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1. Introduction, definitions and the statement of results. Webs on
domains in Rn have been studied from the viewpoint of differential
geometry and algebraic geometry. See Blaschke-Bol [1] and Chern-
GrifRths [2]. In this paper we classify octahedral webs on closed mani-
folds under a certain assumption on the fundamental groups of under-
lying manifolds. Our method depends on the fact that octahedral webs
are always analytic, and consists in the construction of developing maps
and total holonomy homomorphisms.

Now let M be a Cr manifold, r = 0, 1, , oo, ω, with dim M ^ 2.

DEFINITION 1. An ordered family "W = (^7, , ^l) of codimension-
one Cr foliations on M is called a Cr web on M if for each x e M the
tangent spaces Tx^19 , Tx^l of the foliations ^ 7 at x are in general
position in TXM. Of course for the C° case an appropriate modification
is needed.

DEFINITION 2. A Cr web cW~ = (κβ
r

lf - -., _^Q on M is called octahed-
ral if k = dimM + 1 and for each xeM there is a Cr chart φ\ U-+ Rn

such that xeU and ^l\U = φ*&i9 where ^ is a family of parallel hy-
perplanes in Rn.

DEFINITION 3. Let <^i = (^1

i

9 . . . , j^;.*) be a Cr web on Cr mani-
folds Mt for ί = l, 2. Then W~x is Cr isomorphίc to ^\ if k, = k2 and
there is a Cr diffeomorphism /: M1-^M2 such that Ύ//\ = /* W^ that is,

= / * ^ 2 f o r j = ly m m m f K

We construct some examples.

EXAMPLE 1. Consider Rn as M. Let

5f° - {x = (xl9 , xn)eR*\xt - c}ceR

for i = l, , n, and

^ + 1 = {x 6 Λ |α?1+ •••+»» = c}c e Λ .

Then ^"° = (g?ί, •• , ^ + 1 ) is clearly an octahedral Cω web. We call
the standard web.

Partially supported by the Sakkokai Foundation.
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NOTATION. We denote by 0W(n) the group consisting of diffeo-
morphisms /r>α: Rn —> Rn defined by

fτΛχ) = rx + a for all xeRn

where r e R - {0} and a e Rn. Let POW(w) = {/r,α | r > 0, a e iί^}. Note that
each element of 0W(n) preserves ^~° and that each element of POW(w)
preserves the transverse orientations of all Ŝ °.

EXAMPLE 2. Let Γ be a lattice group of Rn. We consider Γ as a
subgroup of POW(w). Since each element of Γ preserves W^\ we can
consider the quotient web ^^°/Γ = (Sfί/Γ, , &Z+JΓ) on the torus Λ»/Γ.
We write 5^(Γ) = ^ °/Γ. Note that each foliation in ^ ( Γ ) is without
holonomy. Let A(n) be the set of all conjugacy classes of lattice groups
in POWO). Since each element heF0W(n) induces a Cω isomorphism
h*:RnIΓ-^RnlhΓh-1 of webs W\Γ) and W^QiΓh'1), we can attach to
each conjugacy class 7 = [Γ] e A(n) a Cω isomorphism class W(i) of the
octahedral web

EXAMPLE 3. Let w^3. Let R+ = {reR\r>0}. For r eR+ - {1} let
mr\ R

n - {0} -> Rn - {0} be the map defined by mr(x) = rx for all x e Rn - {0}.
Since mr preserves the restricted web W°\Rn — {0}, we have the quotient
web W~(r) = (^"°|iί% - {0})/mr on the manifold (Rn - {0})/mr diffeomorphic
to S^S*" 1 . Note that each foliation in W~(r) consists of 2 Reeb com-
ponents. Since < ^ ( r ) = <^~(l/r), it is sufficient to consider the iso-
morphism class W(r) of the octahedral web c7Pr{χ) for each r e B(w) =
(0, 1).

