
Tδhoku Math. Journ.
32(1980), 265-278.

BOUNDED AND ALMOST PERIODIC SOLUTIONS OF
CERTAIN NONLINEAR ELLIPTIC EQUATIONS

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

CONSTANTIN CORDUNEANU

(Received July 2, 1979)

1. Let us consider the nonlinear elliptic equation

(E) uxx + uyy = f(x, y, u) ,

in the infinite strip

(D) - o o < α < o o , 0 ^ 2 / ^ 1 ,

with boundary value conditions

(BVC)0 u(x, 0) = 0 , u(x, 1) = 0 , x 6 R .

The more general boundary value conditions

(BVC) u(x, 0) = uo(x) , u(x, 1) = u,(x) , x e R ,

with u0, uιeG{2){R), can be reduced to (BVC)0 by choosing v = u — u0 —
y{ux — u0) as a new unknown function.

We will assume that / is a continuous map from DxR into R,
satisfying further conditions to be specified below. It is worth to be
pointed out that the change of variable indicated above preserves the
basic assumptions to be made on /.

Let us notice that existence results for (E), under conditions (BVC),
have been recently obtained by Schmitt, Thompson and Walter [4].
Their approach is based on the "method of lines," the discretization
being taken with respect to the variable x. To build up the solution,
the authors solve a boundary value problem for a countable system of
ordinary differential equations.

Our aim is to attach a system of n ordinary differential equations
to (E), for each natural n, such that the solution u{x, y) of (E), (BVC)0

is approximated with any degree of accuracy by the solution of the
system. This aim will be achieved under reasonable assumptions on /
and the solution, provided we associate with (E), (BVC)0 the system

(EJ d2u/dx2 + (n + l)2Anu = fn(x, u) , x e R ,

where
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( 1 ) u = col(ulf u2f - -, un) , / = col(f(x, ylf uj, , /(a?, y., w.)) ,

and ^ = fc/(w + 1) , k = 1, 2, , n. The matrix An is given by the
nxn matrix

1-2 1 0 .-• 0ι

1 - 2 1 -•- 0

( 2 ) 0 1 - 2 0

0 0 0 1 - 2 '

It is agreed that uk(x), k = l,2,-- ,n, represents the approximate
value for u(x, yk). We obtain (E.) if we write (E) for y = yk, ft = 1, 2,
• , n, and then substitute to the second derivative uyy(x, yk), the second
difference (n + l)2[u(x, yk+1) — 2u(x, yk) + u(x, yk^)]. Of course, the con-
ditions (BVC)o generate uo(x) = un+1(x) = 0.

It is of primary interest that (E.) is a conservative system. Indeed,
An is a symmetric matrix and we can write

(3 ) Anu = grad.{<A.tt, u)/2} ,

where < , •> denotes the scalar product in Rn. Furthermore, /.(as, u)
can be represented as

( 4 ) fn(x, u) = grad.0.(α, u) ,

with
1

/ K \ fk (/γ» ni \ • ^

y O J ψnVwy w) — ^
m

Therefore, from (3), (4), and (5), we easily find for (E.) the following
form:

( 6 ) d2u/dx2 = gradw{ — (n + l)2(Anu, u)/2 + φn(x, u)} ,

which shows that (E.) is conservative.
The matrix An9 defined by (2), has the eigenvalues [3]

( 7 ) Xk= - 4 sin2(fcττ/2(w + 1)), ft = 1, 2, , n .

Therefore, — An is a positive definite matrix, a feature that will play a
significant role in the sequel. Let us point out that the eigenvalues of
the matrix (n + l)2An are

( 8 ) λj= — 4(w + l)2sin2(ftτr/2(w + 1)) , ft = 1, 2, , n .

Obviously, λί is the greatest eigenvalue of (n + l)2An. From (8) one
easily derives that λί->—π2 as n-+oom
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The above fact shows that the family of matrices {(n + ί)2An; n —
1, 2, •••} is uniformly stable (i.e., the set of their eigenvalues has a
negative upper bound, say —π2 + ε, with e > 0 arbitrarily small).

