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1. Introduction and statement of results. In his paper [4], Wagschal
proved that for a given non-degenerate system of (partial) differential
equations various formulations of the (non-characteristic) Cauchy problem
are well-defined. The purpose of this paper is to give a characterization
of the well-defined Cauchy problem for general system of ordinary
differential equations. It will be shown, in conclusion, that the well-
defined Cauchy problem is nothing but the classical Cauchy problem for
a normal system.

Let A(x; D) = (a;i(x; D))ics,j<y be a system of ordinary differential
operators with holomorphic coefficients in 2 ¢ C, where D = d/dx. Let
T=(t, ---,ty) be a pair of non-negative integers. We shall consider
the following Cauchy problem (A(x; D), T):

(L.1) S ay@; D) = filw), 1sisN,
(1.2) Dru,(x,) = w; ,€C, 0s<k<t,, 1<+ N,

where z,€ 2.

In order to clarify our problem we give some definitions. We say
that the Cauchy problem (A(x; D), T') is well-defined at x, if the problem
(1.1)-(1.2) has a unique holomorphic solution {u.,(z)} at z, for any holomor-
phic functions {fi(x)} at x, and any Cauchy data {w,,}. A system A(x; D)
is said to be in a normal form with respect to T = (t,, -- -, ty) or simply
T-normal if a;; = 0,;D% + b,;(x; D) and order b,; < t; for any < and j,
where 9,; is Kroneker’s 9.

It is well-known that for a 7T-normal system A(x; D) the Cauchy
problem (A(x; D), T) is well-defined at every point in £. Our purpose is
to show the converse. In order to state our results we need the follow-
ing definition. A system P(x; D) of differential operators is said to be
invertible if there exists a system P7'(x; D) of differential operators
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satisfying PP™' = PP = I,, where I, is the identity matrix of size N.
Now the main result is the following

THEOREM I. The Cauchy problem (A(x; D), T) is well-defined at every
point in 2 if and only if there exists an imvertible system P(x; D) of
differential operators with holomorphic coefficients in 2 such that PA
18 im a T-normal form. Moreover, the inverse system P~ ‘(x; D) has also
holomorphic coefficients in 2.

Next we give

THEOREM II. Assume that the coefficients of A(x; D) are meromor-
phic in 2. Let us consider the Cauchy problem (A(x; D), T) at every
point in 2 with the excepvtion of the points in a discrete subset of 2.
Then in order that the Cauchy problem (A(x; D), T) may have at least
one solution for any {f,(x)} and any Cauchy data {w,,}, it 18 necessary
and sufficient that there exists an invertible system P(x; D) with mero-
morphic coefficients in Q such that PA is in a T-normal form with
respect to some T = (T, ---, Ty) with T, = ¢,

REMARK 1. In the above theorem, a discrete subset of £ is not
given a priori.

REMARK 2. In the above theorem, if we demand the uniqueness of
the solution, then we have 7 = T. In fact, the Cauchy problem
(A(z; D), T) is well-defined at every point in 2 with the exception of the
points in a discrete subset.

We give here a remark on the invertible system of differential
operators. As in the theory of matrices, we define elementary operations
on the system of differential operators P(x; D) = (p;;(x; D)) with mero-
morphic coefficients in Q.

(a) Multiplication of any row (resp. column) by a meromorphic
function ¢(x) = 0.

(b) Addition to any row (resp. column) of any other row (resp.
column) multiplied by any arbitrary differential operator b(x; D) with
meromorphic coefficients.

(e) Interchange of any two rows (resp. columns).

We say that systems A(x; D) and B(x; D) are equivalent if one of
them can be obtained from the other by means of elementary operations.
Especially, we say that they are left-equivalent (resp. right-equivalent)
if they are equivalent by means of elementary operations only by use
of rows (resp. columns). Now we have
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THEOREM III. A system P(x; D) is invertible if and only if P(x; D)
can be expressed as a product of elementary operations.

The proof is the same as in the theory of elementary divisor of
matrices (see Gantmacher [1]). It suffices to see that P(x; D) = (p,;(x; D)d,;)
is invertible if and only if p,(x; D) = ¢,(x) % 0.

