Tόhoku Math. Journ. 32(1980), 189-199.

ASYMPTOTIC EXPANSIONS IN SCALAR LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

MlTSUNOBU KURIHARA

(Received November 6, 1978, revised May 22, 1979)

0. Introduction. We consider a scalar linear functional differential equation

(0.1)
$$
\dot{x}(t) = F(t, x_t) .
$$

Hereafter the following notations are used: *ω* is a nonnegative number. *C* denotes the space of all complex valued functions continuous on the interval $[-\omega, 0]$ with the norm $||\phi|| = \sup\{|\phi(\theta)|; -\omega \leq \theta \leq 0\}$ for any ϕ in *C*. If $x = x(t)$ is a complex valued function continuous in t on the interval $\left[\sigma - \omega, \sigma + \gamma\right]$ for some $\gamma \geq 0$, the symbol x_t denotes the element in *C* with $x_i(\theta) = x(t + \theta)$ for $-\omega \leq \theta \leq 0$ and $\sigma \leq t \leq \sigma + \gamma$. Moreover, the following hypotheses are imposed on the equation (0.1). $F(t, \phi)$ is a complex valued functional which is continuous in $t \ge 0$ and ϕ in C, linear in *φ* and has the asymptotic expansion of the form

(0.2)
$$
F(t, \phi) \sim \sum_{n=0}^{\infty} L_n(\phi) t^{-n} \quad \text{as} \quad t \to \infty ,
$$

where L_n $(n = 0, 1, \cdots)$ are complex valued bounded linear functionals on the space *C* of the form

$$
(0.3) \t\t Ln(\phi) = \int_{-\omega}^{0} \phi(\theta) d\etan(\theta) \t\t (n = 0, 1, \cdots)
$$

for any ϕ in C and some functions $\eta_{\phi}(\theta)$ ($n = 0, 1, \dots$) of bounded variation on the interval $[-\omega, 0]$. The asymptotic expansion (0.2) means that for any nonnegative integer N there exist constants $\gamma_N \geq 0$ and $\sigma_N \geq 0$ satisfying the relation

$$
\left|F(t,\phi)-\sum_{n=0}^N L_n(\phi)t^{-n}\right|\leq \gamma_N t^{-(N+1)}||\phi||\text{ for any }t\geq \sigma_N\text{ and any }\phi\text{ in }C\;.
$$

The linear functional differential equation

$$
(0.4) \qquad \qquad \mathbf{\hat{u}}(t) = L_{\scriptscriptstyle 0}(u_t)
$$

is called the homogeneous equation corresponding to (0.1). The equation

in the variable λ

(0.5) *A(\)* = λ - (° *e xodΎ]^Q {θ)* = 0

is called the characteristic equation of (0.4) . The roots λ of (0.5) are called the characteristic values of (0.4).

In the present paper we prove the following theorems:

THEOREM 1. If λ is a simple characteristic value of the equation (0.4) *, then the equation* (0.1) has a formal solution $x = x(t)$ of the type

$$
(0.6) \t e^{\lambda t} t^r \sum_{m=0}^{\infty} c_m t^{-m} ,
$$

where the coefficient c⁰ may be chosen arbitrarily.

THEOREM 2. *Let X be a simple characteristic value of the equation* (0.4). *Suppose that any other characteristic value with its real part equal to* $\text{Re } \lambda$ *is simple and that the equation* (0.1) *has a formal solution of the type* (0.6). Then there exists a constant $\sigma \geq 0$ such that the *equation* (0.1) has a solution $x = x(t)$ for t on the interval $[\sigma - \omega, \infty)$ *with the asymptotic expansion*

$$
(0.7) \t x(t) \sim e^{\lambda t} t^r \sum_{m=0}^{\infty} c_m t^{-m} \t as \t t \to \infty.
$$

For a linear differential difference equation

(0.8)
$$
\dot{x}(t) = a(t)x(t) + b(t)x(t - \omega),
$$

which is a special case of the equation (0.1) , assume that the coefficients $a(t)$ and $b(t)$ have the asymptotic expansions

$$
a(t) \sim \sum_{n=0}^{\infty} a_n t^{-n}
$$
 and $b(t) \sim \sum_{n=0}^{\infty} b_n t^{-n}$ as $t \to \infty$.

