
Tόhoku Math. Journ.
32(1980), 189-199.

ASYMPTOTIC EXPANSIONS IN SCALAR LINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

MlTSUNOBU KURIHARA

(Received November 6, 1978, revised May 22, 1979)

0. Introduction. We consider a scalar linear functional differential
equation

(0.1) x(t) = F(t, xt) .

Hereafter the following notations are used: ω is a nonnegative number.
C denotes the space of all complex valued functions continuous on the
interval [—ω, 0] with the norm | |0 | | = sup {| 0(0) |; — ω <̂  θ <̂  0} for any
φ in C. If x = flc(t) is a complex valued function continuous in t on the
interval [σ — ω, σ + 7] for some 7 ^ 0 , the symbol xt denotes the element
in C with xt(θ) = x(t + 0) for — α> <; 0 <; 0 and σ<L t <Lσ + 7. Moreover,
the following hypotheses are imposed on the equation (0.1). F(t9 φ) is a
complex valued functional which is continuous in t ^ 0 and φ in C, linear
in φ and has the asymptotic expansion of the form

(0.2) F(t, 0) ~ Σ ^W*"" a s * -+ °° >

where Ln (n = 0, 1, ) are complex valued bounded linear f unctionals
on the space C of the form

(0.3) Ln(φ) = ( φ(θ)dηn(θ) (n = 0, 1, •)
J—ω

for any φ in C and some functions 7]Jβ) (n = 0, 1, ) of bounded varia-
tion on the interval [—ft), 0]. The asymptotic expansion (0.2) means that
for any nonnegative integer N there exist constants 7^ ^ 0 and σN ^ 0
satisfying the relation

F(t, φ) -
N

n=Q

for any t ^ ^ and any φ in C .

The linear functional differential equation

(0.4) u(t) - Lo(^£)

is called the homogeneous equation corresponding to (0.1). The equation
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in the variable λ

(0.5) A(\) = λ - (° exodΎ]Q{θ) = 0

is called the characteristic equation of (0.4). The roots λ of (0.5) are
called the characteristic values of (0.4).

In the present paper we prove the following theorems:

THEOREM 1. If X is a simple characteristic value of the equation
(0.4), then the equation (0.1) has a formal solution x — x(t) of the type

m = 0
(0.6) eλttr

where the coefficient c0 may be chosen arbitrarily.

THEOREM 2. Let X be a simple characteristic value of the equation
(0.4). Suppose that any other characteristic value with its real part
equal to Reλ is simple and that the equation (0.1) has a formal solution
of the type (0.6). Then there exists a constant σ ^ 0 such that the
equation (0.1) has a solution x = x(t) for t on the interval [σ — ω, oo)
with the asymptotic expansion

(0.7) x(t) ~ eλttr Σ cJ~m as t -• °°

For a linear differential difference equation

(0.8) 4(ί) = a{t)x{t) + b{t)x(t - ω) ,

which is a special case of the equation (0.1), assume that the coefficients
ait) and b{t) have the asymptotic expansions

a(t) - Σ αwί~Λ a n d &^) " Σ Kt~n as ί -> oo .

The characteristic equation of x(t) — aox(t) + box(t — o)) is

(0.9) J(λ) = λ - (oo + M""ω) - 0

and the roots of (0.9) are the characteristic values. Bellman [1] as well
as Bellman and Cooke [2] [3] studied the equation (0.8) and proved the
existence of a formal solution of (0.8) of the type (0.6) for any simple
characteristic value λ and for the constant r = (aλ + δ1β"ίω)/(l + ft^"*").
Moreover, they proved the existence of an exact solution of (0.8) with
the asymptotic expansion of the form (0.7) for any simple characteristic
value λ under some other conditions. Our main theorems are general-
izations of these results to the case of linear functional differential
equations.
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For a system of linear ordinary differential equations whose coeffi-
cients have the asymptotic expansions. Hukuhara [6] proved the existence
of a solution with its asymptotic expansion equal to the formal solution.
The method in our proof of Theorem 2 is based on that by Hukuhara [6].