We note that for a holomorphically invertible system P(a;D) its
elements of elementary operations are not necessarily holomorphic. In
fact, the following example shows this.

ExAMPLE. Let

P(x,D)=< w2 _(“/2”)“).

—xD—-38 D?

Then we have

P <02 (w/2)D> P ( 0 1><1 (2/90)1))(1 0)(1 —(l/ac)D)
- \eD+1 a2/’ =1 o/\0 1) \xy2 1/\0 1’

Wagschal proved that for a given non-degenerate system A(x; D) at
x, with holomorphic coefficients there exists at least one T such that the
Cauchy problem (A(x; D), T) is well-defined at every point in a neighbour-
hood of x, [4, Th. 4.1]. The definition of a non-degenerate system will
be given in §3. Hence, by Theorem I, there exists a holomorphically
invertible system P(x; D) of differential operators such that PA is in a
T-normal form. On the other hand, as is shown by the above example,
the elements of elementary operations are in general meromorphic. Con-
cerning this we have

THEOREM IV. Let A(x; D) be a non-degenerate system at x, with
holomorphic coefficients. Then there exists at least one T such that
A(x; D) can be reduced to a T-normal system B(x; D) by holomorphic
left-elementary operations in a meighbourhood of x,.

The remainder of this paper is organized as follows. Theorem I will
be proved in §2 by means of Theorem II. §3 will be devoted to pre-
liminary considerations for the proof of Theorem II. Then Theorem II
will be proved in §4. In §5, we shall prove Theorem IV. In §6, we shall
give an example which indicates the difference between Theorems I and
II. Moreover, the existence will be shown of a well-defined Cauchy
problem (A(x; D), T') for such a system A(x; D) which is not reduced to a
T-normal system by holomorphic left-elementary operations.

We note that the idea of the proof of this paper was given in the
previous paper of the author [2] (see also [2]).
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The author is indebted to Professor K. Kitagawa for useful discus-
sions, and also to the referees for the improvement of the original
manusecript.

2. Proof of Theorem I. We prove Theorem I by means of Theorem
II. We have only to prove the necessity, since the sufficiency is obvious.
Let P(x; D) be an invertible system with meromorphic coefficients in 2
given by Theorem II and Remark 2. In order to prove the necessity,
it suffices to show that P(x; D) is holomorphically invertible in £. Now
assume that P has singular coefficients at z,. First, we consider the case
where PA is holomorphic at x,. Let f(x) = ‘(fi(x), - - -, fv(x)) be a vector
of holomorphic functions at x, such that Pf is singular at x,. Then it
is easy to see that the Cauchy problem (A(x; D), T) for the equation
Aw = f has no holomorphic solution at x,, where u = ‘(u,, - --, uy). Next,
we consider the case where PA is singular at z,. Let f(x) = *(fi(x), ---,
fw(x)) be a vector of holomorphic functions such that Pf is holomorphic
at x,. Then the Cauchy problem (A(x; D), T) for the equation Au = f has
no holomorphic solution at z, for a suitable choice of the Cauchy data
{w;,}. In fact, it suffices to choose the Cauchy data so that (PAU) (x)
is singular at =z, where U(x)='(Uylx), ---, Uy(x)) with U, x)=
St w, (x — x)¥ k! + O((x — x,)'*). Hence P(x; D) is holomorphic in 2.
Note that the Cauchy problem (PA, T) is well-defined at every point in
2, since PA is a holomorphic T-normal system in 2. Thus P (x; D) is
also holomorphic in 2. q.e.d.

3. Preliminary considerations. We begin by summarizing the work
of Volevi¢ [3]. Let A(x; D) = (a;;(x; D)),<; ;<y and let m,; = order a,;(z; D)
if a;; = 0 and ordera,; = — if a,; = 0. Then the total order m of the
system A(x; D) is defined by
N
(3.1) m = max >, M ,
gES N i=1
where &, denotes the permutation group of {1,2, ---, N}and — + =
—oo for any reZ,. =1{0,1,2, ---}. A system A(x; D) of total order m
is said to be mnon-degemerate (at x,) if m = deg,{det A(x;&)} (m =
deg. {det A(x,; £)}). Then we have
THEOREM ([3, Th. 1]). A system A(x; D) of size N with meromor-
phic coefficients in 2 s left-equivalent to a mon-degenerate system
B(x; D) or to a system B(x; D) of rank B < N, where rank B < N means
that B = (b;;) satisfies b,; = 0 for some i, and any j.

