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The first purpose of this paper is to prove the existence of solutions
to the problem

(1) x" + f{x)x' + g(t, x, x') = eit) ,

( 2 ) a?(0) = x(2π) , x'(0) = x'(2π) .

Here /: R -> R, g: [0, 2π] x R x R -» R and e: [0, 2π] -+ J? are continuous.
This is a well-studied problem. In his survey [1], Cesari outlines a

branch of research followed by Lefschetz, Levinson, Graffi, Cesari, and
Cesari and Kannan. A related branch may be followed in the papers
by Lazer [6], Lazer and Leech [7], Ma whin [9], Reissig [10]-[12], Chang
[2] and Martelli [8].

Hypotheses which insure a solution to (1), (2) have gradually been
refined to something like the following:

(A) Almost no restrictions on /.
(B) There exist constants k, R, positive, and A, B (with A > B)

such that (i) \x\ ^R=*\g(χ)\ <k\x\; and (ii) x^ R=*g(x) ^ A, x^ -R=>

g{x) <̂  B, and B < em < A where em — (2τr) Λ e(t)dt. (For simplicity we
Jo

have let g = g{x).)
In elaboration we note: (a) If g has the form g{x) — m2x + h{x\ m

an integer, then (i) becomes \g(x) — m\x)\ < l\x\. (b) The results can
be extended to vector equations with f(x)x' becoming (d/dt)[Ff(x(t))]. (c)
The best results seem to relate k to the eigenvalues of the problem (1),
(2), which in this case is k = 1.

In this paper we use the Alternative or Lyapunov-Schmitt Method
to solve the problem. We develop further a technique begun in [13]
and we use a splitting of the operator Lx — —x" into T*x = —x'f Tx = xf.
(See Kannan and Locker [3], or Cesari [1].) We can then (a) eliminate
the term f(x)x' in a natural way; (b) introduce an x' into g(t, x, x')\ (c)
have a scheme which can be applied to higher order problems.

Additionally we note: (a) Half of the work is showing that our
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version of hypotheses (A) and (B) make this abstract scheme work.
(Related results for a fourth order problem are presented in [14]). (b)
With the inclusion of an x' term we have had to sacrifice in the choice
of k and take k < 1/i/lΓ.

THEOREM. Let (1), (2) be given and assume

(hj \g{t,x,y)\^k{x2+yψ2, where 0<k<l/]/T for all (t,x,y) e [0,2ττ]x
RxR; and

(h2) there exist constants R> 0, A, B {with A> B) such that x^R=>

g{t, x, y)^ A, x <. — R=> g{t, x, y) ^ B, for all {t, y) e [0, 2π] x R, and

B <em< A where em = (27Γ)"1 Ϋ\{t)dt.
Jo

Then (1), (2) has at least one solution.

PROOF. 1°. We write the problem as an operator equation in a
Banach space and employ the Alternative Method. (For more details
see [1].)

Let X = {x 6 C2[0, 2π]: x{0) = x{2π), x'{0) = x'{2π)} and, for xeX, let

Px = (l/2ττ) j*α. Then P is a projection. Let Xo = PX, X, = {I - P)X

(so X = I ^ I o ) . Let Z = C[0, 2π] and, for 26^, let Q̂ ; = (lβπ)^* z.

Let ^o = QZ and ^ = (I - Q)Z (so Z = Z,φ ZQ). Define L, iSΓ and ^ by

D{L) (domain of L) - X, Lx= -x"\ D{N) = C^O, 2π\ Nx = {/(&)&'} +

M , «, *') - e} = {N,x} + {Jί aί}; and H - [LI-ΓJ"1. Note that K{L) (the

kernel of L) — [1] (the constant functions) = Xo; that 12(L) (the range

of L) = 2ί; and that ^ 0 = [1].

Now (1), (2) can be written as

( 3 ) Lx = Nx

and (3) is equivalent to the pair of equations

( 4 ) a? = Px + H{I- Q)Nx

( 5 ) 0 = QNx .