In Section 1 we give a proof of Theorem 1 by the formal power
series expansion of a solution. In order to prove Theorem 2, we state,
in Section 2, some facts due to Hale [4] [5] concerning linear functional
differential equations. We then convert the problem of solving our
equation (0.1) to that of solving an integral equation in Section 3. In
Section 4 we prove an existence theorem and a uniqueness theorem for
the integral equation derived in the previous section. In Section 5 we
complete the proof of Theorem 2.

The author expresses his gratitude to the referee for many helpful
advices.

1. Proof of Theorem 1. Let λ be a simple characteristic value of
(0.4). Thus we have (0.5) as well as

(1.1) A'(X) = 1 - T θeλodηlθ) Φ 0 .
J—ω

Substituting the series (0.6) into the equation (0.1) with the expansion
(0.2), we obtain

eλttr\xc0 + Σ [λcm + (r-m + l )c m _jr* i
I m=0 )

oo oo oo ίγ fflλ ΓfO "I

= e"f Σ Σ Σ . ewθH-ηn(θ) Lί"'-+•+*> ,
Λ=0 m=0 fc=0 \ k I LJ-ω J

where

v — 7ft\
= (r — m){τ — m — 1) (r — m — k + ϊ)/k\ .

k J

Comparing the coefficients of exttr and eλttr"1

9 respectively, we have J(λ)c0 =
0 and J(λ)Ci + [Δ\X)r - Λ(^)]c0 = 0, where

Λ(λ) = Γ eλθdVl(θ) .
J-ω

Then we choose c0 arbitrarily and let r = 4(λ)/J'(λ), which is justified
by (1.1). Furthermore, comparing the coefficient of eλttr~m, we have

(1.2) Δ(X)cm + {[Δ\X)r - A(X)] - (m - l K W } ^ + H(c0, , cw_2) = 0

for m ^ 2, where H(c0, , cm_2) denotes the sum of the terms containing
the coefficients c0, •• ,c m _ 2 alone. It follows that the coefficients cM,
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m ^ 1 can be determined recursively starting from an arbitrary c0.
Thus we are done.

2. Linear functional differential equations. We state some facts,
due to Hale [4] [5], on linear functional differential equations, which we
need for the proof of Theorem 2. If σ ^ 0 is a given real number and
φ is a given function defined on the interval [0 — ω, 0], a solution of
the equation (0.1) with initial value φ at σ is defined to be any continuous
extension of φ(Θ — σ) on [σ — ω, σ] to the right of σ which satisfies the
equation (0.1). It is well known that for any given φ in C there exists
a unique solution with initial value φ at a defined for t ^ σ and the
solution is continuous and linear in φ under the hypotheses stated in
Section 0. If u(φ) is the solution of the equation (0.4) with initial value
φ at zero, we define the family of linear operators U(t\ t ;> 0 by
U(t)φ = ut(φ). Let Xo be the function on [-ω, 0] defined by XQ(β) = 0
for — ω <Ξ θ < 0 and X0(0) = 1. Then the solution x = x(t) of the equation
(0.1) with initial value φ at σ has the integral representation

xt{θ) = U(t - σ)φ(θ) + (V(ί - τ)Xlθ)F(τ, xτ)dτ
JO

for — α) g # :g 0 or, in a more compact form,

(2.1) xt = Σ7(ί - <τ)0 + Γ Σ7(* - τ)X0F(τ, xτ)dτ .

For any characteristic value λ with multiplicity m(λ), there are
exactly m(λ) linearly independent solution of the equation (0.4) of the
form Pj(X, t)eλt for j = 1, , m(λ) and -co < t < oo, where ^(λ, t) are
polynomials in ί. We define the functions ^(λ) in C by the relation
Φs(\)(θ) = p, (λ, ^)β;^ for j = 1, , m(λ) and -α> ^ θ ^ 0. Let Φ̂  =
(0x(λ), •••, ̂ w(2)(λ)). Then there exists a square matrix Bλ of order m(λ)
whose characteristic values are λ alone such that

(2.2) Φλ{θ) = ΦΛO) exp [β^] for - ω ^ ^ ^ 0 .

