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1. Introduction, definitions and the statement of results. Webs on
domains in R" have been studied from the viewpoint of differential
geometry and algebraic geometry. See Blaschke-Bol [1] and Chern-
Griffiths [2]. In this paper we classify octahedral webs on closed mani-
folds under a certain assumption on the fundamental groups of under-
lying manifolds. Our method depends on the fact that octahedral webs
are always analytic, and consists in the construction of developing maps
and total holonomy homomorphisms.

Now let M be a C" manifold, » =0, 1, ---, o, ®, with dim M = 2.

DEFINITION 1. Anordered family %~ = (&, ---, #,) of codimension-
one C” foliations on M is called a C" web on M if for each x e M the

tangent spaces T,.#,, -, T..#, of the foliations .#; at x are in general
position in T,M. Of course for the C° case an appropriate modification

is needed.

DEFINITION 2. A C" web % =(%#,, --+, %) on M is called octahed-
ral if ¥ =dim M + 1 and for each x € M there is a C” chart ¢: U— R*
such that x€ U and #;|U = ¢*%,, where &, is a family of parallel hy-
perplanes in R”.

DEFINITION 3. Let %77'= (5.7, .-+, %)) be a C" web on C" mani-
folds M, for i=1, 2. Then 977, is C" isomorphic to 9, if k,=k, and
there is a C” diffeomorphism f: M,—M, such that 77’ = f* 97, that is,
%1:]0*%2 for .7:1’ "';kl-

We construct some examples.

ExaMPLE 1. Consider R" as M. Let
l={e=@, -, 2)eR = clcr
for i=1, ---, n, and
w1 = {x e R"|e,+ - +2, = C}eer .
Then #° = (&}, ---, &2, is clearly an octahedral C* web. We call
%" the standard web.
* Partially supported by the Sakkokai Foundation.
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NoTATION. We denote by OW(n) the group consisting of diffeo-
morphisms f, .. R*— R* defined by

fro@) =2rc + a for all xeR"

where r € R — {0} and a € R*. Let POW(n)={f. .| >0, a € R*}. Note that
each element of OW(n) preserves %7° and that each element of POW(n)
preserves the transverse orientations of all &7.

ExaMPLE 2. Let I” be a lattice group of R*. We consider /" as a
subgroup of POW(n). Since each element of I' preserves %#°, we can
consider the quotient web 7 °/['=(&{/I, ---, &3../") on the torus R"/I.
We write %7°(I") = %77°/I". Note that each foliation in 27 (I") is without
holonomy. Let A(n) be the set of all conjugacy classes of lattice groups
in POW(n). Since each element A€ POW(n) induces a C* isomorphism
hy.: R"/I" — R"/hl'h~' of webs %7 (I") and %7 (hI'h~'), we can attach to
each conjugacy class v = [I']€ A(n) a C“ isomorphism class W(v) of the
octahedral web %77°(I").

EXAMPLE 3. Let n=3. Let R, ={reR|r>0}. ForreR, — {1} let
m,: R* — {0} — R™ — {0} be the map defined by m,(x) = rx for all x € R* — {0}.
Since m, preserves the restricted web %7 7°|R™ — {0}, we have the quotient
web % (r) = (#°|R* — {0})/m, on the manifold (R* — {0})/m, diffeomorphic
to S'xS"!. Note that each foliation in 9%77(») consists of 2 Reeb com-
ponents. Since ¥ (r)=9%"(1/r), it is sufficient to consider the iso-
morphism class W(r) of the octahedral web 27 °(») for each re B(n) =
(0, 1).

ExamMPLE 4. Now we consider R*— {0}. The map q: R. X R— R*— {0}
defined by

q(t, 6) = (t cos 270, t sin 276)

for all te R, and 6 R is a universal covering map. Define the maps
f, 9: R xR— R.XR by
f@, 0) = (rt,60), 9@, 0) = (st 0+4d),

where re R, — {1}, seR, and deZ,=ZNR,. Since f and g preserve
the induced web ¢*(77°|R* — {0}), we have the quotient web % (r, s, d) =
q* (7| R* — {0})/{f, g} on the manifold R. X R/{f, g} diffeomorphic to
Stx S'. Note that each foliation in %7 (», s, d) consists of 2d Reeb com-
ponents. Let B@2)={(r,s, d)|0<r<s=<1,deZ.}. Clearly it suffices to
consider the C“ isomorphism class W(r, s, d) of the octahedral web
F (r, s, d) for all (r, s, d) € B(2).