It is obvious that in order that the Cauchy problem (A(x; D), T) may
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be well-defined, it is necessary that the system B(x; D) is non-degenerate
in the above theorem. Hence in the following, we consider a non-
degenerate system with meromorphic coefficients in 2.

Now our first purpose is to reduce a non-degenerate system to a
normal system by left-elementary operations. In order to do so, we need
the following

LEMMA 3.1. Assume that A(x; D) is a non-degenerate system of total
order m(=0). Then A(x; D) is left-equivalent to a system B(x; D) = (b,;)
such that

N N
(3.2) M= 2, Ny > DNy JOr any o #1,
= iz

where m;; = order b,;.

ProoF. By a suitable interchange of rows, we may assume that
m = >V, m,;, where m,;; = order a,;. Therefore, there exists a system
of integers {s;}i_; such that m,; < s, — s; + m;; (see [2] or [2]). We may
assume without loss of generality that s, <s, < .- < sy by a suitable
interchange of rows and columns. Note that the interchange of columns
is permitted in our problem. We put v,;=s,—s; + m;;. Let i, =
min {7; m, = v,}. Obviously ¢, = 1, since m; = v,,. Then we lower the
order of the (¢, 1)-component for 7 14, to be less than v,, using the
1,-th row. Thus we obtain a left equivalent system B(x; D) = (b;;)
satisfying order b,; < v,;, orderd,, = v,, and orderd, <, for < =i,
Next, we put 7, = min {7; order b,; = 7, © # %,}. The existence of such
1,(#1,) is guaranteed by the non-degeneracy of A(x; D), a fortiori of
B(xz; D). Then we lower the order of the (¢, 2)-component for 7 = 1, <,
to be less than 7v,,, using the 7,-th row. Continuing these operations,

we finally obtain a left-equivalent system E(x; D) = (e;;) and {2, -+ -, iy} =
{1, -+, N} such that ordere;; < v,;, ordere,;; = 7;;; and ordere;; < v,; for
1@ {ty, -, 1;}. q.e.d.

ProOPOSITION 3.1. Assume that a mnon-degenerate system A(x; D)
satisfies

N N
(3.3) Simy > D My Jor any o # 1.
=1 i=1

Then A(x; D) s left-equivalent to an (my, ---, Myy)-normal system
B(x; D) = (b;;) with the following property:

(*) If for some i, we have m,; < m;; for any j(#1i,), then b,; = a,;
for any j.

For the proof of this proposition, we need some lemmas.
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LEMMA 3.2. Assume that A(x; D) satisfies the condition (3.3). Then
if m;, = my,, for some i, # jo,, A(x; D) is left-equivalent to a system
B(x; D) = (b;;) such that orderb;,; = m,, orderb,; < m;; and B(x;D)
satisfies the condition corresponding to (3.3).

PROOF. Let a,; (x; D) = —c(x; D)a,; (@; D) + b, (x; D), where
orderc(x; D) = m,;, — m; ;, and orderbd,; <m; ;. Then adding to the i,-th
row the j,-th row multiplied by ¢(x; D), we obtain a system B(x; D) which
satisfies the desired properties. It is easy to see that orderd,, = m, and
order b, ;, < m;,;, since m,; + m;; > m;; + m;,. In order to prove
that B(x; D) satisfies the condition corresponding to (3.3), we have only
to prove it under the assumption that order b,,u, = M,y + Msy, — M
Hence, it suffices to show