EXAMPLE 4. Now we consider R2 — {0}. The mapq: R+xR->R2 — {0}
defined by

<?(£, θ) = (t cos 2π0, t sin 2ττ0)

for all teR+ and # 6 /ί is a universal covering map. Define the maps
/ , g:R+xR->R+xR by

f(t, θ) = (rί, β) , g(t, θ) = (st, θ + d),

where r eR+ — {1}, seR+ and d e Z+ = Z Π /?+. Since / and # preserve
the induced web q*(W°\R2 — {0}), we have the quotient web *W"(r, s, d) =
^*(^^°|/?2-{0})/{/, }̂ on the manifold R+xR/{f,g} diffeomorphic to
S1 x S1. Note that each foliation in ^^(r , s, d) consists of 2d Reeb com-
ponents. Let 5(2) = {(r, s, d) \ 0 < r < s ^ 1, ώ e Z+}. Clearly it suffices to
consider the Cω isomorphism class W(r, s, d) of the octahedral web

, 8, d) for all (r, s, d) e B(2).

Now we can state the results.
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THEOREM 1. The list of Cω isomorphism classes of octahedral webs
on closed manifolds in Examples 2, 3 and 4 has no duplication, that
is, TF(7i) Φ W(y2) if 7, Φ % where y19 y2eA(n){jB(n).

REMARK. By the argument in § 2 we see that every C° isomorphism
of octahedral webs is a Cω isomorphism.

THEOREM 2. Let "W be an octahedral Cr web on a closed connected
Cr 2-manifold M such that some foliation in *W~ is transversely orient-
able. Then M is Cr diffeomorphic to S^xS1 and W" is Cr isomorphic
to ^ ( 7 ) for some 7 e A(2){JB(2).

THEOREM 3. Let W^ be an octahedral Cr web on a closed connected
Cr manifold M of dimension n ^ 3 such that some foliation in W~ is
transversely orientable. Suppose that M satisfies one of the following
conditions.

(1) n = 3 and π^M) has non-exponential growth.
(2 ) πx{M) is abelian.
(3) π^M) is generated by at most n elements.

Then *W* is Cr isomorphic to ^"(7) for some 7 e A(n)\jB(n). Further-
more, M is Cr diffeomorphic to S1x - xSί in the case 7 e A W and to
S'xS"-1 in the case yeB(ri).

REMARK. If a C1 manifold M has an octahedral web W^ such that
some foliation in ^ ~ is transversely orientable, then M is parallelizable.

The following problem is open.

PROBLEM. Does there exist an octahedral Cr web on a closed orient-
able Cr manifold whose fundamental group is non-abelianΊ

In § 2 we study fundamental properties of octahedral webs. The
theorems are partially proved in § 3 and § 4 and the proof is completed
in § 5.

2. Fundamental properties of octahedral webs. Let M be a connect-
ed Cr manifold of dimension n^2 and <W" = (^\, , ̂ l+1) an octahedral
Cr web on M.

First we show that we can choose special charts of M depending
on

DEFINITION 4. A Cr chart (£7, φ: U->Rn) of M is called admissible
with respect to 3T~ if W"\U = <?*^° where ^~° is the standard web
on Rn.

PROPOSITION 1. (1) For each xeMthere is an admissible Cr chart
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(U, φ) with xeU.
(2) If (U, φ) and (F, ψ) are admissible Cr charts such that U{λV

is non-empty and connected, then there is feOW(n) such that ψ = f°φ
on UΠ V.

(3) Let U and V be open connected subsets of Rn. If a Cr dif-
feomorphism f: U-^Vsatisfies W^\U=p{W"Q\V), then there is feOW(n)
with f\U = f

(4) If feOW(n) preserves a transverse orientation of some Ŝ °,
then /ePOWO).