Furthermore, if φ — Φλa for some constant vector a and if u is a solution
of the equation (0.4) with initial value φ at zero, then ut = Φλ exp [Bλt]a.

The equation adjoint to (0.4) is defined to be

(2.3) v(τ) = - Γ v{τ - θ)drjo(θ) .
J—ω

C* denotes the space of complex valued continuous functions defined on
the interval [0, ω\. For any ψ in C* and φ in C we define
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(2.4) (ψ, φ) = ir(O)φ(O) - Γ (V(f - θ)φ(ξ)dξdVo(θ) .
J-ωJO

The characteristic equation for the adjoint equation (2.3) is also
defined by (0.5). For any characteristic value λ with multiplicity m(λ),
there exist also exactly m(λ) linearly independent solutions of the equation
(2.3) of the form g/λ, τ)e~~λτ for j = 1, •••, m(λ) and — oo<r<oo. We
define functions <ψ-(λ) in C* by ψv(λ)(0) = g, (λ, θ)e"λθ for i = l, , m(λ) and
0 ^ 0 ^ ft). If f j = c o l ^ λ ) , , <fmU)(λ)), then the matrix (fA, Φλ) =
((Ψi(^)> #*(*•)) 5 λ fc = 1» " •> w(λ)) is nonsingular and hence, without any
loss of generality, can be assumed to be the identity.

Suppose A = {λi, , λfc} is a finite set of characteristic values of (0.4).
Let {Φλl, , Φλ]c} and {Ψh, , ί^J be the corresponding sets of functions
in C and those in C*, respectively, defined above. If we let ΦΛ =
(Φh, , Φh) and ΨΛ = col(y,lf , yajfc), then the matrix (y* Φ,) is non-
singular and may be assumed to be the identity. Thus the matrix B =
diag(jB^, , Bχk), where Bλl, , Bλ/e are as defined in (2.2), is such that
φΛ(θ) = ΦΛ(0) exp[jB0] for -ω^θ^O. If <j> = Φ α̂ for some constant vector
α and if u(φ) is the solution of the equation (0.4) with the initial value
φ at zero, then we have ut(φ) = ΦΛ exp[I?£]α for — oo < t < °o.

The above facts allow us to conclude that any φ in C has a unique
decomposition of the form φ — φp + φQ with φp in P and with φQ in Q,
where P = P(yl) = {φ in C; ̂  = ΦΛb for a constant vector 6} and Q = Q(il) =
{φ in C; (f^, ^) = 0}. In fact, φp = Φ̂ (?P* ί, ^). If we make this decomposition
on the integral equation (2.1), we have the equivalent equation

(2.5) xt = U(t - σ)φr + Γ U(t - τ)XξF(τ, xτ)dτ + U(t - σ)φQ

U(t - τ)X$F(τ, xT)dτ ,

where X0

P - ΦJFΛ, XO) = W O ) and X« = Xo - Xζ.

3. Conversion to integral equations. It is well known that for
any formal power series of the form Σm=o omt~m, there exists an analytic
function q(t) with the asymptotic expansion q(t) ~ Σm=0 omt~m as t—> ©o.
A proof of the fact is given, for example, in Wasow [7].

Suppose there exists a formal solution of the type (0.6) of the equation
(0.1). Then we have an analytic function h(t) in t on an interval [σ09 oo)
for some σQ > ft), which has the asymptotic expansion

(3.1) h(t) - eλttr Σ cmrm as t -> oo .
m = 0
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Changing the variable in the equation (0.1) by

(3.2) x(t) = y(t) + h(t) ,

we obtain

(3.3) y(t) = L0(yt) + G(t, yt) + g(t) ,

where

(3.4) G(ί, φ) = F(t, φ) - L0(φ) and g(t) = -h(t) + F(t, ht)

for any t ^ 0 and φ in C.
Let us convert the problem of solving the equation (3.3) to that of

solving an integral equation by making use of the facts stated in Section
2. Choose any number σ ^ σ0. If we let y(t) — 0 for t <̂  σ, we have
by (2.1) the integral representation of a solution of the equation (3.3)

