Téhoku Math. Journ.
32(1980), 209-215.

A LINEAR PFAFFIAN SYSTEM AT AN IRREGULAR SINGULARITY

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

YASUTAKA SIBUYAY

(Received March 28, 1979)

1. Introduction. Let A be a discrete valuation ring with the unique
maximal ideal p = (x), where = is an element in A. For an element
in A we denote by @ the corresponding element in the residue class field
k= Alp.

Let 6: A—> A be a mapping from A to A such that

(i) o(a + b) = o(a) + 6(b) for a,be A,

(ii) o(ab) = ad(d) + bo(a) for a, b A, and

(iii) 6(A) cp* = (7?).

Since o(p) C p*, we get o(p™) < p™*+!, where p™ = (z™).

Let M be an A-module, and let M, and M, be two submodules of M.
We consider a mapping L: M — M such that

(i) L(f +9)= L(f) + L(g) for f,ge M,

(ii) L{af) = 6(a)P(f) + aL(f) for ace A, feM, where P is an
A-module endomorphism of M, and

(iiil) LM, c M,.

Note that d(a)P(f)e M, if f e M,.

Set N, = M/M, and N, = M/M,, and let ¢ M — N, and @, M — N,
be the canonical A-module homomorphisms which send elements of M to
the corresponding elements in N, and N,, respectively. Then we can
define a unique mapping H: N, — N, such that the diagram

M- u

o

NN,
commutes, i.e., Ho®p, = @,o0 L. The mapping H has the following
properties:
(i) Hp(f) + 2(9) = H(f)) + H(p(9)) for f, ge M,
(ii) H(ap,(f)) = d(a)p(P(f)) + aH(p,(f)) for ac A, feM.
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Note that d(a)p,(P(f)) = 0 if o,(f) = 0.

It is clear that H(@,(f)) = 0 if and only if L(f)e M,. Therefore, H
18 tnjective if and only if L(f)e€ M, implies f e M,.

Since 6(A) cp®, we get L(pM)cpM. Set V = M/pM and let @ be
the canonical A-module homomorphism @: M — V which sends elements
of M to the corresponding elements in V. The module V' becomes a k-
vector space if we define a@(f) = a@p(f) = P(af) for a€ A and fe M.

Let I: V-V Dbe the unique mapping which makes the diagram

M-I u

|

V—V

commutative, i.e., lo@ = @o L. This mapping is actually k-linear, since
Uap(f) = Up(af)) = P(Laf)) = P(aL(f)) = ap(L(f)) = al(®(f)). Note that
P(0(a)P(f)) = 0.

Set U, = V/p(M,) and U, = V/p(M,), and let 4r,: V— U, and ,: V- U,
be the canonical k-linear mappings which send elements of V to the
corresponding elements in U, and U, respectively. Since l(p(M,)) C ¢(M,),
there exists a unique Fk-linear mapping h: U, — U, which makes the

diagram
l
—5V
(2

_’E_,U

2

=
[e— <

commutative, i.e., hoqp, = a0l
The main results of this paper are the following two theorems.

THEOREM 1. Assume that
(Hyp. 1) h is injective;
(Hyp. 2) =wfeM, implies f €M, for any given fe€M,
(Hyp. 3) Na=d"N, = {0}
Then H 1is imjective.

THEOREM 2. Assume that

(Hyp. 1) h 1is injective;

(Hyp. 2) 7wfeM, implies f €M, for any given f e M,

(Hyp. 8') for every element f in M, there exists a submodule N(f)
of N, such that

(1) @(f)eN();
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(ii) wp(9) € N(f) implies 9,(9) € N(f) for any given ge M,
(iii) N(f) is a finitely generated A-module.
Then H s injective.

REMARK 1. (Hyp. 2) implies that M, N p"M = p~M, for every positive
integer m. Note that z™f € M, implies z™"'f € M, if (Hyp. 2) is satisfied.

REMARK 2. Condition (ii) of (Hyp. 3') implies N(f) N p™N, = p"N(f)
for every positive integer m. Hence N(f) N (Ng= P"N,) = Nz P"N(f).
Note that the discrete valuation ring A is Noetherian (cf. [1; p. 94]).
Since N(f) is a finitely generated A-module, we get Ni-, P"N(f) = {0}
(ef. [1; p. 110]). This means that Theorem 2 follows from Theorem 1.

