surface sc: f = c which is the inverse image of the analytic
plane xf = c by the mapping T and consider the coordinate τ ( |r | < + °°)
on the analytic plane x' — c. We denote by Φ(τ) = (fic(r), y(τ)) an analytic
imbedding of the τ-plane into C2 associated with the inverse image sβ.
The restriction P(c, yr) of P(x', yr) to the analytic plane xf = c gives a
polynomial of τ and the equation P{c, y') — z — 0 for every complex
value z has exactly m roots by counting multiplicities, where m denotes
the degree of the polynomial P(c, yr) with respect to yf. We consider
the Riemann surface Rc of the inverse function of the holomorphic
function Γ*(P)(Φ(r)) = Q(x(τ), y(τ)) of τ. Then Rc is a ramified m-sheeted
covering of the z-plane with no relative boundary and with a finite
number of ramification points. This means that s*: ώo*(/) = c defines an
m-valent analytic section ηc of the analytic family (M — π~X^), π, C)
over the z-plane C and the Riemann surface defined by Ύ]c has no rela-
tive boundary and has only a finite number of ramification points. An
algebraic curve Σ, which is the closure of M — (π~\^) U Mo)9 defines a
finitely multivalent analytic section ξ over the 2-sphere P with no relative
boundary and with a finite number of ramification points. Hence there
exists a sufficiently large positive number p such that the analytic family
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— (π~χΓ), π, Γ) of compact Riemann surfaces over the disc Γ: zQjz1 | <
p'1 has no critical fibre except at zQ = 0 and multivalent analytic sections
ξ and η0 have no ramification point on the punctured disc ΓΊ 0 < | zo/z1 | <
p~\ Moreover, one of the three conditions (1), (2) and (3) in Theorem N
holds, as the polynomial Q is a polynomial of general type. Hence, by
Theorem N, the closure sc* of sc* in M is an algebraic curve on M. Since
c is an arbitrary complex value except for a finite number of values, /
is a polynomial. By the same reasoning, we see that g is also a poly-
nomial. Thus the following theorem has been proved.

THEOREM 1. An analytic automorphism of C2 is algebraic if it
transforms a polynomial of general type into a polynomial.

Owing to Wakabayashi, we know that a primitive polynomial of
type (0, 1) is transformed into the monomial x by an algebraic automor-
phism of C2 and owing to Saitδ [6], we also know that a primitive poly-
nomial of type (0, 2) is transformed into the monomial xmyn or into the
polynomial xm(xιy + Pι^(x))n by an algebraic automorphism of C2, where
£, m and n are positive integers and Pι^{x) is a polynomial of degree
at most I - 1 satisfying Pz_x(0) Φ 0 (see [6], [8]).

Among the automorphisms of C2, the one which keeps the monomial
x invariant is of the following form:

(I) x' = x , y' - (exp (<p{x))) - y + ψ(x),

where φ(x) and ψ(x) are arbitrary entire functions of x.
Let m, n, mf and nf be positive integers. If there exists an analytic

automorphism which transforms the monomial xm'yn' into the monomial
xmyn, then m — m' and n = n', or, m — nr and n = m\ Any analytic
automorphism of C2 which keeps the monomial xmyn invariant is given
as follows: If mΦ n, then

(II) x9 = (exp (nφ(xmyn))) x , y' = C(exp (-mφ(xmyn))) y ,

where φ{z) is an arbitrary entire function of z and C is a constant with
Cn = 1. If m — n, then an automorphism of C2

(Πo) x ' = V f y ' = x

keeps the monomial xmym invariant and all the automorphisms of C2

which keep xmym invariant are generated by the automorphisms of the
types (II) and (Πo).

For positive integers I, m, nf V, m', nf and a polynomial 'Pi-^x) of
x of degree at most I — 1 with Pι-^0) Φ 0 and for a polynomial Pv^ix)
of x of degree at most V — 1 with Pr-i(0) =£ 0, if there exists an analytic
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automorphism of C2 which transforms xm\xvy + Pv-^x))*' into xm(xιy +
Pι-i(%))n> then I = V, m — m', n — nf and such an analytic automorphism
of C2 is given by

x' = (exp (nφ(*))) x ,

(III) y' = {C(exp (~m>(*)))(xly + PUx))

- PU(exp (nφ(*))) α?)}/((exp (n?>(*))) a)1 ,

where * = xm(xιy + Pι_i(a?))n, 9>0?0 is an entire function of 2 and C is a
constant with Cn = 1. Here C and 9 must satisfy a condition under
which the mappings of C2 given by (III) is biholomorphic, for example,
C = 1 and 9(2) = z.