The characteristic equation of $\dot{x}(t) = a_0 x(t) + b_0 x(t - \omega)$ is

(0.9) J(λ) = λ - (oo + M"") - 0

and the roots of (0.9) are the characteristic values. Bellman [1] as well as Bellman and Cooke [2] [3] studied the equation (0.8) and proved the existence of a formal solution of (0.8) of the type (0.6) for any simple characteristic value λ and for the constant $r = (a_1 + b_1 e^{-\lambda \omega})/(1 + b_1 e^{-\lambda \omega})$. Moreover, they proved the existence of an exact solution of (0.8) with the asymptotic expansion of the form (0.7) for any simple characteristic value λ under some other conditions. Our main theorems are generalizations of these results to the case of linear functional differential equations.

For a system of linear ordinary differential equations whose coeffi cients have the asymptotic expansions. Hukuhara [6] proved the existence of a solution with its asymptotic expansion equal to the formal solution. The method in our proof of Theorem 2 is based on that by Hukuhara [6].

In Section 1 we give a proof of Theorem 1 by the formal power series expansion of a solution. In order to prove Theorem 2, we state, in Section 2, some facts due to Hale [4] [5] concerning linear functional differential equations. We then convert the problem of solving our equation (0.1) to that of solving an integral equation in Section 3. In Section 4 we prove an existence theorem and a uniqueness theorem for the integral equation derived in the previous section. In Section 5 we complete the proof of Theorem 2.

The author expresses his gratitude to the referee for many helpful advices.

1. Proof of Theorem 1. Let λ be a simple characteristic value of (0.4) . Thus we have (0.5) as well as

(1.1)
$$
\Delta'(\lambda) = 1 - \int_{-\omega}^0 \theta e^{\lambda \theta} d\eta_0(\theta) \neq 0.
$$

Substituting the series (0.6) into the equation (0.1) with the expansion (0.2) , we obtain

$$
\begin{aligned} e^{\lambda t}t^r\Bigl\{\!\lambda c_0+\sum_{m=0}^\infty&[\lambda c_m+(r-m+1)c_{m-1}]t^{-m}\Bigr\}\\&=e^{\lambda t}t^r\sum_{n=0}^\infty\sum_{m=0}^\infty\sum_{k=0}^\infty\binom{r-m}{k}\biggl[\int_{-\omega}^0&e^{\lambda \theta}\theta^k d\eta_n(\theta)\biggr]c_mt^{-(m+n+k)}\;, \end{aligned}
$$

where

$$
\binom{r-m}{k} = (r-m)(r-m-1)\cdots (r-m-k+1)/k! \; .
$$

Comparing the coefficients of $e^{\lambda t}t^r$ and $e^{\lambda t}t^{r-1}$, respectively, we have $\Delta(\lambda)c_0 =$ 0 and $\Delta(\lambda)c_1 + [\Delta'(\lambda)r - \Delta_1(\lambda)]c_0 = 0$, where

$$
\varDelta_1(\lambda)=\int_{-\omega}^0 e^{\lambda\theta}d\eta_1(\theta)\;.
$$

Then we choose c_0 arbitrarily and let $r = \Lambda_1(\lambda)/\Lambda'(\lambda)$, which is justified by (1.1). Furthermore, comparing the coefficient of $e^{\lambda t}t^{r-m}$, we have (1.2) $\Delta(\lambda)c_m + \{ [\Delta'(\lambda)r - \Delta_1(\lambda)] - (m-1)\Delta'(\lambda) \} c_{m-1} + H(c_0, \ldots, c_{m-2}) = 0$ for $m \geq 2$, where $H(c_0, \ldots, c_{m-2})$ denotes the sum of the terms containing the coefficients c_0, \dots, c_{m-2} alone. It follows that the coefficients c_m ,

 $m \ge 1$ can be determined recursively starting from an arbitrary c_0 . Thus we are done.