Now we can state the results.
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THEOREM 1. The list of C* isomorphism classes of octahedral webs
on closed mamnifolds in Examples 2, 3 and 4 has no duplication, that
©8, W(v) = W(vy) f v, # 7. where v,, 7, € A(n)U B(n).

REMARK. By the argument in §2 we see that every C° isomorphism
of octahedral webs is a C¢ isomorphism.

THEOREM 2. Let %7 be an octahedral C™ web on a closed connected
C" 2-manifold M such that some foliation im 77  1is transversely orient-
able. Then M s C" diffeomorphic to S'XS' and 2  is C” isomorphic
to 977 (v) for some v € A(2)U B(2).

THEOREM 3. Let % be an octahedral C™ web on a closed connected
C" manifold M of dimension n = 3 such that some foliation in %  is
transversely orientable. Suppose that M satisfies one of the following
conditions.

(1) m =3 and n,(M) has non-exponential growth.

(2) w(M) is abelian.

(8) mw(M) is generated by at most n elements.
Then 727~ is C™ isomorphic to %7 °(v) for some v e A(n)U B(n). Further-
more, M 1s C* diffeomorphic to S'X---XS' in the case v € A(n) and to
S'x S~ im the case v € B(n).

REMARK. If a C! manifold M has an octahedral web %7~ such that
some foliation in 27~ is transversely orientable, then M is parallelizable.

The following problem is open.

PROBLEM. Does there exist an octahedral C™ web on a closed orient-
able C™ manifold whose fundamental group is mon-abelian?

In §2 we study fundamental properties of octahedral webs. The
theorems are partially proved in §3 and §4 and the proof is completed
in §5. '

2. Fundamental properties of octahedral webs. Let M be a connect-
ed C” manifold of dimension n>2 and % =(;, - -+, F.+,) an octahedral

C™ web on M.
First we show that we can choose special charts of M depending

on %7 .

DEFINITION 4. A C* chart (U, ¢: U— R*) of M is called admissible
with respect to %7~ if % |U = ¢*%7"° where 2#° is the standard web
on R”.

ProOPOSITION 1. (1) For each x € M there is an admissible C* chart
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(U, ») with xe U.

(2) If (U, ) and (V, ) are admissible C™ charts such that UNV
18 non-empty and connected, then there is f€ OW(n) such that « = fop
on UNV.

(8) Let U and V be open comnected subsets of R*. If a C™ dif-
feomorphism f: U—V satisfies 7 °|U=f*(3#"°| V), then there is f € OW(n)
with f|U = f.

(4) If feOW(n) preserves a tramsverse orientation of some &7,
then fePOW(n).

Proor. (1) Let z,€¢ M. By definition we have a C" chart (U, @)
such that z,e U and &;|U =9¢*%, for i =1, ---, n + 1, where &, is a
family of parallel hyperplanes in R*. We denote by G,(y) the leaf of
&, passing ye R*. Let y, = ¢o(x,) € R*. Since G,(y,), ---, G.(¥,) are in
general position, each intersection

L, =G )N NG (¥) NGisi(¥o) N =+ - N Go(Yo)

is a line passing y,. Choose a point y, € L, — {y,} and, for : = 2, - -+, n, let
y, be the intersecting point of L, and G,.,(y,). Since the vectors y, —
Yoo ***, Yun — Y, are linearly independent, there is a linear map F: R*— R"
sending y;, — ¥, to (0, ---,0,1,0, ---,0) for ¢ =1, ---, n. We define a
map @": U— R" by ¥

P'(x) = F(Px) — )
for all xe U. It is easy to see that the chart (U, ') is admissible.

(2) follows from (3), and (4) is clear.

(8) For each x € R* we denote by F,(x) the leaf of ¥} passing x.
Let Lx)=F.(x)N---NF_(@)NF,,(®)N---NF,(x) for i=1, ---, n. Clearly
L,(x) is a line parallel to the i-th axis of R*. Now let a € U and choose
be L;(a) — {a} such that the line segment between a and b is contained
in U. Let j # ¢ and consider the following equation

(*) L(Lja)NF,, ()N F,,(b) = L;j®)NF,(b)

for the unknown =z € L,a). The equation (*) has the unique solution
z=a+ (b—a)/2. Transforming the equation (x) by f, we have the fol-
lowing equation

(x*) L(L(f(@a)N Frr(¥)NFoii(f(0)) = Li(y) N F,i,(f (D))

for the unknown y e L,(f(a)). Since the equation (x*) has the unique
solution y = f(a) +(f(b) — f(a))/2, we have fla+(b—a)/2)= f(a)+ (f(a) —f(b))/2.
This implies that for all ac U and sufficiently small ¢ > 0 the map f
sends points in L,(a)N U(a, ¢) separated by intervals of the same length
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to such points in L,(f(a)), where U(a, ¢) is the open disk centered at a
and of radius ¢, and furthermore that f has the form f(x)=rx + ¢ for
all xeL,(a) N Ua, €), where r = || f() — f(a)|//||b — a|| for all be L,(a)N
Ula, ¢) — {a} and ¢c=f(a) — ra. In the above ||-|| is the usual norm of R".

