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Abstract. New stability results for a class of countably infinite
systems of differential equations are established. We consider those systems
which may be viewed as an interconnection of countably infinitely many
free or isolated subsystems. Throughout, the analysis is accomplished in
terms of simpler subsystems and in terms of the system interconnecting
structure. This approach makes it often possible to circumvent difficulties
usually encountered in the application of the Lyapunov approach to complex
systems with intricate structure. Both scalar Lyapunov functions and vector
Lyapunov functions are used in the analysis. The applicability of the
present results is demonstrated by means of several motivating examples,
including a neural model.

1. Introduction. In the present paper we establish new stability
results for a class of countably infinite systems of ordinary differential
equations. We consider those systems which may be viewed as an inter-
connection of countably many free or isolated subsystems (which are
described by ordinary differential equations defined on finite dimensional
spaces). Such systems are often called interconnected systems, composite
systems, decentralized systems, large scale systems, and the like (see Michel
and Miller [5]). As in [5], our objective will be to analyze interconnected
systems in terms of their simpler subsystems and in terms of their inter-
connecting structure. In this way it is frequently possible to circumvent
difficulties usually encountered when the Lyapunov approarch is applied
to complex systems with intricate structure.

For existing results dealing with stability and well posedness of
countably infinite systems of differential equations, the reader is referred
to Persidskii [7, 8], Leung et al. [4], Shaw [10, 11] and Deimling [2].

This paper consists of several parts. First we introduce initial value
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problems which are characterized by countably infinite systems of equa-
tions, which are well posed, and which may be viewed as interconnected
systems. Next, we establish several stability results which are obtained
via scalar Lyapunov functions (consisting of a weighted sum of Lyapunov
functions for the free subsystems). Next, we utilize infinite vector
Lyapunov functions in our analysis (whose components are Lyapunov
functions for the isolated subsystems). Throughout, several motivating
examples are provided, including a neural model, to demonstrate the
applicability of the method advanced.

2. Countably infinite systems of differential equations. A. Initial
value problem. In this paper we are concerned with the initial value
problem

(1) *» = K(t, x) , zn(0) = cn

for n = 1, 2, 3, . Here x is the infinite dimensional column vector
x = (zτ

ί9 zτ

2, ••-, zl, •••feΛ", zneRm*, DaRω and hn: R
+ x D-+RT*. The

infinite product R° — Rmί x Rm* x x Rmn x is given the usual
product topology. Since this topology is equivalent to introducing the
metric

(2) p(χ,χ) = Σ K - * l(l + \zn-Zn\Yγϊrn

then R° is a convex Frechet space (see, e.g., [9]).
A solution of (1) is a function x: [0, b] —> D for some b > 0 such that

zn e Q[0, 6], zn(0) = cn and zn(t) = hn(t, x(t)) for all t e [0, b] and for all
n = l, 2, 3, •-..

REMARK 1. An alternate way to view the above initial value problem
is to fix a Banach space X of real sequences and to think of (1)

(1') x = h(t, x) , x(0) = c

as a problem in X. In this case an X-solution is a function x: [0, 6] > X
which is continuously differentiate in the X-sense and satisfies (Γ).
Clearly, an X-solution for (Γ) is also a solution in our sense (for (1)).
However, in the present paper we shall not concern ourselves with
Banach space settings for this initial value problem. Our approach has
the advantage that well-posedness (i.e., existence, uniqueness and con-
tinuation results for (1)) poses no problems while it may pose serious
difficulties in a Banach space setting (for (Γ)) The disadvantage of our
approach is that before applying stability results, it is usually necessary
to argue separately that the solutions x(t) of (1) remain in a bounded
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set D.

B. Interconnected systems. Frequently we may regard system (1)
as an interconnected system or a composite system of the form

(Σ) zn = /.(ί, zn) + gn(t, x) , sn(0) = cn ,

n = 1, 2, 3, , where in the notation of (1), feΛ(ί, a?) = fn(t, zn) + #„(£, x).
We view (I7) as an interconnection of countably infinitely many isolated
or free subsystems described by equations of the form

(SO wn = fn(t, wn) ,

n = 1,2, . The terms gjf, x), n = 1, 2, , comprise the interconnect-
ing structure of system (21).