2°. We "split" the operator H into J*J . (For more details see [3]
or [1].)

Let Γ={»6C 1 [0, 2ττ]: y(0) = i/(2ττ)} and, for y e Γ , let Py = {l/2π)

J V Let P F = Fo (-[1]) and (J - P)Γ = Γx (so Γ = Γ x φ Γo). Define
T* and Γ by

D(T*) = X , T*α= -a;' (so X(Γ*) = Xo , Λ(Γ*) = ΓJ

and

= Y , Ty = yr (so
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Now let L = TT*. If we let J * = [3HJJΓJ-1 and J = [ΓIΓJ"1, then
H = J * J. If x = xx + #0 e Xλ 0 Xo, then ^ = J * ^ for some y1 e Fx and
ίc0 = Px. Hence (4) may be written as J*y± = J V ( / — Q)N(J*y1 + a?0).
Now J * is one-to-one so we may cancel it and Yo = [1], Xo — [1] so we
may write #0 in place of x0.

Thus (4), (5) is equivalent to

( 6 ) V! = J(I- Q)N(J*Vl + y0)

( 7 ) 0O = y0 + QN(J*y, + »0) .

To be precise we should write UQN in (7) where U: Zo —> Y"o is a
bisection. But since Zo = [1], Fo = [1], we can omit the U.

3° Continuity and compactness of operators. Now we change nota-
tion and let Y = {y e L2[0, 2π]: y(0) = y(2π)} (the periodic, square-inte-
grable functions) with the usual norm || || and inner product < , •>.

Again for y e Y we let Py = (l/2τr)ί%, P Γ = Fo, (J - P ) y = Γ l f and
Jo

Γ = YΊφYΌ A solution ^ of (6) will be in the range of J, i.e., yλe
C^O, 27r], and hence the solution of (4), (5), x = J * ^ + y0 is in C2[0, 2ττ].

To show the compactness of the operator appearing in (6) we in-
troduce

H1 — {x(t): x' e Y (so x is absolutely continuous)}
with the norm \\x\\H = |a?|0 + ||a?f|| (\x\o = sup[0,2ff] \x(t)\) and

L1 = \x(t): x is Lebesgue integrable on [0, 2π] and \ x = θ |

with the usual norm | |-| | l β We will show that the composition of the
following sequence of operators is compact and continuous:

This has been discussed in detail in [4] so we shall only outline the
proof here.

z — (l/2π)\ I a; we see
o Jo Jo

that its domain can be extended to include L\ And, as shown above,
the solution yλ will still be in C^O, 2π],

(b) N: H'^L1 is bounded: \\N.x\\i = Γ \f(x(t))x'(t)\dt so by the con-
Jo

tinuity of /, Nx takes sets bounded in H1 in^o sets bounded in ZΛ That
N2 is bounded follows along similar lines.

(c) N: H1 —> L1 is continuous:

\\N,x - N^W, £ [ \f(x(t))x'(t) - f(xo{t))x'(t)\dt
J
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The first integral: with x' e L2[0, 2τr], f(c)x'(t) = g(c, t) is continuous
in c and measurable in t. By KrasnoseΓskii's version of Lusin's theorem
[5] we may divide [0, 2π] into disjoint subsets Ix and 72 such that Iλ is
closed and g\Rn x Jx is continuous in (c, ί) and I2 has arbitrarily small
measure.

We have just seen that the integrands are bounded so the integral
over I2 can be made small. On {(c, t): \c — xo(t)\ ^ 1, t e/J, g(c, t) is uni-
formly continuous, so the integral over Ix can be made small by making
\x — #o|o small.

In the second integral we have \f(xQ(t))x'(t) - f(xo(t))x'o(t)\ ^ |/(a?0(ί))|
\x'(t) — x'0(t)\ and the proof is straightforward. That N2 is continuous
follows along similar lines.