We show that »=1(i, a) does not depend on 7. Let 7 # 4 and con-

sider the identity
(xx) f(Lj(a) N Foiy(b)) = Li(f(@)) N For (£ (D)) 4

where be L;(a)N U(a, €)—{a}. Let ¥’ = L;(a)NF,+,(b). Then the triangle
determined by a, b and b’ is similar to that determined by f(a), f(b) and
f@') because of the identity (xxx). Therefore we see that (¢, a) =
1F®) — f@)l/lIIb— all = [ f(b) — f@)]||/I|b" — al| = (7, a).

For all x€ U(a,e)cU we have the identities f(F.(x)NL,(a)) =
F(fx)NL(f(a)) for 1=1, .-+, », which implies that f(x)=»rx+c. There-
fore f is an analytic map in a neighborhood of each point ac€ U. By
the unicity theorem of analytic maps, it follows that f(x)=»x+c¢ for all
xeU. Let f=f,.cOW(n). Then f= f|U.

REMARK. By Proposition 1 we can consider octahedral webs as
OW(n)-structures. An OW(n)-structure is clearly a similarity structure.

The following corollary follows immediately from Proposition 1 and
we omit the proof.

COROLLARY 1. (1) Let .7 be the set of all admissible C™ charts
of M with respect to 7%7°. Then .7 determines an analytic structure
7 of M and % is amalytic with respect to .57 .

(2) Let %77 be an octahedral C™ web on another C™ manifold M’
and f: M— M’ a C" diffeomorphism with % = f*%77'. Then f is analytic
with respect to the analytic structures of the manifolds determined by
admissible charts.

From now on we assume that all octahedral webs are of class C*
and we omit the term “C“”. By using the analyticity of octahedral
webs, we can develop it over R" as follows. Refer to Thurston [4].

PROPOSITION 2. Let p: M— M be the universal covering map of M.
For all xc R* and ye M there is a map D: M — R* such that D(y) =«
and, for each sufficiently small open set U and each section s: U— M of
P, the map Deos: U— R™ is an admissible chart.

PROOF. Let ye M and x< R*. Choose a neighborhood U of y in M
such that p|U is a diffeomorphism onto »(U). By Proposition 1 we can
take an admissible chart (V, @) with n(y) e Vco(U). Let U,=(p|U)(V)
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and f = f,.-pp0 €POW(n). Then the composed map D, = fopop: U, — R*
satisfies D,(y) = « and, for the section s = (p|U)™*: V— U, the map
D,os = fop is an admissible chart. It is easy to extend D, to a map
D: M— R* with the desired property by analytic continuation.

DEFINITION 5. The map D: f— R"* in Proposition 2 is called a de-
veloping map of the octahedral web 77 .

The cove~ring transformation group G(IM|M) of the universal cover-
ing map p: M— M and a developing map of 77  are related as follows.
The proof is routine and we omit it.

PROPOSITION 3. Let D: M— R" be a developing map of %% . Then
there is a umique homgmorphism H:GM|M)— OW(n) such that Doa =
H(a)oD for all a e G(M|M).

DEFINITION 6. The homomorphism H:G(M|M)—OW(n) in Proposi-
tion 8 is called the total holonomy homomorphism associated with D, and
the image Im H of H the total holonomy group with respect to D.

PROPOSITION 4. The set of all total holonomy groups of %~ forms
a conjugacy class of subgroups of POW(n) ¢f some foliation in % 1is
transversely orientable, and of OW(n) otherwise.

The proof is easy and we omit it.

3. The case where a total holonomy group of 97  consists of
parallel translations of R”. In §3 and §4 we consider an octahedral
web 727 on a closed connected manifold M such that some foliation in
%  is transversely orientable. Let p: if—M be the universal covering
map, D: I— R" a developing map of % and H: G(II|M)—POW(n) the
total holonomy homomorphism associated with D.