(3.5) yt - Γ U(t - τ)X0[G(τ, yr) + g(τ)]dτ .
Jσ

Let λ be a simple characteristic value of (0.4) and let Reλ = μ.
Put A = {v; Δ(v) = 0, Re v ^ μ], which is known to be finite, and denote
by P = P(Λ) and Q = Q(Λ) the spaces in C corresponding to Λ. Therefore
we obtain the unique decomposition of C by the subspaces P and Q.
Hence we have

(3.6) yt = [ U(t - τ)Xζ[G{τ, yr) + g(τ)]dτ

- τ)X?[G(τ, yr) + g(τ)]dτ .

Suppose that any other characteristic value with its real part equal to
μ is simple. It can be shown that there exist constants K ^ 0 and s > 0
such that

(3.7) || U{t)Xζ\\ ^ Ke** for t ^ 0

and

v^.oy ii c/v,cy-Λo ι| ^ j\.e ^ ior ι ^ u .

If the integral

(3.9) - \~U(t - τ)Xζ[G{τ, yτ) + g(τ)]dτ
Jσ

is convergent, it is a solution of the equation (0.4). Adding the integral
(3.9) and a continuous function ft(β) — f(t + θ) for t ^ σ and — ω ^ 0 <̂  0
to the right-hand side of the equation (3.6), we have the integral equation
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(3.10) yt=ft- j " U(t - τ)Xζ[G{τ, yτ) + g(τ))dτ

- τ)X?[G{τ, yT) + g(τ)]dτ .

A solution y = y(t) of the integral equation (3.10) is also a solution of
the functional differential equation (3.3) if ft = 0 for t ^ σ and if the
integral (3.9) is convergent. Hence the function x = x(t) in (3.2) is a
solution of our fuctional differential equation (0.1).

4. Existence and uniqueness theorem. It follows from the hypo-
thesis (0.2) and the relation (3.4) that G(t, φ) ~ Σ*n=i Ln(φ)t~n as t -> co
for any 0 in C Then there exist constants σx ;> σ0 > ω and A ^ 0 such
that

(4.1) |G(ί, 0)| ^ ArMI^II for t ^ ^ and φ in C .

Moreover, for any nonnegative integer iV there exist constants BN and
σN satisfying | g(t) \ ̂  BNeμΨ~N for t^σN. Here #(£) is the function
defined in (3.4) and

(4.2) Re λ = μ and Re r = p .

Here is a theorem concerning the existence of solutions of the integral
equation (3.10).

THEOREM 3. Suppose that there exist constants N > p + 1, σ ^> σλ

and a ^ 0 satisfying the relations

(4.3) 2AK/(N -p-l)<l/2,

(4.4) ε<τ > N - p - 1 ,

(4.5) 2AK/(εσ - N + p + 1)< 1/2 ,

(4.6) | f l f ( ί ) | ^ B N e μ Ψ + 1 ~ N f o r t ^ σ ,

(4.7) II/JI ^ αe^ + 1 -^ for t ^ σ

(4.8) (2Aα + 5i,)ί:[l/(iVr- p - 1) + l/(εσ - N+ p + l)]^a .

Then the equation (3.10) has a solution y = y(t) continuous in t on the
interval [σ — α>, oo) satisfying the relation

(4.9) || yt - ft || ^ α e ^ 1 " * /or t ^ σ .