PROOF. (1) Let xQeM. By definition we have a Cr chart (U, φ)
such that xoe U and ^ 7 | U — <p*5^ for i = 1, , n + 1, where ^ is a
family of parallel hyperplanes in Rn. We denote by Gt{y) the leaf of
&t passing yeRn. Let y0 = φ(x0) e Rn. Since Gλ{yQ), -',Gn(y0) are in
general position, each intersection

^ = GM n n Gt-M n Gi+1(y0) n n GM
is a line passing y0. Choose a point y1eL1 — {y0} and, for i — 2, , w, let
i/i be the intersecting point of L* and Gn+1{y^). Since the vectors ^ —
2/o, , Vn — Vo &re linearly independent, there is a linear map F: Rn—>Rn

sending yt — y0 to (0, , 0, 1, 0, , 0) for i = 1, , ^. We define a
map φ': U-^Rn by ?

φ'{x) = ^(^(aj) - i/o)

for all xeU. It is easy to see that the chart (E7, <p') is admissible.
(2) follows from (3), and (4) is clear.
(3) For each xeRn we denote by Ft(x) the leaf of <&\ passing x.

Let Lt(x) = Fλ{x) Π Π JFV-iCaO Π Ft+1(a?) Π Π F^OJ) f or i = 1, , n. Clearly
Li(x) is a line parallel to the i-th axis of Rn. Now let a e U and choose
b e Lt(a) — {a} such that the line segment between a and b is contained
in U. Let j Φ % and consider the following equation

( * ) LILfa) ΓΊ Fn+1(x)) ΓΊ Fn+1(b) = Lά{x) n Fn+1(b)

for the unknown xeL^a). The equation (*) has the unique solution
a; = α + (ί>- α)/2. Transforming the equation (*) by /, we have the fol-
lowing equation

(**) L,(Li(/(α)) Π Fn+1(y)) Π Fn+1(fφ)) = Lj(y) n Fn+I(f(b))

for the unknown y eLi{f{a)). Since the equation (**) has the unique
solution ?/=/(α) + (/(δ)-/(α))/2, we have/(α + (6-α)/2)-/(α) + (/(α)-/(6))/2.
This implies that for all a e U and sufficiently small ε > 0 the map /
sends points in Lt(a) Π U(a, e) separated by intervals of the same length
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to such points in l^(/(a)), where U(a, ε) is the open disk centered at a
and of radius ε, and furthermore that / has the form f(x) — rx + c for
all xeLt(a)nU(afε), where r = ||/(6) - /(α)||/||δ - a\\ for all 6 eL/cOn
U(a, ε) — {a} and c=/(α) — ra. In the above || || is the usual norm of Rn.

We show that r = r(ΐ, α) does not depend on i. Let j Φ i and con-
sider the identity

(***) f(Lά{a) n Fn+1{b)) = L3 (f(a)) n Fn+I(f(b)) ,

where & eL,(α)n Z7(a, ε)-{a}. Let &' = Lό(a) Π Fn+1(b). Then the triangle
determined by α, 6 and 6' is similar to that determined by /(α), /(&) and
/(&') because of the identity (***). Therefore we see that r(i, a) =

- /(α) 11/116 - α|| - ||/(δ') - /(a)||/| |δ' - a|| = r(j, a).
For all x e U(a, e)aU we have the identities /(F,(αO Π iv^α)) =

ΓiLiifia)) for i = l, , w, which implies that f(x) = rx + c. There-
fore / is an analytic map in a neighborhood of each point ae U. By
the unicity theorem of analytic maps, it follows that f(x) = rx + c for all
xeU. Let/=/ r f β eOW(rc). T h e n / = / | t Λ

REMARK. By Proposition 1 we can consider octahedral webs as
OW(w)-structures. An OW(π)-structure is clearly a similarity structure.

The following corollary follows immediately from Proposition 1 and
we omit the proof.

COROLLARY 1. (1) Let J%f be the set of all admissible Cr charts
of M with respect to eW. Then J ^ determines an analytic structure
Jzf of M and Ύ/^ is analytic with respect to j y .