C. Well-posedness. We shall assume that for some constants r% > 0
the set D = Z)fc for some & > 0 where A = {a; = (zf, z2

Γ, - f €Rω: \zn\ ^
&rΛ for n = l,2,Z, •••}. We shall also make the following additional
assumptions.

(A-l): /. : R+ x Rm- -> i f , /w(ί, 0) = 0 for all t ^ 0, / . is locally
Lipschitz continuous with Lipschitz constant independent of t and for
l̂ nl ^ fc^n> this Lipschitz constant is Ln0(k).

(A-2): flrΛ: R+ x Rω-+ Rm", gn(t, 0) = 0 for all ί ^ 0, and for any
& > 0 there exist constants Lnj(k) >̂ 0 such that ΣΓ-i Lni(k)rj < ^ and
such that |flrΛ(ί, a?) - gn(t, x*)\ £ Σ Γ = i ^ W I ^ ~ «*l for all x, x ^ f l , , for
all ί ^ 0, and all n = 1, 2, .

THEOREM 1. (See Deimling [2, Corollary 6.2, p. 86]). // (A-l) and
(A-2) are true /or some &, i/ | cn \ ^ aferΛ for some a e (0, 1) ami /or aίi
w ^ 1 and if

(A-3): there is an M > 0 sucfe that

( 3 ) L J i h + Σ L n j ( k ) r s ^ Mrn for all n ^ l ,

(Σ) has a unique solution x(t, c) which will exist at least on the
interval 0 <; t ^ (1 — aOikί"1 = Γ (where cτ = {cl, cl, •) cmώ a?(0, c) = c).

COROLLARY 1. If in Theorem 1 the constants Lnj can be chosen
independent of k, then the solution will exist for all t ^ 0 and on any
interval [0, T] there will exist k such that x(t) e Dk for 0 <£ t ^ T.

PROOF. In this case Lnj(k) = Lnj works for any Dk. Thus Equation
(3) remains true when r, is replaced by krά for any k > 0. Given {cj,
compute a?(t, c) on [0, T], Γ = (1 — αJAf"1. Since |&n(ί)| ^ fcrΛ, we can
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continue the solution x(t, c) = x(t - T, x(T, c)) on [T, 2T] with \xn(2T)\ ^
krja. This process can be continued indefinitely to define x(t, c) on
[mT, ( m + 1 ) Γ ] w i t h \xn(t)\ ^ krna~m o n t h e i n t e r v a l mT £t^(m + ΐ)T.

q.e.d.

We will also study finite approximations to (Σ) which are of the
form

K = fn(t, zn) + gn{t, (zu z2, , zNf 0, •))

n = 1, 2, ••-, N, where zn(t) = 0 if n > N. In this case we let xN(t, c)
denote the solution of (ΣN) and let cN = (cf, cΓ, , c j , 0, 0, -)τ.

THEOREM 2. (See Deimling [2, Theorem 7.5, p. 101]). Under the

hypotheses of Theorem 1 {or Corollary 1) we have

lim #ΛΓ(£, c) = x(t, c)
iV-->oo

uniformly for t in [0, Γ] (or for t on compact subsets of R+).

3. Analysis by scalar Lyapunov functions. A. A stability result.
Subsequently we will require the following assumptions.

(L-l): For isolated subsystem (£/$ there is a continuously differen-
t i a t e function vn: R+ x Rmn —> R and three functions ψln, ψ2n, ψΆn e K
and a constant σneR such that

ψln(\*n\) ^ Vn(t, Zn) ^ ψ2n(\Zn\)

Dvn{^n)(t, zn) ^ σnfSn(\zn\)

for all (ί, zn) e R+ x i2m%. Here we define if as the class of all continu-
ous functions with domain R+ and range in R+ having the properties
that for any ψeK, ψ(0) = 0 and ψirλ) > ψ(r2) whenever i\ > r2. Also,
Dv{ sn) denotes the derivative of vn along the solutions of (S^n).

For composite system (Σ) we will utilize scalar Lyapunov functions
of the form

( 4 ) v(t, x) = Σ Kvn(t, zn)
n=l

where the functions vn are defined in (L-l) and where the constants
Xn > 0 will be chosen later to ensure that v is defined and that along
the solutions of composite system (Σ), the derivative of v with respect
to t is non-positive, i.e., Dv{ ,(t, x) <; 0.