i0d0 dodo*

N
(3.4) 21 My + M5, > Z Migiy + Mipiy + Moty » g+1.
i= iz

First, we consider the case when {o(i), 6(5.)} N {7, Jo} # @. We examine
only the case when o(j,) = 4. It is easy to see that 3., mu + m,,, +
Mjgotig) < Divigio Miotw) T Mjgaiiy T (Mygey+mjo;). On the other hand, we have
Dlinigdo Mot FMjggi19 = Dlivs, M, SinCE {1,2,- - -, NY\[ig}={0(1),- - - ,o(N)}\a (50}
This proves (3.4). Next, we consider the other case. Choose & (1, J,) S0
that o(k,) = 7,. Let A= {0%(J,); 0= Ek<1}, B={0"(,); 0<k<m} and
Cc=1{1, ---, NNA U B, where | = min {»; 6"(j,) = k, or 7,} and m = min {n;
0™(1,) = 1, or k. It is easy to see that ¢'(4,) # o™(1), AN B = @ and
j,¢ B. Hence, {1, 2, ---, N} is expressed as a disjoint union of A, B and
C. We have Dlicc My = Diiec My, Since o(C) = C. On the other hand,
we have 34 Myw < Sieamy; and Mjgoiiy T Diies Moy < Diesutio Mis
where we redefine ¢'*'(j,) = 7, and o™"(3,) = J,. g.e.d.

LEMMA 3.3. Suppose that A(x; D) satisfies the condition (3.3) and
that m,; < m;; for any 1+ j with 2=<1, j < N. Then A(x; D) is left-
equivalent to a system B(x; D) which satisfies b; = a;; for ©+1,
order b,, = m,, and orderb,; < m;; for j # 1.

PrOOF. Let 7 = max, ;.y{m,;; — m;;} =0, and put J = {j; m,; =
m;; + r}. Then for j,eJ, we can lower the order of the (1, j,)-component
to be less than m;;, using the j-th row as in Lemma 3.2. Let B(x; D)
be a system obtained by this operation. Then, b,; = a,; for 7 = 1 and
order b,; < max {my;, m;; + r} for j #1, j,. Hence, by the assumption
of the lemma, we have orderd,; = m;; +» for jeJ with j = j, and
orderbd,, < m,, + » for k¢J. Continuing these operations, we finally

obtain a desired system. q.e.d.
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PrROOF OF PROPOSITION 3.1. We prove the proposition by induction
on N. First, the case N = 2 is obvious. Assume that the proposition
is true for N —1 and that the -condititions in (x) are true for
1<i=<k—1 Then applying the induction assumption to the system
of size N — 1 obtained by removing the k-th row and %-th column from
A(x; D), we obtain a left-equivalent system B(x; D) = (b;;),<:,;<» Such that
b,; = a,; for © < k and m;; = order b;; > m,; for ¢ # 7 with 1 = k or j +# k.
Note that B(x; D) also satisfies the condition (8.3), in view of Lemma 3.2.
We have to mention that the left-elementary operation in the proof of
Lemma 3.2 is only used in our proof. Then applying Lemma 3.3 to the
system B(x; D), we obtain a left-equivalent system C(x; D) which satisfies
the conditions in (*) for 1 <17 < k. Continuing these operations, we

finally obtain a desired system. q.e.d.
Our next purpose is to reduce a normal system to another.
PROPOSITION 3.2. .Assume that an (Mg, ---, Myy)-normal system

A(x; D) satisfies

N
(3.5) My, + § my; > % Mijy s

where {jly j.’-); ) JN} = {2: 3; ) N} and (ju js: Tty JN) + (2’ 3’ Sty N)
Then A(x; D) is left-equivalent to an (M + Mgy — Mgy Moy My, =+ =y Myy)-
normal system B(x; D).

For the proof we need the following

LEMMA 3.4. Assume that A(x; D) satisfies the condition (3.3) and
m;; > my; for v J with j #+ 1. Then for any k + 1 we have

N
(3.6) % Mgy + Mgy < Zlm for any o .

Proor. Without loss of generality, we may assume that k¥ = N. We
consider the case when {o(1), ¢(N)} N {1} = @, since in the other case it
is obvious. Let ! = min{s;0°(1) = 1}. First, consider the case when
0i(1) = o(N) for any j <1. In view of (3.8), we have >}, m,i-10),im <

Ll Mgimeiw. Next, consider the case when ¢7(1) = o(N) for some
Jo < l. Let k= min{j; 0‘(N) = 1}. Then we have

k k=1
Moy + .E:izmaj_l(N)aj(N) < my + Z Moiwrodwy +
= j=1

Hence, by the assumptions of the lemma, we obtain (3.6). q.e.d.