(2) Let Wf be an octahedral Cr web on another Cr manifold Mr

and f: ikf—> M' a Cr diffeomorphism with Ύ/^ = /*2^"'. Then f is analytic
with respect to the analytic structures of the manifolds determined by
admissible charts.

From now on we assume that all octahedral webs are of class Cω

and we omit the term "Cω". By using the analyticity of octahedral
webs, we can develop it over Rn as follows. Refer to Thurston [4].

PROPOSITION 2. Let p: M-^M be the universal covering map of M.
For all xeRn and y e M there is a map D: M-*Rn such that D(y) = x
and, for each sufficiently small open set U and each section s: U-^M of
p, the map D°s: U->Rn is an admissible chart.

PROOF. Let y e M and x 6 Rn. Choose a neighborhood U of y in M
such that p\U is a diffeomorphism onto p{U). By Proposition 1 we can
take an admissible chart (V, φ) with p(y) e Vap(U). Let U^
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and f = fus-φ piy) ePOW(w). Then the composed map A = foφop; u^R*1

satisfies D^y) = x and, for the section s = (plί/i)"1: F—*U19 the map
i) l Os = foφ is an admissible chart. It is easy to extend Dx to a map
D:M—>Rn with the desired property by analytic continuation.

DEFINITION 5. The map D:M->Rn in Proposition 2 is called a de-
veloping map of the octahedral web

The covering transformation group G(M\M) of the universal cover-
ing map p:M-+M and a developing map of W" are related as follows.
The proof is routine and we omit it.

PROPOSITION 3. Let D:M-+Rn be a developing map of W. Then
there is a unique homomorphism H:G(M\M)-^0W(n) such that Doa =
H(a)oD for all aeG(M\M).

DEFINITION 6. The homomorphism H:G(M\M)->0W(n) in Proposi-
tion 3 is called the total holonomy homomorphism associated with D, and
the image Im H of H the total holonomy group with respect to D.

PROPOSITION 4. The set of all total holonomy groups of *W" forms
a conjugacy class of subgroups of P0W(%) if some foliation in Ύ/^ is
transversely orientable, and of 0W(n) otherwise.

The proof is easy and we omit it.

3. The case where a total holonomy group of *W~ consists of
parallel translations of Rn. In § 3 and § 4 we consider an octahedral
web <W on a closed connected manifold M such that some foliation in
W is transversely orientable. Let p: M->M be the universal covering
map, D:M->Rn a developing map of W~ and H: G(M|lί)->P0W(^) the
total holonomy homomorphism associated with D.

In this section we suppose that Im H consists of parallel translations
of Rn. First we show that D is a covering map. As before we denote
by U(x, r) the open disk in Rn centered at x and of radius r. Let K
be a compact subset of M such that p(K) = M. Since D is locally a dif-
feomorphism, we can take ε>0 so that for all yeK there is a neigh-
borhood Uy of y in Msuch that D\Uy is a diffeomorphism onto U(D(y), ε).

LEMMA 1. The map D: M—>Rn is a covering map.

PROOF. We show that D is surjective. Since D is locally a diffeo-
morphism, it follows that ImD is open in Rn. Let xeCl(ImD). Then
there is yeM with D(y)eU(x, ε). Furthermore, there is aeG(M\M)
with a(y) e K. Transforming the diffeomorphism D\ Ua[y): Ua{y)-^>U(Da(y),ε)
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by or1, we have a diffeomorphism D\a~ιUa{y): oc~lUa{y)—>H(a)~1U(Da(y), ε).
Since H(a) is a parallel translation, it follows that H{a)~1U{Da{y)y ε) =
U(D(y), ε). Thus we see that xe U(D(y), e)aImD and ImD is closed in
Rn, too. By the connectivity of Rn we conclude that lmD=Rn.