2. **Linear functional differential equations.** We state some facts, due to Hale [4] [5], on linear functional differential equations, which we need for the proof of Theorem 2. If $\sigma \ge 0$ is a given real number and ϕ is a given function defined on the interval $[0 - \omega, 0]$, a solution of the equation (0.1) with initial value ϕ at σ is defined to be any continuous extension of $\phi(\theta - \sigma)$ on $[\sigma - \omega, \sigma]$ to the right of σ which satisfies the equation (0.1). It is well known that for any given ϕ in C there exists a unique solution with initial value ϕ at σ defined for $t \geq \sigma$ and the solution is continuous and linear in *φ* under the hypotheses stated in Section 0. If $u(\phi)$ is the solution of the equation (0.4) with initial value ϕ at zero, we define the family of linear operators $U(t)$, $t \ge 0$ by $U(t)\phi = u_t(\phi)$. Let X_0 be the function on $[-\omega, 0]$ defined by $X_0(\theta) = 0$ for $-\omega \leq \theta < 0$ and $X_0(0) = 1$. Then the solution $x = x(t)$ of the equation (0.1) with initial value ϕ at σ has the integral representation

$$
x_t(\theta) = U(t-\sigma)\phi(\theta) + \int_{\sigma}^{t} U(t-\tau)X_0(\theta)F(\tau, x_\tau)d\tau
$$

for $-\omega \le \theta \le 0$ or, in a more compact form,

(2.1)
$$
x_t = U(t-\sigma)\phi + \int_{\sigma}^{t} U(t-\tau)X_{0}F(\tau, x_{\tau})d\tau.
$$

For any characteristic value λ with multiplicity $m(\lambda)$, there are exactly $m(\lambda)$ linearly independent solution of the equation (0.4) of the form $p_j(\lambda, t)e^{\lambda t}$ for $j = 1, \dots, m(\lambda)$ and $-\infty < t < \infty$, where $p_j(\lambda, t)$ are polynomials in t. We define the functions $\phi_j(\lambda)$ in C by the relation $\phi_j(\lambda)(\theta) = p_j(\lambda, \theta) e^{i\theta}$ for $j = 1, \dots, m(\lambda)$ and $-\omega \leq \theta \leq 0$. Let $\Phi_\lambda = \emptyset$ $(\phi_1(\lambda), \dots, \phi_{m(\lambda)}(\lambda)).$ Then there exists a square matrix B_λ of order $m(\lambda)$ whose characteristic values are λ alone such that

(2.2)
$$
\Phi_{\lambda}(\theta) = \Phi_{\lambda}(0) \exp [B_{\lambda} \theta] \quad \text{for} \quad -\omega \leq \theta \leq 0.
$$

Furthermore, if $\phi = \Phi_{\lambda}a$ for some constant vector *a* and if *u* is a solution of the equation (0.4) with initial value ϕ at zero, then $u_t = \Phi_\lambda \exp [B_\lambda t]a$.

The equation adjoint to (0.4) is defined to be

(2.3)
$$
\dot{v}(\tau) = -\int_{-\omega}^{0} v(\tau - \theta) d\eta_{0}(\theta) .
$$

 C^* denotes the space of complex valued continuous functions defined on the interval [0, ω]. For any ψ in C^* and ϕ in C we define

(2.4)
$$
(\psi, \phi) = \psi(0)\phi(0) - \int_{-\omega}^0 \int_0^{\theta} \psi(\xi - \theta)\phi(\xi)d\xi d\eta_0(\theta).
$$

The characteristic equation for the adjoint equation (2.3) is also defined by (0.5). For any characteristic value λ with multiplicity $m(\lambda)$, there exist also exactly $m(\lambda)$ linearly independent solutions of the equation (2.3) of the form $q_i(\lambda, \tau)e^{-\lambda \tau}$ for $j = 1, \dots, m(\lambda)$ and $-\infty < \tau < \infty$. We define functions $\psi_j(\lambda)$ in C^* by $\psi_j(\lambda)(\theta) = q_j(\lambda, \theta)e^{-\lambda \theta}$ for $j = 1, \dots, m(\lambda)$ and $0 \leq \theta \leq \omega$. If $\Psi_{\lambda} = \text{col}(\psi_1(\lambda), \dots, \psi_{m(\lambda)}(\lambda)),$ then the matrix $(\Psi_{\lambda}, \Phi_{\lambda}) =$ $((\psi_i(\lambda), \phi_k(\lambda))$; j, $k = 1, \dots, m(\lambda))$ is nonsingular and hence, without any loss of generality, can be assumed to be the identity.