In this section we suppose that Im H consists of parallel translations
of R*. First we show that D is a covering map. As before we denote
by U(z, r) the open disk in R" centered at x and of radius . Let K
be a compact subset of M such that p(K)=M. Since D is locally a dif-
feomorphism, we can take €>0 so that for all y € K there is a neigh-
borhood U, of y in M such that D|U, is a diffeomorphism onto U(D(y), ).

LEMMA 1. The map D: MI— R" is a covering map.

Proor. We show that D is surjective. Since D is locally a diffeo-
morphism, it follows that Im D is open in R*. Let xeCl(Im D). Then
there is ye M with D(y)e U(x, ). Furthermore, there is a e G(M|M)
with a(y) € K. Transforming the diffeomorphism D|U,,,: U, — U(Da(y),e)
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by a~', we have a diffeomorphism D|a~'U,,,: a *U,,,— H(a)"*U(Da(y), ¢).
Since H(w) is a parallel translation, it follows that H(a)*U(Da(y), ) =
U(D(y), €). Thus we see that x € U(D(y), e)CIm D and Im D is closed in
R", too. By the connectivity of R® we conclude that Im D=R".

We show that for each xe€ R"™ the neighborhood U(x, ¢/2) is evenly
covered by D. Let ye D 'Ulz, ¢/2). By the above argument we have
a neighborhood U, of y in M such that D|U, is a diffeomorphism onto
U(D(y), €). Since Uz, ¢/2)C U(D(y), ¢), it follows that D|(D|U,)*Ul(x, ¢/2)
is a diffeomorphism onto U(z, ¢/2). Hence U(x, ¢/2) is evenly covered by
D, and D: M— R" is a covering map.

Since R" is simply connected, the map D: M— R" is a diffeomorphism.
Therefore H: G(M|M)—POW(n) is a monomorphism and M is homeo-
morphic to the quotient space R*/Im H. Thus I' =Im H is a lattice
group of R* and %7  is isomorphic to 277°(I').

Now we investigate the isomorphism class of %77(I") for a lattice
group I" of R™.

PROPOSITION 5. Let I’y and I, be lattice groups of R*. Then
¥ (I")) is isomorphic to %7 (I',) if and only if I', is conjugate to I, in
POW(n).

PrOOF. The “if” part is already shown in Example 2. Suppose
that there is a homeomorphism f: R*/I",— R"/I", with 277 (I"\)= f*% (I',).
By the theory of covering maps, we can find a diffeomorphism f: R"— R"
making the diagram

R L g

W

R*|I,— BT,

commutative, where p, and p, are the projections. Since f*¥Z ™ =
Froprt () = prof*W (I'y) = pr7 " (I',) = #°°, it follows that f e OW(n).
Composing it with f_,,€ OW(n) if necessary, we may assume that fe
POW(n). It is easy to see that /", = fI',f~!, which completes the proof
of Proposition 5.

4. The case where a total holonomy group of %  contains a con-
traction. Let p: M—M, D:M—R* and H: G(M|M)—POW(n) be as in
§3. In this section we suppose that Im H is generated by elements
f fi, -+, [ such that for all x e R"
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flx) = rx where 0<7r<1,
fix)=rx +a, where »,>0, a;€R" for =1, ---, k.

Let S be the subspace spanned by a,, ---, a, in R*. Furthermore, sup-
pose that dim S<u.

First we investigate the restriction D| i/ — D-*(S): M —D-(S)— R*—8S.
Note that every element of Im H maps the space S to itself, a line per-
pendicular to S to another, and a sphere with the center in S to

another.
Let K be a compact subset of M with p(K) = M. Let

L = Max{d(D(y), S)|y € K}

where d is the usual metric in R*. Clearly L >0. We can take a
number ¢ >0 With~0<8<L so that for each y € K there is a neighbor-
hood U, of y in M such that D|U, is a diffeomorphism onto U(D(y), ¢).

LEMMA 2. (1) For each ye M — D-S) there is a neighborhood Vv,
of y in M — D(S) such that D|V, is a diffeomorphism onto U(D(y), ¢,),
where ¢, = ¢-d(D(y), S)/L.

(2) If xe D) — S then Uz, e,)CD(M) where &, = ¢-d(x, S)/L.

ProoF. It is sufficient to prove (1). For each ye M — D-%S) there
is « e GUII| M) with a(y)e K. By the remark above concerning elements
of Im H, we see that H(a) maps spheres of radius s to those of radius
s-d(Da(y), S)/d(D(y), S). Since D|U,, is a diffeomorphism onto
U(Da(y), ), the map D|a'U,, is a diffeomorphism onto U(D(y),
e-d(D(y), S)/d(Da(y), S)). Since L = d(Da(y), S), the image of D|a~'U,y,
contains U(D(y), ¢,). Then V, = (D|a='U,,,)*U(D(y), ¢,) will do.