The above facts imply the following theorem as a corollary to
Theorem 1.

THEOREM 2. For a transcendental automorphism T of C2 which
transforms a polynomial into a polynomial, there exists a transcendental
automorphism T of C2 of one of the types (I), (II) and (III) and there exist
two algebraic automorphisms Tγ and T2 of C2 with the property T =
T.ofoT^

REMARK. Let P(x, y) be a polynomial of general type. Assume that
an analytic automorphism T transforms two curves P• = 0 and P = 1
into algebraic curves. A theorem of Thullen implies that the automor-
phism T transforms the polynomial P into a polynomial. By Theorem
1, T is algebraic. So there arises the question: Is an analytic auto-
morphism of C2, which transforms the algebraic curve P = 0 into an
algebraic curve, algebraic? We will answer this question in §4.

2. Automorphisms of C2 and algebraic curves in C2 (Examples).
If an algebraic automorphism transforms a polynomial P(x, y) into a
polynomial Q(xf y), then the curve P = c for a constant c is transformed
into a curve Q = c by this automorphism. Therefore, the examples of
transcendental automorphisms (I), (II) and (III) in § 1 give us also examples
of transcendental automorphisms which transform an algebraic curve into
an algebraic curve.

If an algebraic curve is "general", then an analytic automorphism,
which transforms this algebraic curve into an algebraic curve, is
algebraic. This is the principal theorem of this paper. (See Theorem 3
in §4.) As was seen in the preceeding section, a sum of prime surfaces
of a polynomial of type (0, 1) or (0, 2) is "special". Another example of
a "special" algebraic curve is as follows: Let φ(x) and φ(x) be two
arbitrary polynomials of x. A polynomial <p(x) + ψ(x)y is a polynomial
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of type (0, n), [where n is a positive integer. The curve So defined by
the equation <p(x) + ψ(x)y = 0 is invariant under the automorphism

(IV) x' = x, y'= (exp (ψ(x))) y + {φ(x) ((exp (f(x))) - l)/ψ(x)}

of C2. Therefore, the image curve of So by an algebraic automorphism
of C2 is such a "special" curve. In §4 we show that any special curve
in this sense belongs to one of the three examples given above. In this
section we prove a proposition weaker than the principal theorem.

We consider an algebraic curve S in C2 and the two-dimensional
projective space P2 containing C2 as its afϊine part and we suppose that
the closure of S in P2 intersects the complex line at infinity at more
than two distinct points. We assert that an analytic automorphism of
C2 is algebraic if it transforms S into an algebraic curve in C2. To
prove this fact, we make use of the theory of covering surfaces due to
Ahlfors.

Suppose that the algebraic curve S is transformed into an algebraic
curve S' in C2 by a transcendental automorphism T: (V, y') = {fix, y), g{x, y))
of C2. By the assumption we may suppose that / is a transcendental
entire function. Because of a theorem of Thullen, for any complex
value c with the exception of at most only one complex value, the curve
<V / = o is not an algebraic curve. Henceforth, we suppose that σc is
not algebraic. The inverse image of the analytic plane x' — c by the
automorphism T is σc which gives an analytic imbedding φ: C —> C2 of
the w-plane C into C2.

In the homogeneous coordinate (x0: x1: x2) of P2, the line L^ at
infinity is defined by x0 = 0 and the inhomogeneous coordinate (x, y) of
C2 is given by x = xJxQ, y = xjxo. We consider the analytic projection
π: (x, y)-+(0:x:y) of C2 - (0, 0) onto L^. Then π o φ\ C -> L^ defines a
transcendental meromorphic function. We denote the common points of
the closures of S and L^ by pu p2, , pm. By virtue of the hypothesis,
we see m ^ 3. We may suppose ^ = ^ ( 0 : 0 : 1 ) , i = 1, 2, , m, so we
consider the inhomogeneous coordinate z = aj2/̂ i of the points pt to be
zt for i = 1,2, - , m. There exists a positive number λx such that m
discs Γ^ |« — zt\ ^ λx do not intersect each other. Consider the Riemann
surface R of the inverse function of πoφ and let Ro be the subregion
of R lying over D = LM — UΓ=iA Then i20 is conformally equivalent to
a subregion of the w-plane bounded by real analytic curves. For an
arbitrary positive number r, we denote by R(r) the subregion of R
which conformally corresponds to the subdomain \w\ < r of the w-plane.
The relative boundary of R0(r) = Ro Π R(r) over D is contained in dR(r).
Denote by A(r) the mean number of sheets of R0(r) over D and denote
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by L(r) the length of the relative boundary Cr of R0(r) over D. By the
inequality of Schwarz, we have