(L-2): Given ψBn in (L-l), there are constants anjeR such that
Vvn{t, zn)

τgn{t, (zlf , zN, 0, 0, ))^f 3 n(l^l) 1 / 2 Σf=i^ f3i(l^l)1/2 for all ί^0,
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zn e j?m% n = 1, 2, , N and iV = 1, 2,
We will find it useful to define the matrix RN = [rg] and the matrix

SN by

^σ, + au) if i = j
( 5 ) rij , . .

[\ if ^ ^ :?

and

( 6 ) S^ - (J2* + 2&)/2 .

We shall call the trivial solution x = 0 of the system (Σ) stable with
respect to a set D if for any ε > 0 there is a δ > 0 such that when
ceD and p(c, 0) < δ then <o(x(£, c), 0) < s for all t ^ 0. (Equivalently one
can say that for any ε > 0 and any integer J o ^ 1 there exists S > 0
and an integer Jx >̂ 1 such that when c e ΰ and |c Λ | ^ d for 1 ^ ^ ^ Λ
then |^Λ(ί, c)| < ε for all t ^ 0 and for w = 1, 2, , Jo.) We call the
trivial solution x = 0 asymptotically stable with respect to D if it is
stable wi th respect to D and if for any initial condition ceD the solu-

tion x(t, c) —> 0 as £ -* °o.

LEMMA 1. Suppose that (A-l), (A-2), (A-3), (L-l) α^cί (L-2) are true

and assume that there exist constants Xn > 0 such that Σ~=i ̂ n&2n(krn) < c°.
// matrix SN is negative semi-definite for all N sufficiently large, then
v{t, x(tf c)) is defined, continuous and nonincreasing in t e [0, (1 — α)M"1]
for any initial condition c e Dak.

PROOF. Suppose that x(t9 c) exists on [0, b]. By Theorem 2 arv(t, c) —•
«(ί, c) as iV^ ^ uniformly on [0, 6], Thus, lim^.^ v(t, xN(t, c)) = v(t, x(t, c))
uniformly on [0, 6]. Moreover, (d/dt)v{t, xN(t, c)) = Σ =iλΛ23ι;Λ(^n)(£, zn) +
KFvn(t, zjgn{t, xN(t, c))t£Σ£=iK[σ»Ψ*n(K\) + ΣJ=iKanrt^^^
ΨIRNΨN = ΨN[(R* + Rτ

N)l2]ψN = ψτ

NSNψN ^ 0 where ψn = (^(IzJ)172, ^2(|^2 |) 1 / 2,
• , ΨN(\ZN\Y/2) Since v(t, xN{t, c)) is nonincreasing in t (for all N sufficient-
ly large), then so is the limit v(t, x{t, c)). q.e.d.

THEOREM 3. Suppose that (A-l), (A-2), and (A-3) are true with
Lipschitz constants Lnj independent of k and suppose that (L-l) and (L-2)
are true. Assume that the constants Xn can be picked so that the matrix
SN is negative semi-definite (see (5) and (6)) for all N sufficiently large
and so that Σϊ=i K f 2 ^ J < °° Define D = Dk for k = 1. Then the
trivial solution x — 0 of composite system (Σ) is stable with respect to
the set D.

PROOF. Fix ε and Jo. Since ψln e K for all n ^ 1 and since v(t, x) ^

Σ:=iKfi«(|zn\) ^ Σί°=iKψmQ*nI) ^ m a x [ \ n f ι n { \ z n \ ) : l ^ n £ Jo}, then there
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exists m > 0 such that v(t, x) ί> m if for some n between 1 and Jo we

have
δ > 0 so small that

^ ε . Pick J x so large that Σ~=jχ+i 2*(r«) < m/2 a n d pick
< m/2. If | cn | ^ δ for 1 <: n ^ J^ then

by Lemma 1 v(t, a?(ί, c)) ^ v(0, c) < m. Thus
and for 1 <: w <: /0.

EXAMPLE 1. Consider the countable system of scalar equations

zn(t, e)\ < e for all t ^ 0
q.e.d.

We can view (7) as an interconnection of countably infinite many free
subsystems described by

( 8 ) zn = -zn ,

n = 1, 2, , with interconnecting structure specified by gn(t, x) — zn^19

For any r > 0 we can set rn = r for all n ^ 1 and see that (A-l)
and (A-2) are satisfied for (7).