The following basic problems arise in connection with the approxi-
mating procedure devised above:

1. Find conditions guaranteeing the existence and uniqueness of
solution to the system (EJ.

Let us notice that the solution must be defined on the entire real
axis, if we look for the approximation of a solution of (E), defined in D.

II. Prove that the solution of the system (EJ is approximating
the solution of (E), in a convenient norm, with any degree of accuracy.

We shall be concerned with the supremum norm, though alternate
norms could provide somewhat better results.

III. Find estimates for the solutions of the approximating equations,
independent of n, and then use them in proving the existence for the
partial differential equation.

We are not going to consider in this paper Problem III. As men-
tioned above, under assumptions that are more restrictive than those in
the sequel, the existence for (E), (BVC)0 has been proved in [4].

2. Let us consider now Problem I. In other words, we must
provide conditions that assure the existence and uniqueness of the
solution of (EΛ). Since the equivalent form of (EJ is (6), we are going
to consider the system

( 9 ) d2u/dx2 = grs,άuF(x, u) , x e R ,

with ueRn and F a map from R x Rn into R. Our aim is to find
adequate conditions on F, such that (9) possesses a unique bounded
solution on R.

First, let us remark that a special case of (9) is provided by the
linear system

(10) d2u/dx2 - Mu = f(x) , x e R ,

where u e Rn, M > 0, and f(x) is a continuous and bounded map from R
into Rn. Then (10) has a unique bounded (on R) solution, given by

(11)

such that

(12) sup \ΰ{x)\ ^ ilf-'sup |/(αθ| , xeR .

It is now convenient to take the space C(R, Rn), consisting of all
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continuous and bounded maps from R into Rn, as underlying space. The
norm to be used is the supremum norm.

O n e a c h J ? r c C ( Λ , R n ) , w i t h Σr = {v v e C ( R , R n ) , \v(t)\ S r , r > 0 } , w e
shall define an operator Tr by means of the following equation

(13) d2uldx2 - Mu = gτaduF(x, v) - Mv ,

where u denotes the only solution in C(R, Rn) of the above equation,
and v 6 Σr. The number M > 0 will be chosen below. We denote in
this case, u = Trv. Hence, Tr: Σr -> C(R, Rn).

Let us point out that equation (13) has the form (10), and a unique
solution in C(R, Rn) is guaranteed as soon as its right hand side belongs
to the same space. Obviously, this implies that gγ&duF(x, v(x)) to has be
bounded for any v e C(R, Rn). Such a situation occurs if grad^cc, u) is
bounded on any set of the formiϋxί?r, with Br = {u; ueRn, \u\^r9 r>0}.
In other words, for any r ^ 0, there exists A(r) > 0, such that

(14) \graάuF(x, u)\ ̂  A(r) , (x,u)eRxBr.

Another condition we must assume in regard to F(x, u) is concerned
with the Hessian matrix attached to F(x, u):

(15) H(x, u) = (d'F/dUjdu,) , i, j = 1, 2, , n .

Namely, we assume the existence of a positive number m > 0, and a
function M(r) > 0, such that

(16) ml ^ H(x, u) ̂  M(r)I, (α, u) e R x Br ,

where / stands for the unit matrix of order n.
From (16), one obtains <gradttî (α;, u) — gra,άuF(x, v), u — v) ^

m\u — v\2, which shows the strict monotonicity of the right hand side
of (9).

Under assumptions (14) and (16), one can easily show that the
operator Tr is a contraction on Σr, and that

(17) TrΣr cΣr , for mr ^ A(0) .

The number M in (13) is precisely M(r) occur ing in (16).
Let u — Trv and ΰ = Trv be two couples of corresponding elements,

with v, v e Σr. Then (13) implies

(18) (d2/dx2)(u - u) - M(u - ΰ) = gradMF(a;, v{x)) - graduF(x, v{x))

— M[v(x) — v(x)] .