Suppose $A = \{\lambda_1, \dots, \lambda_k\}$ is a finite set of characteristic values of (0.4). Let $\{\Phi_{\lambda_1}, \cdots, \Phi_{\lambda_k}\}\$ and $\{\Psi_{\lambda_1}, \cdots, \Psi_{\lambda_k}\}\)$ be the corresponding sets of functions in *C* and those in C^* , respectively, defined above. If we let $\Phi_4 =$ $(\Phi_{\lambda_1}, \dots, \Phi_{\lambda_k})$ and $\Psi_A = \text{col}(\Psi_{\lambda_1}, \dots, \Psi_{\lambda_k}),$ then the matrix (Ψ_A, Φ_A) is non singular and may be assumed to be the identity. Thus the matrix $B =$ $diag(B_{\lambda_1}, \cdots, B_{\lambda_k}),$ where $B_{\lambda_1}, \cdots, B_{\lambda_k}$ are as defined in (2.2), is such that $\Phi_A(\theta) = \Phi_A(0) \exp[B\theta]$ for $-\omega \leq \theta \leq 0$. If $\phi = \Phi_A a$ for some constant vector a and if $u(\phi)$ is the solution of the equation (0.4) with the initial value at zero, then we have $u_i(\phi) = \Phi_A \exp[Bt] a$ for $-\infty < t < \infty$.

The above facts allow us to conclude that any ϕ in C has a unique decomposition of the form $\phi = \phi^P + \phi^Q$ with ϕ^P in *P* and with ϕ^Q in *Q*, where $P = P(A) = \{ \phi \text{ in } C; \phi = \phi \}$ for a constant vector b} and $Q = Q(A) =$ $\{\phi \text{ in } C; (\Psi_A, \phi) = 0\}.$ In fact, $\phi^P = \Phi_A(\Psi_A, \phi)$. If we make this decomposition on the integral equation (2.1), we have the equivalent equation

(2.5)
$$
x_t = U(t - \sigma)\phi^r + \int_{\sigma}^t U(t - \tau)X_0^P F(\tau, x_\tau) d\tau + U(t - \sigma)\phi^Q + \int_{\sigma}^t U(t - \tau)X_0^Q F(\tau, x_\tau) d\tau,
$$

where $X_0^P = \Phi_A(\Psi_A, X_0) = \Phi_A \Psi_A(0)$ and $X_0^Q = X_0 - X_0^P$.

3. Conversion to integral equations. It is well known that for any formal power series of the form $\sum_{m=0}^{\infty} c_m t^{-m}$, there exists an analytic function $q(t)$ with the asymptotic expansion $q(t) \sim \sum_{m=0}^{\infty} c_m t^{-m}$ as $t \to \infty$. A proof of the fact is given, for example, in Wasow [7].

Suppose there exists a formal solution of the type (0.6) of the equation (0.1). Then we have an analytic function $h(t)$ in t on an interval $[\sigma_0 \infty)$ for some σ ₀ $> \omega$, which has the asymptotic expansion

(3.1)
$$
h(t) \sim e^{\lambda t} t^r \sum_{m=0}^{\infty} c_m t^{-m} \quad \text{as} \quad t \to \infty.
$$

Changing the variable in the equation (0.1) by

(3.2)
$$
x(t) = y(t) + h(t),
$$

we obtain

(3.3)
$$
\dot{y}(t) = L_0(y_t) + G(t, y_t) + g(t),
$$

where

(3.4)
$$
G(t, \phi) = F(t, \phi) - L_0(\phi) \text{ and } g(t) = -\dot{h}(t) + F(t, h_t)
$$

for any $t \ge 0$ and ϕ in *C*.

Let us convert the problem of solving the equation (3.3) to that of solving an integral equation by making use of the facts stated in Section 2. Choose any number $\sigma \geq \sigma_o$. If we let $y(t) = 0$ for $t \leq \sigma$, we have by (2.1) the integral representation of a solution of the equation (3.3)

(3.5)
$$
y_t = \int_{\sigma}^t U(t-\tau)X_0[G(\tau, y_\tau) + g(\tau)]d\tau.
$$

Let λ be a simple characteristic value of (0.4) and let Re $\lambda = \mu$. Put $A = \{v; \Delta(v) = 0, \text{Re } v \geq \mu\}$, which is known to be finite, and denote by $P = P(\Lambda)$ and $Q = Q(\Lambda)$ the spaces in C corresponding to Λ . Therefore we obtain the unique decomposition of *C* by the subspaces *P* and *Q.* Hence we have