For {.90 we choose vn{zn) = zl/2. In the notation of (L-l) and (L-2)
we have ψln(\zn\) = ψ2j]zn\) = z2j2, ψSn(\Zn\) = zl, σ» = - 1 , α»,n-i = 1 for
n ^ 2, and α t i = 0 for all other i and j . Thus, (L-l) and (L-2) are
satisfied as well.

To show that the remaining hypotheses of Theorem 3 are satisfied,
we let

r 1 O . 0 0η

- 1 l 0 0
A =

L 0 0 ••• - 1

If 0 < ax < a2 < < aN and p = (alf a2,
component of vector Ap is positive). If
(&!, b2, , bN)τ then A7? > 0. Define

, aN)τ, then Ap > 0 (i.e., each
>! > b2 > > bN > 0 and # =
e^bj/a,-, l^j^N, W =

diag [elf e2, , eiV], and E = [6iy] = (TΓA + ATW). Then δ^ ^ 0 for all
i Φ j and Bp = (TFA + AτW)p = TΓ(Â >) + A7? > 0. It follows that 5
is an ikf-matrix [3, 6] (i.e., btj ^ 0 for all i Φ j and all successive principal
minors of B are positive) and B = Bτ is positive definite.

Using the notation of Equations (4)-(6) we choose λ, = e5. Then the
matrix B constructed above equals the matrix —25^. Thus SN is nega-
tive definite. The only remaining question is whether the resulting λΛ

are summable. However, this is easy to arrange. For example, if an =
2n'\ bn = 2~nί\ then Xn = 2~n will do.
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All hypotheses of Theorem 3 are now satisfied and the trivial solu-
tion x — 0 of system (7) is stable with respect to Dk for any k > 0.

The system of equations (Σ) can in this particular case be solved
explicitly to obtain zn{t) = e~*[cn + cn^t + cn^t2/2\ + + cjr^Kn - 1)!].
Thus, in the present example all solutions tend to zero as £ —> oo. We
develop below some theory to predict this asymptotic stability.

B. An invariance result. The purpose of the next example is to
provide motivation for the next result.

EXAMPLE 2. Consider the system of scalar equations

( 9 ) Zn = - Zn + 2 Σ (9nm/K)Zm ,

n = 1, 2, » , where gnm ^ 0, gn>n+1 > 0, and the g are assumed to be such
that ΣϊU Σ™-+1 gnm < - and where \n = ( Σ ϊ i flf + Σ - . + i flO > 0.
Reversing the order of summation in the first sum below we see that

For each isolated subsystem (,5 )̂ of (Σ), given by

(10) z»=-zn

we choose vn(«Λ) = z»/2 and for composite system (9) we choose the
Lyapunov function v(x) = Σ"=i λΛvn(2n). Since the system of equations
(9) is upper triangular, rather than using finite approximations, we
can equivalently compute directly that — Dv{9)(x) = Σ ϊ

2 s . O = Σ?=i Σ : = +i ff.Λ*n - ^m)2. Thus, jDv(9)(aj) ^ 0 and with rn = r for
all w ^ l we obtain stability for system (9) by Theorem 3.

REMARK 2. In the above example it is natural to ask if more can
be asserted. Specifically, do the solutions (of (9) in Example 2) tend to
the set E = {(zlf z2, - , zn, ) : z1 = z2 = = zn = }? This is a
natural question, since above Dvw(x) is negative definite with respect to
the set E. Is it possible to prove an invariance theorem (see [13] or
[1, Section 5.4]) for this system (i.e., do the solutions tend to an invariant
subset of Etyt The next result provides some answers along such lines.

THEOREM 4. Assume that the hypotheses of Theorem 3 are true. As-
sume there exists k>0 such that x(t, c) e Dk for all t^0 and for all ceD.
Suppose that Dv{Σ)(t, x) ^ — W{x) where W{x) is positive definite with
respect to a set EaDk (i.e., for every ε > 0 there is a δ > 0 such that
if xeDk and p(x, E) ^ ε then W(x) ̂ 3). If the functions /„, gn and vn

are all independent of t, then for any ce D
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( i ) x(t, c) tends to E as t —> oo ? and
(i i) the positive limit set Ω(x( , c)) is an invariant set with respect

to (Σ).