In §§2 and 3, we shall explain an application of the main results
to a linear Pfaffian system at an irregular singularity. The proof of
Theorem 1 will be given in §4.

2. An application. We consider two n-by-n matrices Az, y) =
im0 Ap*y*® and B(x, y) = S\v k-0 Bux*y* whose components are con-
vergent power series in two variables (x, ¥), where the A,, and B,, are
n-by-n (complex) constant matrices. Let p and ¢ be two positive
integers, and set D, = x**(9/ox) and D, = y*+(d/oy). Let C*{z, y) be the
set of all convergent power series D7 ;- ¢i:2"¥"* in (¢, y¥) whose coefficients
¢, are n dimensional constant vectors. We define two operators

4(f) = Dif — Az, y)f and 4(f) = D.f — Bz, y)f, feCx, y) .
In one of our previous papers [7], we proved the following theorem.
THEOREM A. Suppose that
(1) ApeGL(n; C) and ByeGL(n; C), and
(il) 4,4, = 4,4,.

Then, for any given f e C™{x, y), we have f crange (4, if and only if
4f) € range (4,).

The proof was based on the method due to Harris-Sibuya-Weinberg
[6]. We call this method the H-S-W method.

In the same paper, as an application, we also considered a linear
Pfaffian system
Du = Az, y)u + f(=, ¥) ,
D = B(x, y)u + 9(z, ¥) ,
where f e C*{z, y) and g € C*(x, ¥), and we proved, by utilizing Theorem
A, the following theorem.

(E)
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THEOREM B. If Pfaffian system (E) is completely integrable, and
if Ay € GL(n; C) and By € GL(n; C), then system (E) has a solution u in
C"{x, y). Moreover, this solution is unique.

Note that Pfaffian system (E) is completely integrable if and only
if (i) 4.4, = 4,4, and (ii) 4,(f) = 4(9).

Theorem B is also a special case (i.e., the linear case) of a theorem
which was proved by Gérard and Sibuya [8 and 4]. Their proof was
based on the theory of asymptotic solutions of ordinary differential equa-
tions containing parameters at an irregular singular point.

We shall explain, in this section and the next section, two proofs
of Theorem A by means of Theorem 1 and Theorem 2 respectively. An
application of Theorem 1 will give a proof of Theorem A which is based
on the theory of asymptotic solutions of differential equations, while the
H-S-W method corresponds to Theorem 2 (cef. §3).

To utilize Theorems 1 and 2, let us set

A = C{y) = the set of all convergent power series in y whose
coefficients are complex numbers;

p=(y) = yA;
0 = y"*(d/dy) (=D);
M = C*(x, y);

L = 4, and P = id,(= identity);

M, = M, = range (4,).

Then the residue class field &k = A/p is isomorphic to C. Furthermore,
since 4,;: M — M is an A-module homomorphism, range (4,) is a submodule
of M, and N, = N, = M/range (4,) = coker (4,).

We assume that 4,4, = 4,4,. Hence L = 4, maps range (4,) into itself.
Let p: M — coker (4,) be the canonical A-module homomorphism which
sends elements of M to the corresponding elements in coker (4,). Then
0 =@, =@, The mapping H: coker (4,) — coker (4,) is defined by Hop =
poL (=pod,). H is injective if and only if 4,(f)erange(4,) implies
f erange (4,). Therefore, the conclusion of Theorem A 1is the injectivity
of H.

On the other hand, note that pM = yC{x, v); V = M/pM = C*{x),
where C*{x) denotes the set of all convergent power series in x whose
coefficients are n dimensional constant vectors. It is clear that V is a
C-vector space. (Note that k = A/p = C.) Let us identify V with C"{x).
Then, the canonical A-module homomorphism @: M-— V 1is given by
P(f) = fly= for feM.

Since the C-linear mapping I: V — V is defined by lo@p = po L, we
get l(u) = —B(x, 0O)u for ueV. Set 4du)= x**(du/dx) — Az, 0)u for
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ue V. Then 4:V — Vis C-linear, and 4l = 14, since 4,4, = 4,4,. Further-
more, @(range(4,)) = range (4) and [(range (4)) Crange (4). Note that
U, = U, = V/range (4) = coker (4).