PROOF OF PROPOSITION 3.2. Note that a, = 0. Now we lower the
order of the (2, 2)-component to be less than m,, using the first row.
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Then we obtain a left-equivalent system B(x; D) = (b;;) such that b,; = a,;
for 4+ 2, orderb, = m, + my — m,, orderbd, <m, and orderb, <
max {m,;, m,; + My — my} for j =3, ---, N. By Proposition 3.1, we have
only to show that order b, + iz M) < >, M, for any o such that
(e), ---, 0(N)D#(2, 1,8, - -+, N). In the case when {o(1), 0(2)} N {1, 2}= O,
it is obvious by the assumptions and the construction of B(x; D). Let
us consider the other case. Moreover, it suffices to show the inequality
under the assumption that order b, = My + My — Mmy,. We choose
k(e{8, ---, N}) so that o(k) = 1. Considering that m,,, + M, — m,; <
order b,,, it suffices to show

N
3.7 Mg + Z Mgy < My + 25 My
1#2,k 1=3

On the other hand, for the matrix of size N — 1 which is obtained by

removing the second row and the first column from A(x; D), the assump-

tions of Lemma 3.4 are satisfied, in view of (3.5). This implies (3.7).
q.e.d.

4. Proof of Theorem II. Without loss of generality, we may assume
that A(x; D) is in a normal form with respect to (my, ---, myy). We put
s, = my. Ifs; =t for any i, there is nothing to prove. Suppose s, < ¢;
for some 4,. Then there exists j,(#4,) such that m,; = t,, for other-
wise, in the i,-th equation 3\, a,;(x; D)u;(x) = f,(®), there should exist
compatibility conditions between the Cauchy data {w,,} and f;(x). Here
we note that we consider the Cauchy problem at the point where
the coefficients of the system are holomorphic. If
(4'1)730 Mosyiy + ] Z My > Z M,

#2000 i#Jo
for {75, Jip-1r jj0+1»' o, Ixy={1,---, N\{%,} and (j,,- - -, jjo—n j50+n e Iw)FE
a,---,4,—1, g5, 5 +1,- -+, jo—1, 5,+1,---, N), then applying Proposition 3.2,
we obtain a left-equivalent system B(x; D) which is in a normal form
with respect to
(4.2);y (81, ="+, Sipmty 8ig T 8ig — Migigy Sigkry ** *y Sig—1y Migiey Sigtsy ***y Sw) -

When the inequality (4.1);, does not hold, there exists i(+1, j,) such
that m;;, > m,;. We choose i* such that m,; = max.; {m;}(>m,;).
Then the inequality (4.1);. holds instead of (4.1);,. Hence we have a left-
equivalent system C(x; D) which is in a normal form with respect to
(4.2),.. Here we have to mention that in the system C(z; D) it holds
that ¢,; = a,,; for any j in view of (+) in Proposition 3.1. Now, for the
system C(x; D), if the condition corresponding to (4.1), does not hold,
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then we continue the above operations. Finally we obtain a system
E(x; D) satisfying the following:

(i) E(z; D) is in a normal form with respect to some S with S =
(8y, =+, 8oty 84y Sigtsy =+, 8y), Where t; < §; < s; and §; = s, for i # 14, J,

(ii) eyi(w; D) = ay; "for any j,

(iii) The condition corresponding to (4.1);,, holds for E(x; D).

Therefore by the method of the first step, we have a left—equlvalent
system F(a; D) in a normal form with respect to some T = (%, ---, tx)
satisfying tio > 8, i, = t,0 < s, and 7, =s; for i+ 1, j,. Hence, con-
tinuing these operations we obtain our proposition. q.e.d.

5. Proof of Theorem IV. The proof is similar to that of Theorem
I, which, however, was carried out in the class of meromorphic funec-
tions. So we need more careful considerations.