PROOF. Assume that (i) is not true. Then there is a monotone
sequence {tn} such that tn -> oo and an e > 0 such that p(x(tn, c), E) ^ 2ε.
Since Dk is a compact set and hn=fΛ + gn is continuous there, then hn is
bounded on Dk. Thus zn(t) is uniformly continuous on 0 <̂  t < oo for each
w ^ 1, i.e., there is an 77 > 0 such that |0(&(ί, c\ E) ^ ε for | ί — ί j ^ 77.
Also, there is a δ > 0 such that W(x) ^ δ if <o(x, E) ^ ε. Thus for ί ^
tN + η we have

0 ^ v(a?(ί)) ^ v(c) - (* TΓ(a?(β))d8 ^ v(c) - Σ
Jo i=i

The last expression is negative when N > v(c)/(2δη). This contradiction
completes the proof of (i).

To prove (ii) note that each component zn(t) is uniformly continuous
and bounded on 0 <: t < 00. Let d e Ω(x( , c)) and let tn —> 00 be a sequence
such that a?(tΛ, c) —> cί = (dlf d2j •)• Then 2?m(ί + ίm, c) is an equicontinu-
ous, uniformly bounded sequence of functions defined on — T ^ t ^ T for
any T > 0. By possibly taking a subsequence we can assume that
l im^^ zm(t + tn, c) = yjt) exists uniformly for t on compact subsets of
— 00 < t < 00. Thus, as n —> 00 we get zm(ί + £w, c) = «w(ΐ«, c) +

I hm(x(s + tn, c))ds. I n t h e l i m i t t h i s i s yjt) = dm+\ hm{y(s))ds. T h i s
Jo Jo

means that y(t) = x{t, d) for - c o < t < 00. q.e.d.

REMARK 3. Part (i) of Theorem 4 covers Example 1 above. Indeed
in that example it is easy to compute that Dv{7)(t, x) ^ ( — 3/8)3? —
(1/4) Σn=2 s /2Λ ^ (-1/8M«, a) if we choose Xn = 2"*. Since v(ί, s) = v(a )
is positive definite, then we can take E = the origin and assert asymp-
totic stability of (7) with respect to Dk for any k > 1.

REMARK 4. In Example 2 we see that given any solution x(t, c) with
I s»(t, c) I ̂  A for some & and for all t ^ 0, then by Theorem 4, x(t, c) —»
^ = {(#!, 22, )Γ Zi = 2̂ = •}. Indeed »(ί, c) tends to the largest
invariant subset of E, which we denote by M. On M the system of
equations (9) reduces to zn = ( - l + (2/λJΣ£=»+i ί/»»)« = ί?« , w = 1, 2, 3,
where ^ = - l + ( 2 / λ J Σ m = Λ + i ^ « must be independent of w. Indeed, since
the components zn are bounded on — oo<£<oo, either η = 0 or zn = 0. Now

37 = - 1 + (2/λj Σm=Λ+i βrΛW = (Σ;=»+i gnm- Σr=\ flr-VίΣ^.+i ^ + Σ i i flr..)-
Therefore either M is just the origin or else Σm=Λ+i QΛm = Σϊ=\ fi^«
(w = 1, 2, 3, •). This is impossible since for n = 1, Σϊ»=i ̂ »» means zero
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while Σ ϊ = 2 0i« = \ > 0.

In Theorem 4 the hypothesis that x(t, c) e Dk for all t >̂ 0 for some
k > 0 is needed only to ensure that x(t, c) is uniformly continuous on
[0, oo). This can also be assured in other ways, e.g., Theorem 5. We
say that system (Σ) is row-finite if for each n ̂  1 there is an integer
m(n) ^ 1 such that hn(t, x) = hn(t, xlf , xmin)) depends only on t and xό

for 1 <: j ^ m(w). The proof of the following result is similar to that
of Theorem 4 above.

THEOREM 5. Assume that the hypotheses of Theorem 3 are true.
Suppose that Dv{Σ)(t, x) <; — W(x) where W(x) is positive definite with
respect to a set E. If fn, gn and vn are all independent of t and (Σ) is
row finite, then for any c e D conclusions (i) and (ii) of Theorem 4
remain true.