(3.6)
$$
y_t = \int_{\sigma}^{t} U(t-\tau)X_{0}^{P}[G(\tau, y_{\tau}) + g(\tau)]d\tau + \int_{\sigma}^{t} U(t-\tau)X_{0}^{Q}[G(\tau, y_{\tau}) + g(\tau)]d\tau.
$$

Suppose that any other characteristic value with its real part equal to *μ* is simple. It can be shown that there exist constants $K \ge 0$ and $\varepsilon > 0$ such that

$$
(3.7) \t\t\t ||U(t)X_{\circ}^P|| \leq Ke^{\mu t} \tfor \t t \leq 0
$$

and

(3.8)
$$
||U(t)X_0^0|| \leq Ke^{(\mu-\epsilon)t} \quad \text{for} \quad t \geq 0.
$$

If the integral

(3.9)
$$
- \int_{\sigma}^{\infty} U(t-\tau) X_{0}^{P}[G(\tau, y_{\tau}) + g(\tau)] d\tau
$$

is convergent, it is a solution of the equation (0.4). Adding the integral (3.9) and a continuous function $f_i(\theta) = f(t + \theta)$ for $t \ge \theta$ and $-\omega \le \theta \le 0$ to the right-hand side of the equation (3.6), we have the integral equation

(3.10)
$$
y_t = f_t - \int_t^{\infty} U(t - \tau) X_0^P[G(\tau, y_\tau) + g(\tau)] d\tau + \int_\sigma^t U(t - \tau) X_0^q[G(\tau, y_\tau) + g(\tau)] d\tau.
$$

A solution $y = y(t)$ of the integral equation (3.10) is also a solution of the functional differential equation (3.3) if $f_t = 0$ for $t \ge \sigma$ and if the integral (3.9) is convergent. Hence the function $x = x(t)$ in (3.2) is a solution of our fuctional differential equation (0.1).

4. Existence and uniqueness theorem. It follows from the hypo thesis (0.2) and the relation (3.4) that $G(t, \phi) \sim \sum_{n=1}^{\infty} L_n(\phi) t^{-n}$ as $t \to \infty$ for any ϕ in C. Then there exist constants $\sigma_1 \ge \sigma_0 > \omega$ and $A \ge 0$ such that

$$
(4.1) \t |G(t, \phi)| \leq At^{-1} ||\phi|| \t for \t t \geq \sigma_1 \text{ and } \phi \text{ in } C.
$$

Moreover, for any nonnegative integer N there exist constants B_N and *N* satisfying $|g(t)| \leq B_N e^{\mu t} t^{p-N}$ for $t \geq \sigma_N$. Here $g(t)$ is the function defined in (3.4) and

(4.2)
$$
\operatorname{Re} \lambda = \mu \quad \text{and} \quad \operatorname{Re} r = \rho.
$$

Here is a theorem concerning the existence of solutions of the integral equation (3.10).

THEOREM 3. Suppose that there exist constants $N > \rho + 1$, $\sigma \geq \sigma_1$ *and* $\alpha \geq 0$ *satisfying the relations*

(4.3)
$$
2AK/(N-\rho-1) < 1/2,
$$

$$
\varepsilon \sigma > N - \rho - 1 ,
$$

(4.5)
$$
2AK/(\varepsilon\sigma - N + \rho + 1) < 1/2,
$$

$$
(4.6) \t |g(t)| \leq B_N e^{nt} t^{p+1-N} \t for t \geq \sigma,
$$

$$
(4.7) \t\t\t ||f_t|| \leq \alpha e^{\mu t} t^{\rho+1-N} \t for \t t \geq \sigma
$$

and

$$
(4.8) \qquad (2A\alpha + B_N)K[1/(N-\rho-1)+1/(\varepsilon\sigma-N+\rho+1)] \leq \alpha.
$$

Then the equation (3.10) has a solution $y = y(t)$ continuous in t on the *interval* $[\sigma - \omega, \infty)$ *satisfying the relation*

$$
(4.9) \t\t\t ||y_t - f_t|| \leq \alpha e^{\mu t} t^{\rho+1-N} \t for \t t \geq \sigma.
$$