PROOF. Denote by S the class of continuous functions y = 2/(ί) in £
on the interval [σ — ω, oo) which satisfy the relation (4.9). On S we
define an operator T by w(t) = (Ty)(t) for t^σ — ω, where



196 M. KURIHARA

(4.10) wt=ft- \~U(t - τ)Xξ[G{τ, yt) + g(τ)]dτ

- τ)X«[G{τ, yτ) + g(τ)]dτ .

w — Ty is well-defined for any y in S and is continuous on the interval
[σ — ω, oo). For any member y = y(t) in S we obtain

(4.11) \ \ V t \ \ ^ 2 a e μ t t p + 1 - N f o r t ^ σ

by (4.7) and (4.9). Thus by (4.10) we have

using (3.7), (3.8), (4.1) and (4.6). On the other hand, we have the inequality
e ε Ψ ~ N £ (d/dt)(eεΨ+1-N)/(εσ - N + p + 1 ) f o r t ^ σ b y ( 4 . 4 ) . T h e n w e
obtain

(4.12) \\wt-ft\\£ (2Aa + BN)K[l/(N-p - 1) + l/(εσ - N+ p

for t ^> σ .

Thus from (4.8) it follows that Γ is a mapping from S to S.
Moreover, we see that the mapping T: S —• S is continuous with

respect to the topology of uniform convergence on any compact subinterval
of the interval [σ — ω, oo) and that the class S is closed with respect to
the same topology. It can be also proved that the family T(S) is uniformly
bounded and equicontinuous on any compact subinterval of the interval
[σ — a), oo). It is clear that the class S is convex. Therefore we conclude
that there exists a member y = y(t) in S which is invariant under our
mapping T by applying the following lemma proved by Hukuhara [6].
The function y = y(t) is the desired solution of the integral equation
(3.10). This proves Theorem 3.

LEMMA. Let S be a convex family of continuous functions in t on
an interval I. Suppose that a transformation T from S to S is con-
tinuous with respect to the topology of uniform convergence on any
compact subinterval of I and that S is closed with respect to the same
topology. Moreover, suppose that the family T(S) is uniformly bounded
and equi-continuous on any compact subinterval of /. Then there exists
at least one function which is invariant under the transformation T,
that is, a function x(t) in S such that T{x(t)} = x(t).

We have the following uniqueness theorem.

THEOREM 4. Suppose that there exists a solution y = y(t) of the
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equation (3.10), continuous in t on the interval [σ — ω, oo), which satisfies
the relation

(4.13) Hvtll ^ βeίJΨ+1~N for t^σ

and for some constant β ^ 0, where N > p + 1 and σ ^ max {σlf 1} satisfy

(4.14) εσ-N+p + l>0

and

(4.15) AK[1/(N - p - 1) + l/(eσ - ΛΓ + p + 1)] ^ 1 .

Tfcβw the solution y = #(t) is unique.

PROOF. Let 1/ = y(t) and ?/' = y\t) be continuous solutions in t, on
the interval [σ — ω, 00), of the equation (3.10) which satisfy, respec-
tively, (4.13) and

(4.16) \\y[\\ ̂  β'eμttp+1-N' for ί ^ σ

and for some constants β ^ 0 and /3' ^ 0, where iV> 1 o + l, iV^iO + l

and σ ^ maxί^, 1} satisfy (4.14), (4.15),

(4.17) εσ-iV r / + 1o + l > 0

and

(4.18) AK[1/(N' - p - 1) + l/(εσ - N' + p + 1)] < 1 .

The function z = y — y' is a solution of the integral equation

(4.19) zt =

since the functional G(tf φ) is linear in φ. On the other hand, the solution
z = z(t) satisfies

(4.20) \\zt\\ £ \\Vt\\ + WvlW ^ p W * 1 - * " f o r t ^ σ ,

where β" = β + /3' and iV'" = min{iV, iV'} by (4.13) and (4.16). Using
the relations (3.7), (3.8), (4.1), (4.14), (4.15), (4.17) and (4.18) for the equation
(4.19), we have

(4.21) | | z f | | ^ AK[l/(N" - p - 1) + l/(εσ - N" + p + l)]β"e'ιΨ+1-N"

for t ^ σ

by the same argument as in the proof of Theorem 3. Repeating the
same argument, we have, for any positive integer m,

^ {AK[1/(N" - p - 1) + 1/(6<T - iV" + ^ +

for ί ^
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This implies that z(t) = 0 for t ^ σ - ω by (4.15) or (4.18). This proves
Theorem 4.