(c) J and J * are integral operators and are known to be continuous
and compact and the projection (J — Q) is continuous. Hence
J(I — Q)N(J*y1 + Vo) is a continuous, compact mapping from Yx 0 Yo

into Yx.
(d) The projection Q is continuous and its range is finite dimen-

sional. Hence QN(J*y1 + y0) is a continuous, compact mapping from
Y i θ Γ o into Γo.

(e) Since (I-Q)u = u-(l/2π)\2Zu and Jv=\v-O-βπ^Ύv, J(I-Q)u =
Jo Jo Jo Jo

w - (l/2ττ) I \ u ) - (l/2π)\ \ % + (l/2τr)2\ \ \ tί ) = Ju and hence
o Jo VJo / Jo Jo Jo Jo V J o /

| | J ( I Q ) | | ||J ||
4°. A theorem from the Leray-Schauder theory of degree. Return-

ing to (6), (7) let

TtXu ».) = Jd ~ Q)N(J*yi + y0) ,

T0(ylf Vo) = Vo + QN(J*yi + y0)

and Ik be the identity operator on Yk (k = 1, 0). Let / = column (/„ 70)
and T = column (Tu To). Then (6), (7) can be written as

( 8 ) (/ - T)(yίf y0) = 0 .

This is of the form of identity plus a compact operator from Yt φ Yo

into Yt φ Yo and the theory of degree may be applied. We shall use
the following variant of the Borsuk theorem:

Let λ ( 7 - T)(yu yt) Φ (1 - λ)(7 - T)(-yu -yt) for 1/2 ̂  λ < 1 and
(ylt y0) e 3B(Rlt Ro) where B{RU Ro) = {(»„ »,) 6 Γx φ Γβ: H^H ̂  Λ» ||»,|| ^
.Bo}. Then (8) has a solution in B(RU Ro).

We will show that λ(/x - T^y,, yt) Φ (1 - λ)(/1 - Γ,X-yM -»,) on
S1 = {(»u »,): HVill = Λ,, lly.ll ^ Λ,} and λ(/0 - T,){yu y0) Φ (1 - λ)(/0 - Γ.)
(-2/i, -».) on S° = {(^ yβ): | | y i | | ^ ΛM ||yβ | | = i?J.
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Now λ(/x - Tx){yl9 y0) = (1 - λ)(Λ - T^-y,, -y0) implies Vl - λ J ( J -
Q)N(J*yx + y0) + (1 - X)J(I - Q)N(J*(-yi)-y0) = 0 which implies

( 9 ) Ill/ill2 — λ<J(/ — Q)N(J*yι + 7/0), 2/x>

+ (1 - λ)</(I - Q)N(J*(-yi)-y0), Vl) = 0 for ( t f l f yQ) e S 1 .

And λ(70 - TQ)(ylf y0) = (1 - λ)(/0 - Γ0)(-lfi, ~Vo) implies

(10) \QN(J*Vl + I*,) - (1 - λ)QiSΓ(J*(-y i)-»o)

for l / 2 ^ λ < l , (yuy0)eSϋ.

We will show that (9) and (10) do not hold under the hypotheses of
the theorem.

5°. Hypothesis (hj implies that (9) does not hold.
(a) Let x = J*7/x + ?/0, so α?'= — yγ and a (O) = x(2π). Then

2π(QN,x) = ^ f{x(t))x'(t)dt = F(x(2π)) - ^(ajW) = 0 (F(U) = j * .