PROOF. Denote by S the class of continuous functions $y = y(t)$ in t on the interval $[\sigma - \omega, \infty)$ which satisfy the relation (4.9). On S we define an operator *T* by $w(t) = (Ty)(t)$ for $t \ge \sigma - \omega$, where

(4.10)
$$
w_t = f_t - \int_t^{\infty} U(t-\tau) X_t^P[G(\tau, y_\tau) + g(\tau)] d\tau + \int_\sigma^t U(t-\tau) X_t^Q[G(\tau, y_\tau) + g(\tau)] d\tau.
$$

 $w = Ty$ is well-defined for any y in S and is continuous on the interval $[*σ* - *ω*, \infty)$. For any member $y = y(t)$ in S we obtain

$$
(4.11) \t\t\t ||y_t|| \leq 2\alpha e^{\mu t} t^{\rho+1-N} \tfor \t t \geq 0
$$

by (4.7) and (4.9) . Thus by (4.10) we have

$$
||w_t - f_t|| \leq (2A\alpha + B_N)K \int_t^{\infty} \tau^{\rho-N} d\tau + (2A\alpha + B_N)Ke^{(\mu-\epsilon)t} \int_{\sigma}^t e^{\epsilon \tau} \tau^{\rho-N} d\tau
$$

using (3.7) , (3.8) , (4.1) and (4.6) . On the other hand, we have the inequality $e^{st}t^{p-N} \leq (d/dt)(e^{st}t^{p+1-N})/(\varepsilon\sigma - N + \rho + 1)$ for $t \geq \sigma$ by (4.4). Then we obtain

$$
(4.12) \quad ||w_t - f_t|| \leq (2A\alpha + B_N)K[1/(N - \rho - 1) + 1/(\varepsilon\sigma - N + \rho + 1)]e^{\mu t}t^{\rho+1-N}
$$

for $t \geq \sigma$.

Thus from (4.8) it follows that Γ is a mapping from *S* to S.

Moreover, we see that the mapping $T: S \rightarrow S$ is continuous with respect to the topology of uniform convergence on any compact subinterval of the interval $[\sigma - \omega, \infty)$ and that the class *S* is closed with respect to the same topology. It can be also proved that the family $T(S)$ is uniformly bounded and equicontinuous on any compact subinterval of the interval $[\sigma - \omega, \infty)$. It is clear that the class *S* is convex. Therefore we conclude that there exists a member $y = y(t)$ in *S* which is invariant under our mapping *T* by applying the following lemma proved by Hukuhara [6]. The function $y = y(t)$ is the desired solution of the integral equation (3.10). This proves Theorem 3.

LEMMA. *Let S be a convex family of continuous functions in t on an interval I. Suppose that a transformation T from S to S is continuous with respect to the topology of uniform convergence on any compact subinterval of I and that S is closed with respect to the same topology. Moreover, suppose that the family T(S) is uniformly bounded and equi-continuous on any compact subinterval of* /. *Then there exists at least one function which is invariant under the transformation T, that is, a function* $x(t)$ in S such that $T(x(t)) = x(t)$.

We have the following uniqueness theorem.

THEOREM 4. Suppose that there exists a solution $y = y(t)$ of the

equation (3.10), *continuous in t on the interval* $[\sigma - \omega, \infty)$, *which satisfies the relation*

$$
(4.13) \t\t |y_t|| \leq \beta e^{\mu t} t^{\rho+1-N} \t for \t t \geq 0
$$

and for some constant $\beta \geq 0$, where $N > \rho + 1$ and $\sigma \geq \max \{ \sigma_i, 1 \}$ satisfy

$$
\varepsilon\sigma-N+\rho+1>0
$$

and

$$
(4.15) \qquad \qquad AK[1/(N-\rho-1)+1/(\varepsilon\sigma-N+\rho+1)]\leqq 1.
$$

Then the solution $y = y(t)$ is unique.