(L(rW = (\ l(*'g>'yi \dw\)
\icr 1 + \πoφ(w) 2 /

dr

Hence

and

Therefore it is not possible that, for a positive constant K, A(r) ^
KL(r) for all r. Hence there exists a sequence {rk}ΐ=i tending monoto-
nously to +co such that LJAk->0 (k —>+°°), where Lk = L(rk) and
-A* = A(rk). The theory of covering surfaces due to Ahlfors shows that
pk}> (m — 2)Ak — hLk9 where h is a positive constant independent of k
and |OA is the Euler characteristic of R0(rk).

Now we state a lemma.

LEMMA 1. Let 7 δe the bicylinder \x\ ^ 1, | # | ^ 1 m C2. Assume
that two analytic surfaces σu σ2 of dimension one defined in a neighbor-
hood of 7 satisfy the following conditions:

σtn{\x\ < 1 , \y\ =1}=^ 0 , *i Π {M = 1} = 0 ,

σ2n{|aj| - 1, \V\<I}Φ 0 , ^ n { b l = 1} = 0 .

T/̂ ê  0*2 α^d σ2 feαvβ αί iβαsί o^e common point in 7.

The proof of this lemma follows directly from the argument principle
and may be omitted.

Now there exists a positive number λ2 such that S does not intersect
the set {(x, y) eC2: \(y/x) — zt\ = \l9 \l/x\ ^ λ2}. Since the analytic plane
x9 — c intersects the algebraic curve Sf at a finite number of points, σc

intersects S at a finite number of points. By Lemma 1, we see that
R{r) has only a finite number of islands (Inseln: subregions of {/τc°φ)~1{Γi)
with no relative boundary over the disc Γt) over the discs /V Hence
the Euler characteristics pk of R0(rk) are bounded.

Since π © φ is a transcendental meromorphic function, we see Ak -^
+ 00 (k —> + 00). Therefore 0 = lim pk/Ak ^ m — 2, which contradicts the
condition m ^ 3. Thus we have the following.

PROPOSITION. Let S be an algebraic curve in C2 whose closure in
P2 containing C2 as its affine part intersects the complex line at infinity
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at more than two distinct points. Then an analytic automorphism of
C2 is algebraic, if it transforms S into an algebraic curve in C2.

REMARK. Wakabayashi [10] proved a result stronger in some sence
than this proposition which is also a corollary to Theorem 3 in §4.

3. Preparation from the theory of cluster sets.

THEOREM S. ([4]) Let V be a two-dimensional complex manifold
and let E be a connected curve (i.e., a connected one-dimensional analytic
subset) on V satisfying the following conditions (i), (ii): (i) any singular
point of E is an ordinary double point and (ii) E has no non-singular
rational (compact) component Et with the self-intersection number (El) =
— 1 and having at most two intersection points with the other components
of E. Suppose that there is a holomorphic mapping φ: Γ' —> V — E of the
punctured disc Γf\ 0 < \z\ < 1 into V — E such that Ez> S^Ψ = f)r>o Φ(Γr),

< r) and φ(Γf

r) is the closure of φ(Γ'r) in V. The
V at z = 0. Assume that S^> is

If £^%Φ E, then &%

where Γf

r = {0 < | z |
set S^φ is called the cluster set of φ in
a compact set on V containing at least two points.
must belong to one of the classes of curves listed in the following table.