REMARK 5. In Example 2 if for each n there exists m{n) such that
gnm = 0 when m ̂  m(n) and if supw \cn\ < oof then x(t9 c) —• 0 as t —> co.

EXAMPLE 3. As in Example 2 suppose that ^ ^ 0 with #W)W+1 > 0

and Σϊ=i Σm=%+i flrw« < °°, λw = Σm=\ ^WTO + Σϊ=»+i ^«. > 0 and consider
the system of equations

z, = -z, + Σ (QJ\)^
m = 2

2. = -«• + Σ d/-A .)«« + Σ (flr«A.)«m , w ̂  2 .
m = % + l m = l

If v(a?) = Σ?=i ^n^»/2, then by a calculation much like that in the last

example we obtain -DvιΣ)(x)= Σϊ=i [λw«»-Σϊ=»+i 0»«s«s»- Σ m ΐ Q^-^^Λ =

Σ°° ΓV°° /7 'j'2 V 0 0 /7 ^ ^ l 4 - V ° ° V 7 4 " 1 ry ί'2 V ° ° V * - 1 a 7 ? —Λ=1 L^Ljm=7t+i ynm^n 2Ljm=n+l \)nm"n"'m\ ^ ^ ̂ LJ?I=I ^ljm=l ymn^n Zun=i ^ιm=l ymn^n^m —
v->oo >Γ~» 00 n / /y2 ~ ~ \ I "V^ 00 ΛΓ"'00 -γ ^/y2 Λf Λ» \ "V"100 "̂ ~> cx5 „ / -,2

^Li«=l ^jm=w+l ynm\Zn ^n^m) "+" 2jm=l 2j»=m+l VmvM&n ^v/ 'm) — ^-J%=1 2jm=n+l ynm\"n

3*z» + ̂ L - V j = Σ?=ιΣ:=n+iff (2» - O 2 . If sup, | c Λ | < oo, then the
solution x(t, c) -+ E as t —• oo where £? = K^, JS2, 23, •): z1 = ̂ 2 = ̂ 3 = •},
provided either sup^o,^ |zn(t, c)\ < co or the system is row-finite. An
invariant subset of E has solutions with the property zx = z2 = z3 = so

that Zn= -2» + Σ : = +l (^m/λJ^ + Σmΐl ( ^ m J λ > Λ = -(l/λJ(λT O-Σm=«+i ^ w ~
Σm=\ Qmn)Zn- &Y the definition of λΛ, these coefficients are all zero. Thus
all points of the form xτ = ( ^ ^2, ) with zx = z2 = ̂ 3 = = if constant
are solutions. (The origin is not an attractor.)

EXAMPLE 4. Consider the system of equations

(zι = —2zι

Jr z2(11)
[in = zn-t - 2zn + zn+1 , n ^ 2 .



164 R. K. MILLER AND A. N. MICHEL

Let Σ?=i r« < °°> supΛ (rw + 1 + rn^)/rn = S < oo and choose v(a?) =
(l/2)Σ?=i« . Then (A-3) is true with M = S + 2 and Zto(11)(αO = -s? -
Σϊ=i (3« —^»+i)2^0. The solutions are uniformly bounded, supWiί |s»(ί,c)|< °°
and cc(ί, c) -» 0 as ί —> <χ> by invariance.

C. Weak-coupling conditions. In our next result we consider some
alternate hypotheses.

(L-3): For each free subsystem (,5^) there is a function vn: R+ x
Rmn—>R+, a constant σneR, a constant Ln ^ 0, and functions φSneK,
j = 1, 2, 3, such that

\i>n(t, z n ) - vn(t, z*)\ ^ L n \ z n - z l

for all t ^ 0 and for all zn, z* eRmn.
(L-4): There are constants anm^0 such that \gn(t, #)I^SΣ™=i Q<nmψzm(\Zm\)

whenever xτ = {zl, zl, , zτ

Nί 0,0, •) for any N ^ 1.
Also, in our next result we will employ Lyapunov functions for (Σ)

which are of the form v(t, x) = Σ?=i ^>nVn(t, zn) with constants Xn > 0
which we will further specify later. We will also utilize N x N matrices
RN = b'nm] specified by

(-(σn + Lnann) if n = m

\-Lnanm if nΦm.