Therefore, u — ΰ satisfies an equation of the form (10) and is bounded
on R. The formula (12) implies
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(19) sup|u(x) — ύ(x)\ <ί ilί^sup | grad^α;, v(x)) — gτa,duF(x, v(x))

-M[v(x) - v(x)]\ ,

the supremum being taken for x e R. But

(20) gra,άuF(x, v(x)) - gra,άuF(x, v(x)) = H(x, w(x))[v(x) - v(x)] ,

where H(x, w(x)) is the Hessian matrix, taken at an intermediate point
w(x), between v{x) and v(x). Hence, (19) yields

(21) sup I u(x) - ΰ(x)\ ̂  M'1 sup | [MI - H(x, w)][v(x) - v(x)]\ .

The matrix MI — H(x, w) is a symmetric one, and we can write

(22) \[MI- H][v- v]\ £ \MI- H\\v- v\ ,

where \MI — H\ denotes the operator norm of MI — H. It is well
known that

(23) \MI -H\= sup ([MI - H]ξ, f> .
ι e ι = i

By (16) and (23), one obtains

(24) \MI-H\£M-mf

which combined with (21) leads to

(25) sup I u{x) — ΰ(x) I <̂  ((M — m)/M)sup | v(x) - v(x) | , x e R .

Inequality (25) proves that Tr is a contraction map on Σr.

We must prove now that (17) holds true. Indeed, the right hand
side of (13) can be written as

(26) gradttF(£, v{x)) - Mv(x)=-[MI - H(x, v*(x))]v(x) + gva,άuF(x, u)\u=0 .

Applying again (12) to (13), and manipulating in a similar way to the
one shown above, one obtains

(27) sup \u(x)\ ̂  (M(r) - m)r/M(r) + A(0)/M(r) , x e R ,

which shows that ueΣr, provided mr ^ A(0).
Let us summarize the above discussion regarding equation (9) into

the following

THEOREM 1. Assume F:RxRn-+R is continuous, and of class C{2)

in u, such that (14) and (16) hold true. Then equation (9) has a unique
solution, bounded on R.

REMARK. The uniqueness in C(R, Rn) follows from the fact that the
solution is unique in each Σrf mr ^ A(0).

COROLLARY. Assume further that gradMF(#, u) is (Bohr) almost
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periodic in x, uniformly with respect to ue Br, for each r > 0. Then
the unique bounded solution of (9) is (Bohr) almost periodic too.

Indeed, ΰ(x) given by (11) is almost periodic as soon as f(x) is, on
behalf of (12). Instead of C(R, Rn), one can use as underlying space
for (9) the space AP(R, Rn) of (Bohr) almost periodic functions with
values in Rn, [2], [5].

Of course, if F(x, u) is periodic in x, one can ask whether the solu-
tion constructed above has the same property. The answer is positive,
because ΰ(x) in (11) is periodic, whenever f(x) is. The periodic case has
been investigated in [1], using another approach. The hypotheses in [1]
are somewhat less restrictive than above.

From Theorem 1 we can obtain immediately the answer to Problem
I formulated above. We must secure conditions (14) and (16) for the
function occurring in system (EJ or (6), namely

(28) F(x, u)=-(n + l)2(Anu, u)/2 + φn(χ, u) .

If one takes into account the properties of the matrix An listed above
and formula (5), one finds out that F(x, u) given by (28) satisfies both
(14) and (16), provided f(x, y, u) is such that fu(x, y, u) exists on Dx R,
and for a positive μ,

(29) -τr2<-μ t^fuix, y, n) S C(\u\) , (x,y,u)eDxR ,

with C(\u\) bounded on each compact interval.
Condition (29) implies the boundedness of f(x, y, u) on each set

Dx[ — r, r], r > 0, provided

(30) f(x, y, 0) is bounded in D .

To check condition (16), it is worth to remark that the Hessian matrix
corresponding to F(x, u), given by (28), is

(31) H(x, u)=-{n + VfAn + diag(/tt(α, yl9 O , , fu(x, yn, un)) .

Consequently, the answer to Problem I is positive, provided (29) and
(30) hold true for f(x, y, u).