QWa? = (see°3°, (a)); j*/ϊa;(β))a;'(β)dβ - (l/2π)Γ J*/Ca?(β))a?'(8)cϊβd* = -

c) (a constant); and <«/(/- Q)Nxx, y,) = ( 2 7 r(F(x(ί))- c)x'(t)dt= G{x{2π))~
Jo

G(a?(0)) - c(a?(2π) - a?(0)) = 0 (G(U) = ί V ) . Likewise <J(I - Q)N1(-x\

Vi) = 0

(b) From hypothesis (hx) it follows that |jr(ί, a (ί), ?/(ί))Γ^&2(|x(ί)|2+
|τ/(ί)|2). This, together with the continuity of g, implies that JV2 takes
Hx into U. So in this estimate we can work in ZΛ

If (/ — Q)y = yι = 2JΓ (akΨk + δfcψfc) (Φhit) — (l/l/ TΓ ) cos fcί, ^ ( ί ) =
(l/l/ 7Γ )sin fcί), then J ^ = Σ Γ fc""1^^ — ft^^and || e / Ί / J ^ Σ Γ f c ^ α ϊ + δ ϊ ) ^
ΣΓ(α* + 61) = ||?/i||2, so | | J | | ^ 1. And \\Jφλ\\ = H^H so | | J | | = 1.

(c) With fc, 0 < k < l/l/"6", given in hypothesis (hx) let ε, o < e < 1,
be such that k = ( l/ i/T)(l - e)(l + s ) " 1 ^ In the definition of B(R19 Ro)
(see 4°) let Rλ = max(2|| J | | ||e||/e, R\2ηV^κ, 1) where 77 > 0 is such that
(1 + yjf = (1 + 6ε/4), i.e., 37 = (1 + 6ε/4)1/2 - 1. (Here e = e(t) is from (1),
R given in hypothesis (h2).)

Let Ro = 2R, + R/V2π. Then |<J(I - Q)(-e), ^ > | ^ || J | | | |β | | | | ^ | | ^
εll^/iH2^ for HT/JI = Rx. Next ||a;||2 = || J *^ ! ! 2 + ||]/oll2 ^ Ilί/ill2(l + 4 + 6ε) if
II y01|2 ^ Rl = (2ΛX + R/VZπ)2 ^ 4i?2(l + 6ε/4) and || ^ || = i2x. And

Hi/jί2. ' So |<7(/- Q)ff( , x]x'\yά\ ^ (1 - ε)!!^!!2 and ! < / ( / - Q)Nt(J*Vί+
Vo), Vι}\ < llί/ill2 for (ylfy0)eSK The same estimates hold for | < J ( / -
Q)N2(J*( — y1) — y0), y^\ and hence (9) does not hold.

6°. Hypothesis (h2) implies that (10) does not hold. Let (yl9 yo)eS°

and x(t) = xtf) + x0 = J*2/x + »0. From ^(4)= - Γ ^(tjdί + (l/2π) Γ
Jo Jo
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, it follows t h a t sup[0,2^31^(^)1 ^ 2 Γ" \yι(t)\dt<*2\/2iπ \\yj\\. Hence

+ Xo\^\Vo\ - 2]/2π Ml = \Z2π(\\yo\\ - 211̂ 1) ^ 72. Thus, for (ylf y0) e
S° either βr(ί, a?(ί), &'(«)) ̂  A or ^B.

In 5° we showed that QN,x = 0. So QN(J*y, + 3/0) = (l/2ττ)

ΓΓ flr(ί, α(£), a?'(i))di - P β φ d ί l If (10) holds, then

, x(t\ x\t)) - μg(t, -x(t), -x'{t))}dt = (1 - μ){2πem) ,

and this is impossible by (h2) since the integral is ^A — μB and
A - j«5>(l - jM)e», 0 < J K < 1 .

To consider equation (1) with x — col(^i, , xn), a vector, we change
f(x)x' to (d/dt)[Ff(x(t))] where f:Rn-+R is of class C2 and V is the
gradient operation. Also g and e are assumed to be vector-valued. Hy-
pothesis (hx) remains the same while (h2) is most simply stated as

(h') \2π e(t)dt = 0 and there exists a constant i?>0 such that Σ ? a ^ # 2

Jo

and xt ^>R/\/n implies x^^t, x, y) > 0 for all (ί, y) (or <0 for all

The proof is much the same.
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