5. Proof of Theorem 2. Now we are in a position to prove Theorem
2. Under the hypotheses stated in Section 0 for the equation (0.1) and
the assumptions in Theorem 2 for a characteristic value λ and a formal
solution of the type (0.6) of the equation (0.1), we consider the integral
equation (3.10) with ft = 0 for t ^ σ, where G(t, φ) and git) are as defined
in (3.4) and (3.1). Note the relations (3.7), (3.8), (4.1) and (4.2). First
we choose a nonnegative integer N > p + 1 satisfying the relation (4.3),
and next choose a constant σ >̂ maxf^, 1} satisfying the relations (4.4),
(4.5) and (4.6). Finally we choose a constant a ^ 0 satisfying the relation
(4.8). The assumption (4.7) is automatically satisfied. Then it follows
from Theorem 3 that there exists a solution y = y(t), continuous in t on
the interval [σ — ω, co), of the equation (3.10) with ft = 0 for t ^ σ
satisfying the relation (4.9). Thus we have

(5.1) \\yt}\ S aeμttp+1-N for t ^ σ .

Since the integral (3.9) is clearly convergent for the solution y = y(t), it
is also a solution of the functional differential equation (3.3), for which
the function x = x(t) defined in (3.2) is a solution of our equation (0.1)
on the interval [σ — ω, oo).

To investigate the properties of the solution x = x(t), we choose any
nonnegative integer N' > p + 1 satisfying 2AK/(N' — p — l)<l/2. There
exist constants σf ^ σ and BN, ^ 0 satisfying the relations εσ' — N' +
p + 1 > 0, 2AK/(εσ' - Nf + p + l)<l/2,

(5.2) I g(t) I ̂  BN,evψ~N' for t ^ &

and

(5.3) e~εt ^ Po+1-N' for t ^ σ' .

We consider another integral equation of the form

(5.4) zt=ft- JV(ί - τ)X*[G(τf zτ) + g(τ)]dτ

+ [ U(t- τ)X«[G{τ, zτ) + g(τ)]dτ ,
J a'

where

(5.5) ft - \°'u(t - τ)X?[G(τ, yr) + g(τ)]dτ for t ^ & .

For the function (5.5) we have H/JI ^ /3e(/ί"ε)ί ^ βeμttp+ι~N' for £ ̂  σ' by
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(3.8), (4.1), (4.6), (5.1) and (5.3). It is clear that y = y(t) is a solution,
continuous in t on the interval [σ — ω, °°), of the equation (5.4) and
satisfies (5.1) for t ^ σ'. On the other hand, since we can choose a
constant a' ^ β so that (2Aα' + BN,)K[1/(N' - p - 1) + l/(eσ' - iSP +
p + 1)] ^ α\ it follows that the conditions (4.3)-(4.5) and (4.8) of Theorem
3 are fulfilled for the constants N', σ' and α\ Then there exists a
solution z = z(£), continuous in t on the interval [ff' — fl>, °°), satisfying
| | s t - Λ l l ^ α ' e / J ^ + 1 " r for ί ^ σ', which implies the relation | | s t | | ^
β'eμψ+i-N' for t^σ> a n ( j for s o m e /3' ^ 0 by Theorem 3. Moreover, we
have #(£) = z(t) for ί ^ σ' — α> by Theorem 4.

Hence the solution 2/ = y(t) of the equation (3.10) with ft — 0 for
ί ^ σ satisfies the asymptotic property y(t) = Oίβ'1*^"*"1" '̂) as ί —> co for
any nonnegative integer Nr ^ iV. Then e~λtt~ry(t) — 0 as t —> ©o. Thus
it follows that the solution x = a?(t) of the equation (0.1), obtained in
(3.2), has the same asymptotic expansion as that of the function h(t).
This implies the relation (0.7). This completes the proof of Theorem 2.
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