We show that for each xeRn the neighborhood U(x, ε/2) is evenly
covered by D. Let y e D^Uix, ε/2). By the above argument we have
a neighborhood Z7y of y in iί? such that D\Uy is a diffeomorphism onto
U(D(y), ε). Since U7(a, ε/2)c U(D(y), ε), it follows that D\{D\Uy)~ιU{x, ε/2)
is a diffeomorphism onto U(x, ε/2). Hence £7(#, ε/2) is evenly covered by
D, and D:M-+Rn is a covering map.

Since Rn is simply connected, the map D: M-^Rn is a diffeomorphism.
Therefore H: G(M\M)->'P0W(n) is a monomorphism and M is homeo-
morphic to the quotient space Rn/Im H. Thus Γ = Im H is a lattice
group of J?" and <^~ is isomorphic to

Now we investigate the isomorphism class of W{Γ) for a lattice
group Γ of i?\

PROPOSITION 5. Let Γx and Γ2 be lattice groups of Rn. Then
W(ΓΪ) is isomorphic to C%^(Γ2) if and only if Γx is conjugate to Γ2 in
POW(w).

PROOF. The "if" part is already shown in Example 2. Suppose
that there is a homeomorphism /: Rn/Γ1-^Rn/Γ2 with ^ ( Γ 1 ) = / * ^ ( Γ 2 ) .
By the theory of covering maps, we can find a diffeomorphism /: Rn—>Rn

making the diagram

commutative, where px and p2 are the projections. Since /*^"° =
/*op2*5^(Γ2) = p?o/*5r~(Γ2) = pϊ^iΓJ = <%T\ it follows that feOW(n).
Composing it with /_lf0 e 0W(n) if necessary, we may assume that fe
POW(w). It is easy to see that Γ2 = fΓJ-1, which completes the proof
of Proposition 5.

4. The case where a total holonomy group of "W contains a con-
traction. Let p:M-+M, D:M-+Rn and H: G(M\M)->P0W(n) be as in
§ 3. In this section we suppose that Im H is generated by elements
ff A, •-, fk such that for all x e Rn
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0 < r < 1 ,

rt > 0 , α,

by aί9 ••,

eRn

ak in

for

Rn.

% — 1 , • , k .

Furthermore, sup-

f(x) = rx

ft(x) — rtx + at

pose that dim S<n.
First we investigate the restriction D\M-D-\S): M-D~1(S)-*Rn-S.

Note that every element of Im H maps the space S to itself, a line per-
pendicular to S to another, and a sphere with the center in S to
another.

Let if be a compact subset of M with p(K) = M. Let

L = Max{d(D(y), S)\yeK}

where d is the usual metric in R*. Clearly L > 0. We can take a
number ε > 0 with 0 < ε < L so that for each y eK there is a neighbor-
hood Uy of y in Λf such that Dlί/^ is a diffeomorphism onto U(D(y), ε).

LEMMA 2. (1) For eαcfe y e M — D-\S) there is a neighborhood Vy

of y in M — D~\S) such that D\Vy is a diffeomorphism onto U(D(y), ey),
where εy = ε-d(D(y), S)/L.

( 2 ) If xe D(M) - S then U(x, ex)czD(M) where εx = ε d(x, S)/L.

PROOF. It is sufficient to prove (1). For each yeM— D~\S) there
is aeG(M\M) with a(y)eK. By the remark above concerning elements
of Im H, we see that H(a) maps spheres of radius s to those of radius
s-d(Da(y), S)/d(D(y), S). Since D\Ua{y) is a diffeomorphism onto
U(Da(y), ε), the map Dlα"1 !/«(„, is a diffeomorphism onto U(D(y),
s d(D(y), S)/d(Da(y), S)). Since Z, ̂  d(Da(y), S), the image of D\a~lUa{y)

contains U(D(y), ey). Then Vy = (Dla-'U^-'UiDiy), ey) will do.