Let A(x; D) be a non-degenerate system of total order m at x, with
holomorphic coefficients. Then we may assume without loss of generality
that

N
(5.1) m = ; my > men for any o+#1,

where m{y = order a,;(x,; D).
In fact, the reduction to such a system by holomorphic left-elementary
operations is the same as that of Lemma 3.1 with m,; replaced by m{.
In this case {s;,} © Z should be chosen so that m,; = order a,;(x; D) < s, —
85 + mj3.

Now we have

LEMMA 5.1. Assume that A(x; D) satisfies the condition (5.1). Then
A(x; D) can be reduced to a system B(x; D) = (b;;) by locally holomorphic
left-elementary operations in a meighbourhood of x, with the following

property:
N

(5.2) m = Z nP > 3 N for any o=+1,
i=1

where n,; = order b,;(x; D) and n{} = order b,;(x,; D).

PROOF. By the condition (5.1), there exists {s;} Z such that m,; <
s; — 8; + my}, where m,; = order a,;(x; D). Without loss of generality,
we may assume that s, <s, < ---<sy. Weput v,;, =s,—s; + m}y. Then
we can show that A(x; D) can be reduced to a system B(x; D) = (b;;) by
locally holomorphic left-elementary operations which satisfies order
b;i(x,; D) = m?, order b,;(x; D) < v,; and order b,;(x; D) < 7v,; for < <j.
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In fact, assume that ordera,,(x; D) = v,, for some ¢, 1. Now we
put

Tij
a;;(x; D) = kg,) a;,(@) D7 7E

Note that @;,(x,) = 0. Then adding to the {,-th row the first row multi-
plied by —(@;()/a,,(x)) D", we obtain a system E(x; D) = (e;;) which
satisfies ordere;; < 7;;, ordere,, < v,,, ordere,(z,; D) = m{ and the con-
dition corresponding to (5.1) holds for E(x; D). In order to prove these
facts, it suffices to show

(56.3) il;[i Qio00(To) X (aiom(xo) . ala(io)o(xo)) =0

for any 0e€S,;. We omit the proof. It is the same as that of Lemma
3.2. Continuing these operations, we finally obtain a desired system.
g.e.d.

PrRoOOF oF THEOREM IV. We may assume that A(x; D) satisfies the
condition corresponding to (5.2). It is easy to see that for our system
A(x; D) Lemmas 3.2 and 3.3 hold by locally holomorphic left-elementary
operations in a neighbourhood of z,, Hence Proposition 3.1 holds for
A(x; D) by locally holomorphic left-elementary operations. q.e.d.

6. An example. Let us consider the following system in C:
D? D>

xD+1 D?
The Cauchy problem (A(x; D), T) is well-defined at every point in C if
and only if T = (3, 1) or (2, 2) or (0,4). On the other hand, the Cauchy
problem (A(x; D), T) is well-defined at every point in C with the excep-
tion of the points in a discrete subset of C if and only if T = (4, 0)
and |T| =t + t, = 4. o

Let us prove these facts. First, the case T = (2, 2) is obvious.

(i) Let us consider the case T = (4, 0). Let

D -1
P(D) = <1 0) .

A(x; D) = (

Then we have
01 D*—aD-—1 0
PY(D) = . PA = .
(D) ('—1 D) (lV D>

This proves immediately that the Cauchy problem is not well-defined at
every point in C.
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(ii) In the case T = (8, 1), it is obvious that the Cauchy problem
is well-defined at every point in C by ().

(iii) In the case T = (1, 3), it is easy to see that the Cauchy problem
is not well-defined at the origin. Let

e 0 1/
Fiw: D) = <—w D — 2/w> )
Then we have
Pt — (D — 1/x —1/90) ’ PA = (D + 1/ (1/x)D2> .
x 0 —2/x D? — (2/x)D* — xD

This shows that the Cauchy problem is well-defined at every point in C

except the origin.
(iv) Let us consider the case T = (0, 4). Let

Pyw: D) = <w2/2 —(x/2)D + 1) -
—xD — 3 D
Then we have
o <D2 (x/2)D> PA = <1 —(x/2)D* + D* + (x2/2)D> '
xD+1 %2 0 D* — xD* — 3D

This implies that the Cauchy problem is well-defined at every point in
C. Note that the system P,(x; D) is the one given by Example in §1.
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