TABLE

Name of type
Number of
points of Explanation of &% and E'

- 2

i'(nu n2, , nb) -fti + 1, n2, , nb) ^ 0

ε(nlf n,, , nb) ma.x{n1} n2, , nb) ^ 0

Here each line represents a component Ci of £/% and the number nt

attached to each line represents the self-intersection number (Cϊ). Every
component of ,9% is non-singular and rational. Er represents the analytic
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curve consisting of the components of E which do not belong to S^ψ, that
is, Ef = (E

REMARK. Nishino and Suzuki [4] also classified £% in the case 6^,-Έ
and gave a classification table. As we do not use the table in this
paper, we do not mention it here.

4. Automorphisms of C2 and algebraic curves in C2. Before proving
the principal theorem we state the following lemma.

LEMMA 2. Let M be a two-dimensional projective algebraic complete
manifold and let Co be an irreducible non-singular rational curve on M
with the self-intersection number (Co) = 0. Then there exists a holomor-
phic mapping π of M onto a compact Riemann surface R and the triple
J?~ = (M, π, R) is an analytic family of compact Riemann surfaces of
genus zero over R which has Co as its regular fibre.

The proof follows by the result of Kodaira and Spencer [1], since
H\C0, έ?) = C, H\CQ, έ?) = 0 and since the normal bundle of Co is
analytically trivial.

REMARKS. In the same situation as in Lemma 2, if M is rational
then R = P1 and a curve C1 with CQ Π Cx = 0 is a sum of irreducible
components of fibres of J?". A curve C2 which intersects Co transversally
at only one point pQ (i.e., p0 is an ordinary double point of Co U C2 and
Co ΓΊ C1 — {one point}.) intersects each fibre of ^~ at only one point.
The first fact follows, since M is simply connected and the latter two
facts are easily obtained from a theorem of Hurwitz.

Suppose that an algebraic curve S in C2 is transformed into an
algebraic curve S' in C2 by a transcendental automorphism T: (xf, yr) =
(/(#, v)y 9(%9 v)) of C2. We may assume that f(x, y) is a transcendental
entire function of x, y. On account of a theorem of Thullen, there
exists a constant c for which the curve sc: f = c is not algebraic. Since
sc is the inverse image of the analytic plane xr — c by the automorphism
T, sc is an analytic imbedding ψ:C—>C2 of the r-plane C = {|τ| < + °°}
into the α??/-space C2. We have the two-dimensional projective space P2

by adding the complex line LOT at infinity to C2. The cluster set

Πr<+°oψ({r <\τ\}) of ψ a t τ =_oo in P2 is Z ^ .

Now consider the closure S of S in P2. A singular point of
is called a non-normal crossing singular point of S U L^, if it is not an
ordinary double point of S U L^. After the resolution of non-normal
crossing singularities among the singular points of S U L^ on L^ by a finite
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sequence of σ-processes, we obtain a compact rational manifold M satisfy-
ing the following three conditions (i), (ii), (iii): (i) There is a birational iso-
morphism σ: P2-*M whose restriction to C2 gives a biregular isomorphism
between C2 and a quasiprojective manifold Mo = σ(C2). (ii) Let Θ be the
closure of σ(S) in M. Any common point of Θ and Σ = M — MQ is an
ordinary double point of E = Θ U Σ. (iii) Σ has no irreducible component
C with the self-intersection number (C2) = — 1 and having at most two
intersection points with the other components of E.

The mapping φ — σoψ of the τ-plane Cinto Mo is holomorphic. Since
the analytic complex line x' = c intersects S' at a finite number of points
in the ίcV-space C2, ψ(C) intersects S at a finite number of points and
for a sufficiently large positive number r0, ^({r0 < |r|}) Π S = 0 . Hence
the restriction of ψ\ C~> M to {r0 < |r|} gives a holomorphic mapping of
{r0 < |τ|} into Λf - E. The cluster set &% = Πr<+oo9({r < |τ|}) of ^ at
τ = co in M consists of several components of Σ. Now consider a neigh-
borhood F of the algebraic curve Σ. Since £/% c V and £fψΦ E,
Theorem S implies that ^ and Ef — E — 6^Ψ belong to one of the classes
listed in Table in §3.

(1) The case of 7'.
By a compactification of a two-dimensional complex manifold W we

mean a two-dimensional compact complex manifold N together with a
compact analytic curve C on N such that N — C is holomorphically equi-
valent to ΫF. A compactification (JV, C) of TF is called a minimal normal
compactification if it satisfies the following two conditions: (i) Any
singular point of C is an ordinary double point, (ii) C has no non-
singular rational component C< with the self-intersection number (C2) =
— 1 having at most two intersection points with the other components
of C.