LEMMA 3. In the case dim S<> n — 2 £foe map DIM"— D~\S) is a cover-
ing map onto Rn — S. In the case dim S = n — 1 the restriction of D to
a connected component of M — D~ι(S) is a covering map onto a connected
component of Rn — S.

PROOF. We treat only the case dim S^n — 2f since the other case
can be proved in a similar manner. First we show that the image of
D\M — D~\S) is Rn — S. Since D is locally a diffeomorphism, the set
D(M — D~\S)) is an open subset of Rn — S. Let x be B, point in the
closure of D(M — D-\S)) with respect to the topology of Rn — S. Choose
x' e D(M-D-\S)) with \\x' - α?||<Min{e./2, d(xf S)/2}. Then it follows that
d(x', S) ̂  d(x, S) - 11 x' - x 11 > d(xf S)/2 and εm. = ε d(x', S)/L > ε d(x, S)/2L =
εx/2. By Lemma 2 (2) we see that x e U(x', εx/2)aU(x', ex,)aD(M). There-
fore xeD(M- D-\S)), hence D(M - D~\S)) is closed in Rn - S, too.
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Since Rn - S is connected, it follows that D{M - D~\S)) = Rn - S.
Secondly we show that each point xeRn — S has an evenly covered

neighborhood. Let δx = Min{s,/4, d(x9 S)/2). We look at the neighborhood
U(x, δx) of x. Let yeD-ιU(x, δx). By Lemma 2 (1) the map D\Vy is a
diffeomorphism onto U{D{y), ey). Since d(x, D(y)) <δx^ ey/2, it follows

t h a t U(D(y), ε jz) ί7(x, δx). F u r t h e r m o r e , we see t h a t t h e connected com-

ponent of D-'Uix, δx) containing y is {D\Vy)-ιU(x, δx). Therefore U(x, δx)
is evenly covered by D\M — D~\S). Hence D\M—D~\S) is a covering
map.

LEMMA 4. (I) Suppose that D~\S) Φ 0 . Then the map D:M->Rn

is a diffeomorphism.
(II) Suppose that D~\S) = 0 . In the case dim S = n — 1 the map D

is a diffeomorphism onto a connected component of Rn — S. In the case
dim S = n — 2 the map D: M-^Rn — S is a universal covering map. In
the case dim S ^ n — 3 the map D: M-*Rn — S is a diffeomorphism.

The proof of Lemma 4 is easy and we omit it. Now we examine
each case of Lemma 4.

LEMMA 5. The case (I) of Lemma 4 does not occur.

PROOF. Suppose that it does. Then H: G(M\M)->F0W(n) is a mono-
morphism and M is homeomorphic to the quotient space Rn/Im H. Take
a point x e Rn — S. Then the orbit (Im H) x contains xn = rnx for n = 1,
2, •••. Since the limit of the sequence xlf x2, ••• is 0g(Imi2>cc, the
space Rn/Im H is not Hausdorff, a contradiction.

LEMMA 6. The case (II) of Lemma 4 does not occur, unless dim S = 0.

PROOF. Suppose that it does when dimS>0. It follows that
for some j . Consider the case d i m S ^ ^ —3. Then the projection p'\
Rn-S-*Rn-SllmH is a covering map. Take a point xeRn-S. Then
the orbit (Im H) x contains xn = fnfjf~n(x) = r ^ + rwαy for w = 1, 2,
Since the sequence ^, a?2, converges in Rn — S, the projection p' can-
not be a covering map, a contradiction.

For the case dim S = n — 1 an argument similar to the one above is
valid and we have a contradiction.