3. We can now consider Problem II formulated above, i.e., to in-
vestigate the convergence of the approximating proposed scheme. Let
us find first the system verified by the error function

(32) ε(x) = coliuάx) - u(x, yλ), , un(x) - u{x, yn)) ,

where uk(x) are defined by (En), and u(x, y) is a solution of (E) in (D)9

verifying (BVC)0. It will be subject to further assumptions we shall
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formulate below.
Let us remark that (E) implies

(33) (d2/dx2)u(x, yk) + uyy(x, yk) = f(x, yk, u(x, yk)), x e R , k = 1, 2, , n .

By subtracting the equations of (33) from those of the system (EJ, one
obtains

(34) d2ε(x)/dx2 = -(n + l)2Anε(x) + fn(xf'u(x)) - fn(x, u(x, •)) + rΛ(α?) ,

with

(35) rn{x) = coKt^fo #*) - (n + l)2[w(a?, yk+1) - 2u(x, yk) + u(x, yk-d])Ui -

Before proceeding further, let us obtain a "linearized" version of
(34). This can be achieved if we take into account

(36) fn(χ, u{x)) - fn(x, u(x, •)) = Gn(x)[u(x) - u{x, -)] ,

where Gn is given by

(37) Gn(x) = d i a g ^ α ) , g2(x), , ».(«)) ,

with

(38) 0fc(aO = I /β(a?, yk, u(x, yk) + tεk(x))dt , k = 1, 2, , n .
Jo

Hence, (34) becomes

(39) d2ε(x)ldx2= - ( n + l)2Awε(a;) + Gn(a?)e(aj) + rΛ(a?) ,

with G»(a?) given by (37).
It is worth to point out that each gk{x), k = 1, 2, , n, satisfies

by (29) and (38)

(40) gk{x)^-μ, xeR .

The linearized system (39) is such that its matrix of coefficients

(41) - ( n + VfAn + Gn(x)

is symmetric and has only positive eigenvalues. More precisely, the
smallest eigenvalue of (41) is at least (ττ2 — μ)/2>0, provided n is chosen
sufficiently large.

This feature of the system (39) can be exploited to get an estimate
for |e(aθ| in terms of |rn(a?)|. Indeed, if we take the scalar product of
both sides in (39) by e(x), and use

(42) (d2ε/dx\ ε> - (d2ldx2)\ε(x)\2/2 - \ε'(x)\2

and
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(43) -{n + lf(Ane, ε> + (Gnε, ε> ^ (π2 - μ) |ε|2/2 ,

then we obtain, for sufficiently large n,

(44) (d*/dtf)\e(x)\*l2 ^ ( τ τ 2 - μ)\e(x)\*/2 - \rn(x)\\e(x)\ , x e R .

We claim that (44) implies

(45) I e ( x ) \ ^ 2 ( π 2 - ^ ) ~ 1 s u p | r n ( x ) \ , x e R .

Of course, we make the assumption that u(x, y) is such a solution of
(E), for which the right hand side in (45) is finite (actually, we need
\rn(x)\->0 as n—> oo, uniformly in x, xeR).

Let us process rn(x)f in order to get a better idea about the condi-
tions we have to impose on u(x, y)f such that we shall get a positive
answer to Problem II. Let us assume that the solution u(x, y) of (E),
(BVC)0 is such that

(46) \uyy(x, z) - uyy(x, w)\ ^ η{\z - w|) , (x, y), (x, w)eD ,

where η(δ) is the modulus of continuity for uyy, satisfying

(47) lirnVnyjil/in + 1)) = 0 as n-+ ©o .

In particular, for η(β) = Kda, 1/2 < α <£ 1, one obtains Holder continuity,
and (47) is obviously verified.

It is worth to point out that any solution of (E), (BVC)0, under as-
sumptions (29), (30) and (46), is bounded in D. Indeed, from u(x, 0) = 0,
xeR, we derive uxx(x, 0) = 0, xeR. Hence, taking y = 0 in (E), we
find Uyy{x, 0) = f{x9 0, 0), which together with (46) prove the boundedness
of Uyy in D. Furthermore, for each xeR, from u(x, 0) — 0 = u(x9 1),
one derives the existence of yx e (0, 1) such that uy(x, yx) = 0. Con-
sequently, uy(x, y) = Uyix, y) — uy(x9 yx) = (y — yx)uyy(x, yx)y which shows
that uyix, y) is also bounded in D. Finally, u(x, y) = u(x9 y) — u{x9 ϋ)~
yUyix, y), from which we get the boundedness of u(x, y) in D.