PROOF. Let $y = y(t)$ and $y' = y'(t)$ be continuous solutions in t, on the interval $[\sigma - \omega, \infty)$, of the equation (3.10) which satisfy, respectively, (4.13) and

$$
(4.16) \t\t\t ||y'_{t}|| \leq \beta' e^{\mu t} t^{\rho+1-N'} \t for \t t \geq \sigma
$$

and for some constants $\beta \geq 0$ and $\beta' \geq 0$, where $N > \rho + 1$, $N' > \rho + 1$ and $\sigma \ge \max\{\sigma_1, 1\}$ satisfy (4.14), (4.15),

$$
\varepsilon \sigma - N' + \rho + 1 > 0
$$

and

(4.18)
$$
AK[1/(N'-\rho-1)+1/(\varepsilon\sigma-N'+\rho+1)]<1.
$$

The function $z = y - y'$ is a solution of the integral equation

$$
(4.19) \t z_t = -\int_t^\infty U(t-\tau) X_t^p G(\tau,z_\tau) d\tau + \int_\sigma^t U(t-\tau) X_t^q G(\tau,z_\tau) d\tau,
$$

since the functional $G(t, \phi)$ is linear in ϕ . On the other hand, the solution $z = z(t)$ satisfies

$$
(4.20) \t\t ||z_t|| \le ||y_t|| + ||y'_t|| \le \beta'' e^{\mu t} t^{p+1-N''} \tfor t \ge \sigma,
$$

where $\beta'' = \beta + \beta'$ and $N'' = \min\{N, N'\}$ by (4.13) and (4.16). Using the relations (3.7), (3.8), (4.1), (4.14), (4.15), (4.17) and (4.18) for the equation (4.19), we have

$$
(4.21) \quad ||z_t|| \leq AK[1/(N''-\rho-1)+1/(\varepsilon\sigma-N''+\rho+1)]\beta''e^{\mu t}t^{\rho+1-N''}
$$
for $t \geq \sigma$

by the same argument as in the proof of Theorem 3. Repeating the same argument, we have, for any positive integer m ,

$$
||z_t|| \leq \{AK[1/(N''-\rho-1)+1/(\varepsilon\sigma-N''+\rho+1)]\}^m\beta''e^{\mu t}\varepsilon^{\mu+1-N''}
$$
for $t \geq \sigma$.

This implies that $z(t) = 0$ for $t \ge \sigma - \omega$ by (4.15) or (4.18). This proves Theorem 4.

5. **Proof of Theorem** 2. Now we are in a position to prove Theorem 2. Under the hypotheses stated in Section 0 for the equation (0.1) and the assumptions in Theorem 2 for a characteristic value λ and a formal solution of the type (0.6) of the equation (0.1) , we consider the integral equation (3.10) with $f_t = 0$ for $t \geq \sigma$, where $G(t, \phi)$ and $g(t)$ are as defined in (3.4) and (3.1). Note the relations (3.7), (3.8), (4.1) and (4.2). First we choose a nonnegative integer $N > \rho + 1$ satisfying the relation (4.3), and next choose a constant $\sigma \ge \max{\{\sigma_i, 1\}}$ satisfying the relations (4.4), (4.5) and (4.6) . Finally we choose a constant $\alpha \ge 0$ satisfying the relation (4.8). The assumption (4.7) is automatically satisfied. Then it follows from Theorem 3 that there exists a solution $y = y(t)$, continuous in t on the interval $[\sigma - \omega, \infty)$, of the equation (3.10) with $f_t = 0$ for $t \geq 0$ satisfying the relation (4.9). Thus we have

(5.1)
$$
||y_t|| \leq \alpha e^{\mu t} t^{p+1-N} \quad \text{for} \quad t \geq \sigma.
$$

Since the integral (3.9) is clearly convergent for the solution $y = y(t)$, it is also a solution of the functional differential equation (3.3), for which the function $x = x(t)$ defined in (3.2) is a solution of our equation (0.1) on the interval $[\sigma - \omega, \infty)$.