Finally, we will also require the following additional hypothesis:
(L-5): For each N sufficiently large, ΛNRN^0, i.e., Σ f = i ^ i r i n ^ 0

for 1 <i n <$ N.
Under the above assumptions we can easily compute (d/dt)v(t,xN(t,c))<,

βnmtyzmk I %m I)} == — ΛNRN

r^ΓN{ \x\) WhβΓβ ΛN = (λij, X2>Σ t
• , λiV) and ψN(\x\) = (^3i(l«il), * , ^ ( l ^ l ) f By assumption (L-5) it now
follows that ΛNRN ^ 0. Thus, Dv{Σ){t, x) ^ 0. Indeed, we have Dv{Σ){t, x) ^
-Σ?=i(Σ?=i VvJf8»(l« l) = - W(»). Moreover, TΓ(a?) is positive definite
with respect to the set E* = {# = fo, «2, «8, ): zn = 0 when Σ?=i \ ŷ» > °}

Summarizing, we now have

THEOREM 6. // assumptions (A-l), (A-2) and (A-3) are ίr^e
Lipschίtz constant Lnj independent of k> 0, i/ assumptions (L-4)
(L-5) are ίr^β, â cZ if Σ»=i ^nψiSXn) < ^^ ίfoew

( i ) ίfee trivial solution x = 0 of system (Σ) is stable with respect

to Dk for k = 1.

( i i ) Lei ikf 6e ίfee largest invariant subset of E*. If ceD and
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either x(t, c) e Dκ for all t ^ 0 and some fixed k>l or (Σ) is row finite,
then x(t, c) —> M as t —> co.

EXAMPLE 5. We reconsider Example 4,

(12)

+ zn+1 (n ̂  2) .

For each isolated subsystem (13),

(13) zn = -2zn ,

n ^ 1, we choose Lyapunov functions of the form vn(zn) = \zn\. Then
r\!pln\\zn ) — /\jp2n\\%n ) ~ h^w > 'frsnK\%n \) :=~ \%n I > ^ » =~: — 2 a n d X/ w — 1 . T h u s ,
(L-3) is satisfied. Hypothesis (L-4) is also satisfied with an,u^λ = an>n+1 = 1
for n ^ 2, α12 = 1, and c% — 0 for all other indices. Choose c such that
Σϊ=i kn I < °° a n ( i let ?\ ̂  kn I be such that sup% (r n + 1 + rn_^\rn = S < oo
and Σ n = i ^ n < °° (e.g., rn — Kβn). For system (12) we choose t (ίc) =
V 0 0 -jj /"-y î 'SΓ'oo I TVlOTΊ Π-l? ^/y^ — O I Λ . I I I Λ . .J-V* 0 0 /|/Y» 9 /y |_J_

\xn+1\) = — Ia?xI ^ 0. Thus sup% sup^01zn (t, c)\ < oo. Moreover, J^* =
{α;: ̂  = 0} and if x(t, c) e M, then ^(t, c) = 0 implies that zλ + 2z1 = z2 = 0.
Similarly, z2 + 2^2 = z3 = 0, and so forth. Thus M = {(0, 0, , 0, •••)}•

All the hypotheses of Theorem 6 are satisfied. The trivial solution
of (12) is asymptotically stable with respect to Dk for any k > 1.

4. Analysis by vector Lyapunov functions. An (infinite) vector
Lyapunov function approach can also be used to analyze certain stability
problems for system (Σ). For example, if Dvn[^ n)^σ%vn and if \gn(t, x)\^
Σ ϊ = i anwVjlff zm) for some sequence anm ^ 0, then we can consider for
system (Σ) the infinite vector Lyapunov function

v(t, x) = (V&, z,\ v2(t, z2), "Ύ .

This vector satisfies for (Σ) the differential inequality Dvn ^ σnvn +
Ln Σm=i (inmVn, w = 1, 2, . By the comparison results in [12] and
Theorem 2 above we have vn(t, zn(t, c)) ^ wn(t) for all n ^ 1 and all t ^ 0,
where wnf n = 1, 2, , are the solutions of the linear equations

(σ) wn = σnwn + Σ Lnanmwm (n ̂  1)
m = l

with wΛ(0) ^ vw(0, 2n(0, c)). Thus, if the stability properties of system
(σ) can be determined, then the stability properties of system (Σ) can
be inferred.