We can show that, under assumptions (46), (47), the answer to
Problem II stated in Section 1 is positive. Since

(48) \Uyyix, yk) - (n + l)\uix, yk+ί) - 2uix, yk) + u(x, yk-d}\^V(V{n + 1)) ,

k = 1, 2, , n , xeR ,

one obta ins

(49) I r % ( x ) I < V^ηiVin + 1 ) ) , x e R .

Combining (45) and (49), there results

(50) Iε(x)\ ^ 2 ( π 2 - μY'VUrjil in + 1 ) ) , x e R ,
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which together with (47) provide the desired answer to Problem II.
We must now prove that (44) implies (45), under the only assump-

tion that ε{x) is bounded on R. This will follow from the next lemma.

LEMMA. Let y = y{x) be a C^-map from R into [0, oo), such that

(51) d2y/dx2^f{y), xeR ,

with f{y) continuous on [0, °°), and satisfying

(52) f(y)>0 for y>M>0.

If it is known that y{x) is bounded on R, then necessarily

(53) y{x) £M, x6R .

The proof of the lemma will be given in the Appendix.

Going back to (44), let us denote |ε(ίc)|2 = y(x). Then (44) leads to
an inequality of the form (51), with f{y) = (π2 — μ)y — 2sup \rn(x)\vry'.
The lemma applies and one obtains (45). Consequently, the following
result has been established:

THEOREM 2. Consider equation (E), under conditions (BVC)0. Let
u(x, y) be solution of the problem, such that (46), (47) hold true. Then
the {unique) bounded solution of (En) is uniformly {on R) approximat-
ing u{x, y), provided f{x, y, u) in (E) satisfies conditions (29) and (30).

4. By the above result, we shall discuss some properties of the
solutions of equation (E), in connection with the properties of solutions
to the approximating system (EJ. Our aim is to transfer qualitative
properties from the ordinary differential system that approximates (E),
(BVC)o, to the partial differential equation under investigation.

A first result that can be easily proved regards the uniqueness of
the solution for (E), (BVC)0, under assumptions (29), (30), on f{x, y, u),
and assumptions (46), (47) on the solution u{x, y). Indeed, it has been
shown that (En) has a unique bounded solution on R, under assumptions
(29) and (30) on f(x, y, u). On the other hand, any solution u{x, y) of
(E), (BVC)0, satisfying (46) and (47), is bounded in D and can be uni-
formly approximated by the solution of (EJ. More precisely, if yk>n =
Jc/{n + 1), with n ^ 1 and 0 < Jc <̂  n, then u(x, yk,n) — lim ufin+1){x) as
p^cof uniformly with respect to xeR, where up

p

k

{n+1) denotes the pk-ίh
coordinate of the unique bounded solution of the system (EΛ/), for n' =
p{n + 1) — 1. Hence, u(x, yk,n) is uniquely determined for each y = yk,n.
From the continuity of u, we find easily that u{x, y) is uniquely deter-
mined from the approximating procedure, and this shows the uniqueness
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of u(x, y).
Let us consider now the problem of almost periodicity for the solu-

tion uix, y) of (E), (BVC)o, under assumption of almost periodicity for
f(x, y, u) in x. In the case of Poisson's equation, i.e., fix, y, u) = fix, y)f

this problem has been discussed by Zaidman [6], under different hy-
potheses.

First, let us remark that the almost periodicity of fix, y, u) in x,
uniformly with respect to ye[0, 1] and ue[ — A, A], for each A > 0,
implies the almost periodicity in x of graduF(x, u), with F given by
(28). Of course, the almost periodicity is uniform with respect to u
(now ueRn), for u in any compact set [2], [5].