Consider the case dim S = n — 2. We define a universal covering map
q: SxR+xR—>Rn — S, which can be regarded as a generalization of "#"
in Example 4, as follows. Choose vectors u, v e Rn perpendicular to S
with ||%|| = ll^ll and u-v — 0. Let

q{x, t, θ) = x + t-cos2πθ-u + t-sin2πθ-v
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for all (x, t, θ) eSxR+xR. Since D: M->Rn - S is also a universal cover-
ing map, there is a homeomorphism h: M->SxR+xR with D = q<>h. It
follows that poh~ι: SxR+xR-+M is a covering map. It is easy to see
that the covering transformation group G(SxR+xR\M) contains maps
fffi9 , fk having the form

f(x, t, θ) = (rx, rt,

ft(x, t, θ) = (TiX + d

where v, vu •••, vk are integers. For t > 0 the orbit G(SxR+xR\M)
(0, t, 0) contains α?. - /Vy/—(0, ί, 0) = (r%α, , ryί, x>y) for n = 1, 2, -. Since
the sequence x19 x2, converges, the map poh~ι cannot be a covering
map. This contradiction completes the proof of Lemma 6.

By Lemmas 5 and 6 we see that D~\S) = 0 and dim S = 0. Now we
can determine

LEMMA 7. In the case n = dim M ̂  3 the web <&r is isomorphίc to
for some reB(n) = (0, 1) and the manifold M is diffeomorphic to

S'xS"-1.

PROOF. In this case D: M—> Rn — {0} is a diffeomorphism, the map
poD-1: Rn - {0}-+M is a covering map and (poD-ψW" = W°\Rn - {0}.
Every diffeomorphism g: Rn - {0} -+Rn- {0} preserving W° \ Rn - {0} has
the form g{x) = so; for all xe Rn — {0}, where s e R+ it g preserves a trans-
verse orientation of some foliation in <^~°|/ίίi — {0}. Therefore the cover-
ing transformation group G(Rn — {0}\M) is a cyclic group generated by
such a map g. Then "W is isomorphic to <W{s)y and we may assume
that 0 < s < 1 as in Example 3. Clearly M is diffeomorphic to S1 x Sn~\

LEMMA 8. In the case n = dim M = 2 ίfee we& 2^" is isomorphic to
, β2, d) /or some (slt s2, d) e J5(2) α^d ίΛe manifold M is diffeomorphic

to S'xS1.

PROOF. Clearly M is diffeomorphic to S1xS1. As in the case
dim S = n — 2 in the proof of Lemma 6, we consider the covering map
poh-1: R+xR^M. Note that (poh-1)*3r~=q*(3fro\Ri-{0}), where q: R+ x
R->IF — {0} is the universal covering map defined in Example 4. Every
diffeomorphism h: R+ x R-+R+ x R preserving g*(^° | R2-{0}) has the form
h(t, θ) = (si, β + μ) for all (t, θ)eR+ x R where s e 2?+ and μeZ. The
group G(Λ+xiί|ikΓ) is generated by two elements, say hx and h2 having
the form ht(t9 θ) — (s€ί, θ + μi). Let d>0 be the greatest common divisor
of μx and μ2. Changing the generators hi9 we may assume that μL = 0
and μ2 — d. Then it follows that Sj ̂  1. Therefore <^~ is isomorphic to
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βi, S2, d). Furthermore, we may assume that (sίf s2, d) e B(2) as in
Example 4.

5. Completion of the proof of the theorems.

PROOF OF THEOREM 1. It remains to prove that if W(7i) = W(Ύ2) for
y19 τ2 e B(n) then y, = τ2.

First consider the case w^3. Let r, seB(n) = (Q, 1). Suppose that
there is a homeomorphism/: Rn-{0}/mr->Rn-{0}/ms with 5 r ~ ( r ) = / * ^ ( s ) .
By the theory of covering maps we can find a homeomorphism /: Rn —
{0} —> Rn — {0} with PsΌf = f°Pr> where pr and ps are the projections to
Rn - {0}/mr and ΛΛ - {0}/m8, respectively. Since / * ( ^ ° | i ? % - {0}) =
/*pf^^(s)-^V*^^(s) = P*^^(r) = ̂ ^°|i?%-{0}, the map / h a s the form
f(x) = ta for all & 6 Λw - {0}, where t Φ 0. Furthemore, it follows that
ms = fmrf~