In our next example we consider a neural model which has been
studied previously (see [4]).
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EXAMPLE 6. Consider the neural model given by the scalar equations

zn = -anzn + fn(x)
( 1 4 ) ! , ( . , = ,

where an > 0, 0 < cn < 1, fn(x) = [1 + exp (-7 - Σ~= 1 /3«AJΓ\ and
Σm=i \βnm\ ^ 6 < °° for each w ^ 1. We will accomplish our analysis of
(14) in several steps. In doing so we shall make the assumptions that
βnm ^ 0, an[l + exp (- yn - Σϊ=i £»«)] > 1, and there exists λn ^ 0 such
that Σϊ=iλ. < - and Σ - i M A « < λ «. (w ^ 1).

(a) CLAIM. There is a critical point x* = (z*,zf, )Γ with 0 <

zl < 1.

To verify this we define S by S = {x = (zl9 z2f )Γ: 0 < ^ < l } and we
define Tx by Tnx = (χ-ιfn(x). Let s° = (0, , 0, f and zn+1 = Γ(^).
By monoticity, z° ^ 2;1 ^ 22 ^ < (1, 1, ••-,!, •••) = «. This and con-
tinuity imply that zm / z* for some z* with z° < z* < e and z* =
limw _ zm+1 = l i m ^ T(zm) = T(z*).

(b) C L A I M . The s o l u t i o n x ( t , c) s a t i s f i e s 0 < z n ( t , c) < 1 / o r a l l t^O
a n d a l l n ^ l .

To verify this, we note that zn = —OLnzn

Jrfn{x)^ —ccnzn so that
zn(t) ^ c w e x p ( - α Λ ί ) > 0. Let yΛ = 1 - sn so that yn = -α w i / Λ + #„(?/),
where ^(y) - αw - (1 + exp ( - 7 . - Σ ϊ = i /3« + Σ ϊ = i /3-lOΓ 1 . Define
•̂(2/) = ^»(w), where wn = max {0, yn}. Let ^ = ~α n w Λ + gn(w) ^

-α»w + 0»(O). Thus w.(ί) ^ e-β * + 3*(P)/an ^ ?,(0)/α, > 0 for as long
as wn(t) exists. This means that gn(w(t)) — gn(w(t)), so by uniqueness
0 < wn{t) = yn(t) = 1 — zn(t). This proves the claim.

(c) CLAIM. The critical point x* is asymptotically stable with respect
to {x = (zuz2, > ):0<zn<l}.

To prove this claim we define for stability of #*, un = zn — zt and
Fn(u) = fn(u + x*) - fn(x*) for u = (ul9 u2y us, - -) Γ Then

(15)

and - 1 < -zt < un(t) < 1 - z* < 1 for alH ^ 0, n ^ 1. Let vΛ(%n) = K | and
v(w) = (Vjίuj), v2(u2), ) τ . Then for some numbers dn e [0,1) (d/dt)vn(un(t)) <̂

- α J w. I + I ί7^^) I ̂  - anvn + Σ ϊ = i (1 + exp ( - 7. - Σ?=i A i ) ) " 1 ^ - ^ . The
Lyapunov function v(ί, a;) = Σ«=i λΛ \vn \ for the linear system v'n =
— θίnvn + Σ ϊ = i Snθίnβnmvmf and Theorem 6 imply that u(t)-+0 as ί —> 00.
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REMARK 6. The analysis of this system in [4] proceeds under some-
what different assumptions. The assumptions βnm ^ 0, and ΣϊUi ^"m^mβmn <
Xnan are not used. It is assumed that sup [7»| = 7 < °°, that ΣΞ=i l£»J ^ 1
for each n ^ 1 and there is a δ such that a~\l + exp ( —1 — T))"1 ^ δ < 1
for all n ^ 1. Under these conditions it is shown that there is a critical
point x* which is stable (in the sense of the sup norm ||g|| = supjz j) .
Asymptotic stability is studied in [4] only for the finite approximations

5. Concluding remarks. Countably infinite systems of differential
equations were viewed as an interconnection of countably infinite many
free or isolated subsystems (described by ordinary differential equations
defined on finite dimensional spaces). Well posedness results and several
new stabilty results were established using scalar Lyapunov functions
as well as vector Lyapunov functions. These were applied to several
specific examples, including a neural model.
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