Applying the Corollary to Theorem 1, one obtains the almost perio-
dicity of the unique bounded solution of (EJ, for each n. In particular,
this implies that u(x, yk>n) is almost periodic in x, for each yktn — k/(n + 1),
n^l, 0 < k <> n.

The almost periodicity of uix, y) in x, uniformly with respect to
y 6 [0, 1], will be the consequence of the boundedness of uy(x, y) in D
(see Section 3), and of the almost periodicity of u(x, ykt%). Indeed, the
following inequality provides the support of the above statement:

ζ,v)- u(x, y)\ ^ \u(x + ξ,y)- u(x + ξ, yk>n)\

+ \u(x + ζ, yk,n) - u(x, yk,n)\ + \u(x, yk,n) - u(x, y)\ .

This inequality is valid for each (x, y)eD and ξ e R. For each y e [0, 1],
yktn should be the closest one (for fixed n) with respect to y, in the
given subdivision of [0, 1]: \y — yk>n\ ^ l/(n + 1).

Summing up the discussion above, we can state the following result.

THEOREM 3. Let us assume conditions of Theorem 2 are satisfied.
Moreover, assume f{x, y, u) is almost periodic in x, uniformly with
respect to (y, u) e [0, 1] x [—A, A], for each A > 0. Then the unique solu-
tion of the problem is almost periodic in x, uniformly with respect to
y €[0,i].

REMARK. The almost periodicity is not the only property that can
be transferred from the ordinary differential equations, that approximate
(E), to the solution of (E). Some other kinds of behavior can be inves-
tigated, using the scheme described above. For instance, Theorem 1
has a correspondent in the case when we look for solutions with finite
limit at ±oo. One can easily check that formula (11) furnishes a solu-
tion of this kind, provided fix) in equation (0) enjoys the property
mentioned above. The extension to the nonlinear case follows the same



NONLINEAR ELLIPTIC EQUATIONS 275

lines as in Section 2. The conclusion for the solution u(x, y) of (E),
(BVC)0 is the existence of the limits lim^.^ u(x, y) - u+(y), and lim^.^
u(x, y) = u_(y).

5. Let us consider now equation (E) in the half-strip

with boundary value conditions

(54) u(x, 0) = u(x, 1) = 0 , 0 ^ ί c < o o

(54') u(0, y) = g(y) , 0 ^ y £ 1 ,

or (54) and

(54") ux(0, y) - h(y)u(0, y) = k(y) , 0 ^ y ^ 1 ,

where g, h and k are continuous maps from [0, 1] into R. A basic as-
sumption on h is

(55) h(y) ^ 0 , O ^ i / ^ l .

In particular, (54") could take the form ux(0, y) = k(y), 0 ^ y ^ 1. In
other words, both Dirichlet type and Neumann type boundary value
conditions are involved.

Of course, the system (EJ is again a candidate for the approxima-
tion procedure of solutions in D+. This time we must look for solutions
defined on R+, satisfying the initial condition

(56) u(0) = gn - coKffOh), g(y2), , g(yn)),

in case of boundary value conditions (54), (54'), and

(57) ιt'(O) - HΛuφ) = fc. = col(fc(tfl), fc(»2), , fc(y.)) ,

in case of boundary value conditions (54), (54"). By Hn we denoted the
matrix

(58) H% = diag(Λ(Vi), *(%), , fc(»J)

As seen in the case of equation (E) with boundary value conditions
(BVC)o, the data on the half-lines 0 ^ £ < o o , 3 / : = 0 a n d 0 ^ a ; < o o , j/ = 1,
lead to uo(x) = 0 = un+1(x). This means that the approximating system
has form (EJ.

The same basic problems, stated in Section 1, arise now in connec-
tion with (E) in D+: existence and uniqueness for the approximating
system; validity of the procedure.

We are not going to provide all the details involved in the proofs
of results stated below. They are very much alike to those encountered
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when equation (E) has been discussed in D.