Owing to Ramanujam, we know that the curve C of a minimal
normal compactification (N, C) of C2 is a linear tree of rational curves.
Since M is a compactification of C2 and g% is not exceptional, the graph
of S/% must be linear and it is a contradiction. Therefore, this case
does not take place. (See Ramanujam [5], Morrow [2].)

(2) The case of ε.
There exists at least one irreducible component C of ^ with the

self-intersection number (C2) ^ 0. Assume that (C2) = 0. By Lemma 2,
there exists a rational function h with no indetermination point such
that C is the curve of poles of h. Since there is no compact curve in
C\ C must intersect another component Eλ of Σ. By virtue of Table
in §3, we see that C must intersect at most two components of-E.
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( i ) If C intersects only Elf then Θ Π C — 0 and the remark to
Lemma 2 shows that Θ is a sum of irreducible components of fibres of
^~, that is, the level curves of the rational function h on M, and that
every fibre of &~ intersects Eλ at only one point. Since σ\cz is birational
and biregular, S consists of several prime surfaces of the polynomial
hoσ of x, y of type (0, 1). Owing to Wakabayashi's result, we know
that hoσ is transformed into the monomial x by an algebraic automor-
phism of C2. Therefore, S is transformed into a surface Π*=i (# — at) = 0
by an algebraic automorphism of C2 for some constants at (ί = l, 2, , k)
and a positive integer k.

(ii) Next suppose that C intersects Ex and E2 other than C. If E2

is a component of Σ, then Θ f]C = 0 and the same reasoning as in (i)
shows that S consists of several prime surfaces of the polynomial hoσ
of x, y of type (0, 2). Owing to Saitδ's result, S is transformed into a
sum of several prime surfaces of a monomial xmyn or of a polynomial
xm(xιy + Pι^1(x))n by an algebraic automorphism of C2, where ϊ, m and
n are positive integers and Pz_i(α0 is a polynomial of & with Pi.^O) Φ 0.
(See [6], [8].)

If E2 is a component of Θ, then σ~\E2 Π Λf0) i s a component of S
and fco(j is a polynomial of type (0, 1). Since E2 intersects C at only
one point which is an ordinary double point of E, the remark to Lemma
2 implies that each fibre of ^ intersects E2 at only one point. There-
fore σ~\E2 Π Mo) is transformed into an algebraic curve y — R(x) = 0 by
the algebraic automorphism of C2 which transforms the polynomial hoσ
into the monomial x, where R(x) is a rational function of x. If S is
irreducible, then S is clearly σ~\E2 Π Mo). If S is reducible, then by
the same discussion as in (i) we see that S is transformed into an
algebraic curve (y — R(x)) Πi=i (& — αt) = 0 by an algebraic automorphism
of C2. Thus S is transformed into an algebraic curve φ(x) + ψ(x)y = 0
by an algebraic automorphism, where ψ and ψ are polynomials of x.

If (C2) > 0, after a suitable sequence of ^-processes, the algebraic
image C" of C intersects at most two other components of the total
image of E and the self-inter section number (C2) = 0. Hence, we can
determine S as in the case (C2) = 0. Thus we have the following.

THEOREM 3. If an algebraic curve S in C2 is transformed into an
algebraic curve by a transcendental automorphism of C2, then an
algebraic automorphism of C2 transforms S into an algebraic curve So

with one of the following forms: (i) An algebraic curve φ(x) + ψ(x)y = 0,
where φ{x) and ψ(x) are polynomials of x. (ii) A sum of several prime
surfaces of a monomial xnιyn

f where m and n are positive integers.
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(iii) A sum of several prime surfaces of a polynomial xm(xιy + Pι_ι(x))n,
where I, m and n are positive integers and Pi- ̂ x) is a polynomial of
degree at most I — 1 of x with Pz_i(O) Φ 0.

For each curve belonging to one of the classes (i), (ii) and (iii), we
have examples of transcendental automorphisms (I), (II), (III) in §1 or
(IV) in §2 of C2 under which the curve is invariant.

As is easily seen, the proposition in §2 is a corollary to this theorem.
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