ι = mr. Therefore r = s.
Now consider the case n = 2. Let (rlf Si, dj, (r2, s2, d2)6B(2). Sup-

pose that there is a homeomorphism h: R+xR/{f19 gj—>R+xR/{f2, g2}
with ^"( r j , slf ίZO = h*W"{r2, s2, d2) where ft and ^̂  are the maps defined
by means of ru st and dt as in Example 4. As above we can find a
homeomorphism h: R+xR—>R+xR with p2oh = hoplf where each pt is the
projection to R+xR/{fίf gt). Since fe*g*(^^°|Λ2~{0})=fe*^^^(r2, β2f d2) =
pffc*3^"(r2f s2, d,) = pίl3ί^(r1, 8lf d1) = ?*(3r>0|iii-{0}), where g: R+xR->R2-
{0} is the covering map in Example 4, the map h has the form h(t, Θ) =
(rί, ^+v) for all (ί, θ)eR+x R, where r 6 Λ - {0} and veZ. By an easy
computation we see that hf2h~λ = /2 and hgji-1 = g2. Hence the group
generated by fx and g1 is equal to the one generated by f2 and g2. Con-
sidering the forms of ft and gi9 we conclude that fx = /2 and gx — g2.
Therefore (rlf slf cZJ = (r2, s2, d2) and we are done.

PROOF OF THEOREM 2. Since M has a codimension-one C r foliation,
the Euler number of M is zero. By Proposition 1 (4) it follows that M
is orientable. Therefore M is Cr diffeomorphic to S1xS1. Now consider
a developing map D:M->Rnand the total holonomy homomorphism
H: G(M\M)->P0W(n) associated with Zλ Since G(M\M) is isomorphic
to Z φ Z , the total holonomy group Im if is abelian. When ImH con-
sists of parallel translations, the web *W~ is Cr isomorphic to ^" (Γ)
for some lattice group Γ by the argument in § 3. When Im H contains
/ = fr>a for some r e R+ — {1} and a e Rn, we may suppose that a = 0 by
changing D, if necessary. Let gelmH. Since f°g=g°f, it follows that
g(0) — 0. Therefore g = /Sj0 for some s 6 ii+. Take elements /„ /2 e Im H
so that /, fx and /2 generate Im H. Then the subspace S defined by flf

f2 as in § 4 is {0}. It follows that ^ is Cr isomorphic to 5^~(r, s, d)
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for some (r, s, d) e J5(2) by the argument in § 4.

PROOF OF THEOREM 3. Note that πx(M) is isomorphic to G(M\M).
Consider the case (1) of Theorem 3. We need the following theorem of
Inaba [3].

THEOREM (Inaba). Let M be a closed orientdble connected analytic
Z-manifold such that πλ{M) has non-exponential growth. If M has a
transversely orientable analytic foliation of codimension one, then M is
diffeomorphic to S^xS2 or to a torus bundle over S1.

By the theorem of Inaba and Corollary 1, the case (1) can be re-
duced to the case (3), since the fundamental group of a torus bundle
over S1 is generated by 3 elements.

Now consider the case (2). As in the proof of Theorem 2, when a
total holonomy group of W~ consists of parallel translations, we see
that 'W is Cr isomorphic to W^{Γ) for some Γ e A(ri). In the other
case we can apply the argument in the case dim S = 0 of § 4. We see
that *W~ is Cr isomorphic to ^~(r) for some reB{ri).

Finally consider the case (3). Suppose that a total holonomy group
of "W~ contains fr>a for some reR+ — {1} and aeRn. Then we can apply
the argument in § 4, because dim S ^ n — 1 in such a case. As above we
can apply the argument in § 3 in the other case. Thus the proof of
Theorem 3 is completed.
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