Let 4: V — coker (4) be the canonical C-linear mapping which sends
elements of V to the corresponding elements in coker (4). Then the
C-linear mapping h: coker (4) — coker (4) is defined by Aoy = 4ol. There-
fore, h is injective if and only if

(2.1) l(w)erange (4) implies wu €range(4).
If
(2.2) B,, = B(0, 0) e GL(n; C) ,

then [ is bijective, and [7'4 = 4l7'. Therefore (2.1) follows from (2.2).
Thus we conclude that h is injective if B, € GL(n;C).

To investigate (Hyp. 2) of Theorems 1 and 2, let yferange(4,).
This means that

yf(x, y) = w”%(w, y) — Az, ¥)g(x, ¥)
for some ge M. Hence
0= x”“g—g(x, 0) — Az, 0)g(a, 0) .
X

Now assume that A, = A(0, 0) e GL(n; C). Then g(x, 0) = 0 since » > 0.
Hence geyC™{x, y) and f erange(4,). Thus we conclude that (Hyp. 2)
1s satisfied if Ay, € GL(n; C).

3. (Hyp. 3) and (Hyp. 3’). The main part of our proof of Theorem
A which was given in [7] was to verify that (Hyp. 3’) is satisfied. This
was done by utilizing the H-S-W method. We would not repeat it here
again. Recently, Gérard [2] investigated a Pfaffian system
o [P(z, 9)Dou = Alz, ) + f(z, v)

' \P(z, y)Dau = Bz, y)u + 9(=, v)
where P is a Weierstrass polynomial in x (cf. [5; p. 68]). Gérard’s
ideas are similar to the H-S-W method, and Theorem 2 applies to system
(3.1).

To investigate (Hyp. 3), let o(f)e€ Mm-,b" coker (4,). This means
that, for every positive integer m, there exist two elements v, and g,
in M such that f = y™g, + 4,(v,). Then 4,(v,, — V) = Y0 — Y"Gn. If
we assume that m > m’ and that
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(3.2) A,eGL(n; C),

then we get v, — v, €p*'M. This means that there exists a formal
power series in y,

(3.3) v=3 Uny"

such that

(1) u,e€C{x), and

(ii) f = 4,(v) as formal power series in y.
If veM (i.e., v is convergent), then we get f e range (4,) (i.e., o(f) = 0).

We can prove the convergence of the formal solution (3.3) of the
equation f = 4,(v), under the assumption (3.2), by utilizing the existence
and uniqueness of asymptotic solutions of ordinary differential equations
containing parameters at an irregular singular point (ef. [4]). Hence,
under the assumption (3.2), we have

(3.4) ﬁ p™ coker (4,) = {0} .

We can also prove (3.4) by utilizing the H-S-W method (cf. Remark 2
of §1).

4. Proof of Theorem 1. The proof of Theorem 1 is divided into
two lemmas.

LEMMA 1. If h is injective, then H(®.(f)) € pN, implies @,(f) € pN,.

ProOOF. Note that o,(f)epN, if and only if @(f)ep(M,) and that
P(f)epN, if and only if o(f)ep(M,. Now observe that H(p,(f)) =
P(L(f)) e pN, implies P(L(f)) e p(M;). This means that UP(f)) e P(IMy).
Hence ¥,(l(®(f))) = 0, and then h(y,(@(f))) = 0. Since k is injective, we
have ,(@(f)) =0, ie., P(f)ep(M,). Therefore, #,(f)€pN,. This com-
pletes the proof of Lemma 1.

LEmMMmA 2. If (Hyp. 1) and (Hyp. 2) of Theorem 1 are satisfied, then
ker (H) < (1p"N, .

ProoOrF. Assume that H(@,(f)) = 0. Then, it follows from Lemma 1
that @,(f)epN,. Set o,(f) = n"p,(g9), where m is a positive integer and
g€ M. Observe that 0 = H(p,(f)) = o(@™)p,(P(9)) + n"H(®,(g9)). By virtue
of (Hyp. 2), we get H(®,(9)) €pN,. Then, it follows from Lemma 1 that
®,(g9) € pN,. Hence @,(f) € p™*'N,. This completes the proof of Lemma 2.
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