THEOREM 4. Consider the system (9), and assume that F: R+xRn-*R
is continuous, of class C(2) in u, and satisfies (14) in R+xRn, and (16)
in R+xBr. Then (9) has a unique solution bounded on R+, satisfying
either one of the initial conditions

(59) u(0) = uQeRn ,

(60) u'(0) - Hu(0) = u,eRn ,

where H = diag(/^, h2, , hu), ht ^ 0, i = 1, 2, , w.

From Theorem 4 one derives the needed result for (En), with initial
conditions (56) or (57).

THEOREM 5. Consider equation (E) in D+, under conditions (54),
(54') or (54), (54"). Let u(x, y) be a solution of the problem satisfying
(46) in D+, with η(δ) subject to (47). Then u(x, y) is unique and can
be uniformly approximated on R+ by the bounded (on R+) solution of
(EJ, satisfying the initial condition (56) or (57), provided f(x, y, u) veri-
fies (29) in D+xR, and (30) in D+.

In proving Theorem 5, the assertion in the remark following the
proof of the lemma in Appendix has to be used, instead of the lemma
itself.

It is interesting to point out that the method of lines can be used
in different situations than those discussed above.

For instance, the equation

(E') (rd/dr)(rdu/dr) + d2u/dθ2 = r2f(r, θ, u) ,

in the sector

(D') 0 < r < oo , O ^ 0 ^ T , T<2π,

with boundary value conditions

(61) u(r, 0) = uo(r) , u(r, T) = ux(r) , 0 < r < «> ,

can be reduced to the case investigated above. Indeed, if one discretizes
(E') with respect to θ, and take τ = Inr as a new independent variable,
one obtains the same system (EJ, with slightly different right hand side.
The discussion can be also conducted when, instead of Dr, one takes the
set 0 < r0 ^ r < oo, 0 ^ Q ̂  T.

Appendix. PROOF OF THE LEMMA. Since y(x) is bounded on R,
only two possibilities can occur. First, when sup?/(#) is attained at a
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certain point xeR. In such case y"(x) ^ 0, and (52) shows that we
must have y(x) <̂  M. Hence, (53) holds true in such a case. Second,
there is no point x eR such that y{x) = supy(x), xeR. In this case, at
least one of the following situations must take place: either we can find
a sequence {xm}, xm —>°°, such that y(xm)-*Y= supy(x)9 xeR, or a
sequence {x'm}, scί* —> — °°, such that y(x'm)->yasm-^oo, Since changing
x by — x does not affect (51), we examine only the case when Y=
\imy(xm), ccm—>+oo. Again, two distinct situations have to be discussed
separately: first, when limy(x) = Y as cc^+co and secondly, when there
exists another sequence {ζm}, ξm —> + oo f such that lim y(ζm) = Yo < Y, as
m —> oo. If the first situation occurs, and y(x) < Y for any x e R, then
one can find a sequence {xm}, xm->+ oo, such that 2/"(ϊOi£0, m = 1, 2, 3 .
Indeed, if we assume 2/"(cc)>0 ί ° r # ̂  ^ then #—>2/(sc) is a convex map.
From the boundedness of y(x) we easily obtain y(x) j F, in contradiction
with the fact that y(x)<Y for all x. Hence 0 ̂  f(y(xm))> m = 1, 2, 3,
which implies 0 ^ / ( Γ ) . On behalf of (52), we again obtain (53). If the
second situation occurs, then from y(xm)-*Y and y(ζJ)-+Y0< Y, as m-^co?

one finds easily that a new sequence {xm}, xm -+ 4- oo, must exist, with
the property y(xm) —>Y, asm-^oo, and such that y(xm) is a local maxi-
mum for y(x). At such a point we shall have y"(xm) ^ 0, and therefore
0 ^ f(y(xj), m = 1, 2, 3, . Hence 0 ^ /(Y) and (53) holds true in this
case too. The lemma is thereby proven.

REMARK. If in the statement of the lemma we replace R by R+ =
[0, oo), then estimate (53) keeps validity, provided we require an ade-
quate condition to be satisfied at x = 0: either y(0) = 0, or y'(Q) —
hy(Q) — 0, h ^ 0. This version of the lemma is applicable in the case
of equation (E) in D+.
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