To investigate the properties of the solution $x = x(t)$, we choose any nonnegative integer $N' > \rho + 1$ satisfying $2AK/(N' - \rho - 1) < 1/2$. There exist constants $\sigma' \geq \sigma$ and $B_{N'} \geq 0$ satisfying the relations $\varepsilon \sigma' - N' +$ $\rho + 1 > 0$, $2 A K/(\varepsilon \sigma' - N' + \rho + 1)$ < 1/2,

(5.2)
$$
|g(t)| \leq B_{N'}e^{\mu t}t^{\rho-N'} \quad \text{for} \quad t \geq \sigma'
$$

and

(5.3)
$$
e^{-\varepsilon t} \leq t^{\rho+1-N'} \quad \text{for} \quad t \geq \sigma'.
$$

We consider another integral equation of the form

(5.4)
$$
z_t = f_t - \int_t^{\infty} U(t-\tau) X_0^P[G(\tau, z_\tau) + g(\tau)]d\tau + \int_{\sigma'}^t U(t-\tau) X_0^Q[G(\tau, z_\tau) + g(\tau)]d\tau,
$$

where

(5.5)
$$
f_t = \int_{\sigma}^{\sigma'} U(t-\tau) X_0^{\circ} [G(\tau, y_\tau) + g(\tau)] d\tau \quad \text{for} \quad t \geq \sigma'.
$$

For the function (5.5) we have $||f_t|| \leq \beta e^{(u-t)^2} \leq \beta e^{(u-t)^2+1}$ for $t \geq \sigma$ by

ASYMPTOTIC EXPANSIONS 199

(3.8), (4.1), (4.6), (5.1) and (5.3). It is clear that $y = y(t)$ is a solution, continuous in t on the interval $\sigma - \omega$, ∞), of the equation (5.4) and satisfies (5.1) for $t \ge \sigma'$. On the other hand, since we can choose a constant $\alpha' \geq \beta$ so that $(2A\alpha' + B_{\alpha'})K[1/(N' - \rho - 1) + 1/(\varepsilon\sigma' - N' +$ $p \neq 1$] $\leq \alpha'$, it follows that the conditions (4.3)-(4.5) and (4.8) of Theorem 3 are fulfilled for the constants N' , σ' and α' . Then there exists a solution $z = z(t)$, continuous in t on the interval $[\sigma' - \omega, \infty)$, satisfying $||z_t - f_t|| \leq \alpha' e^{\mu t} t^{\rho + 1 - N'} \ \ \text{ for } \ \ t \geq \sigma', \ \ \text{ which implies the relation } \ ||z_t|| \leq$ $\beta' e^{\mu t} t^{\rho+1-N'}$ for $t \geq \sigma'$ and for some $\beta' \geq 0$ by Theorem 3. Moreover, we have $y(t) = z(t)$ for $t \geq \sigma' - \omega$ by Theorem 4.

Hence the solution $y = y(t)$ of the equation (3.10) with $f_t = 0$ for $c \geq \sigma$ satisfies the asymptotic property $y(t) = O(e^{\mu t} t^{e+1-N'})$ as $t \to \infty$ for any nonnegative integer $N' \ge N$. Then $e^{-\lambda t}t^{-r}y(t) \sim 0$ as $t \to \infty$. Thus it follows that the solution $x = x(t)$ of the equation (0.1), obtained in (3.2) , has the same asymptotic expansion as that of the function $h(t)$. This implies the relation (0.7). This completes the proof of Theorem 2.

REFERENCES

- [1] R. BELLMAN, Asymptotic series for the solutions of linear differential-difference equations, Rend. Circ. Mat. Palermo Ser. 2, 7 (1958), 261-269.
- [2] R. BELLMAN AND K. L. COOKE, Asymptotic Behavior of Solutions of Differential-Difference Equations, Memoirs Amer. Math. Soc. No. 35, 1959.
- [3] R. BELLMAN AND K. L. COOKE, Differential-Difference Equations, Academic Press, New York-London, 1963.
- [4] J. K. HALE, Linear asymptotically autonomous functional differential equations, Rend. Circ. Mat. Palermo 5 (1966), 331-351.
- [5] J. K. HALE, Theory of Functional Differential Equations, Springer-Verlag, New York-Heidelberg-Berlin, 1977.
- [6] M. HUKUHARA, Sur les points singuliers des equations differentielles lineaires: Domain réel, Jour. Facul. Sci. Hokkaido Imp. Univ. 2 (1934), 13-88.
- [7] W. WASOW, Asymptotic Expansions for Ordinary Differential Equations, John Wiley and Sons, Inc., New York-London-Sydney, 1965.

DEPARTMENT OF COMPUTER SCIENCE FACULTY OF ENGINEERING YAMANASHI UNIVERSITY KOFU, 400 JAPAN