LEMMA 3. In the case dim S < n — 2 the map D|M — D-'(S) is a cover-
ing map onto R* — S. In the case dim S = n — 1 the restriction of D to
a connected component of M — D-Y(S) is a covering map onto a connected
component of R* — S.

Proor. We treat only the case dim S<n — 2, since the other case
can be proved in a similar manner. First we show that the image of
D|M —D-'(S) is R*— 8. Since D is locally a diffeomorphism, the set
D(JT — D-%(8S)) is an open subset of R*—S. Let x be a point in the
closure of D(IM — D-'(S)) with respect to the topology of R*—S. Choose
&' € D(M — D-XS)) with ||’ — || <Min{e,/2, d(x, S)/2}. Then it follows that
d@', S)=d(zx, S)—||a'—x|| >d(x, S)/2and ¢, =¢e-d(x', S)/L > ¢e-d(x, S)/2L =
e./2. By Lemma 2 (2) we see that « € U(a", ¢,/2)c U(&', ¢,,)CD(M). There-
fore z e D(IM — D*(S)), hence D(M — D-'S)) is closed in R" — S, too.
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Since R™ — S is connected, it follows that D(M — D-%S)) = R* — S.

Secondly we show that each point x € R® — S has an evenly covered
neighborhood. Letd, = Min{e,/4, d(x, S)/2}. We look at the neighborhood
U(x, 0,) of 2. Let ye D'U(x, d,). By Lemma 2 (1) the map D|V, is a
diffeomorphism onto U(D(y), ¢,). Since d(x, D(y)) < 9, < ¢,/2, it follows
that U(D(y), ¢,)2 U(x, 6,). Furthermore, we see that the connected com-
ponent of D~'U(%, ¢,) containing y is (D|V,)"'U(x, 6,). Therefore U(zx, d,)
is evenly covered by D|M — D-(S). Hence D|M—D-S) is a covering
map.

LEMMA 4. (I) Suppose that D-(S)# @. Then the map D: M— R"
18 a diffeomorphism.

(II) Suppose that D~(S) = @. In the case dim S = n — 1 the map D
18 a diffeomorphism onto a connected component of R*—S. In the case
dim S =% — 2 the map D: M—R" — S is a universal covering map. In
the case dim S < n — 3 the map D: M—R* — S is a diffeomorphism.

The proof of Lemma 4 is easy and we omit it. Now we examine
each case of Lemma 4.

LEMMA 5. The case (I) of Lemma 4 does not occur.

PROOF. Suppose that it does. Then H: G(M|M)—POW(n) is a mono-
morphism and M is homeomorphic to the quotient space R*/Im H. Take
a point x € R* — S. Then the orbit (Im H)-x contains x, = »"x for n = 1,
2, ---. Since the limit of the sequence z,x,, --- is 0¢ (Im H)-z, the

space R"/Im H is not Hausdorff, a contradiction.
LEMMA 6. The case (II) of Lemma 4 does mot occur, unless dim S = 0.

PrOOF. Suppose that it does when dim S>0. It follows that a;+0
for some j. Consider the case dim S<n—3. Then the projection p’:
R*—S—R"—S/Im H is a covering map. Take a point x€ R*—S. Then
the orbit (Im H)-x contains z, = f"f;f"(x) = r;x + r"a; for n=1,2, ---.
Since the sequence z,, x,, - -+ converges in R" — S, the projection p’ can-
not be a covering map, a contradiction.

For the case dim S = n — 1 an argument similar to the one above is
valid and we have a contradiction.

Consider the case dim S = n — 2. We define a universal covering map
q: SXR.XR— R"—S, which can be regarded as a generalization of “q”
in Example 4, as follows. Choose vectors u, v € R* perpendicular to S
with [Ju]| = ||v|| and -v = 0. Let

qx,t,60) =x + t-cos2mh-u + t-sin 270-v
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for all (z, ¢, ) e SXxR, x R. Since D: M— R"* — S is also a universal cover-
ing map, there is a homeomorphism h: M—Sx R, x R with D = qoh. It
follows that poh~: SXR.XR—M is a covering map. It is easy to see
that the covering transformation group G(SX R, x R|M) contains maps
7 fl, -++, f, having the form

f(x; t: 0) = (TIL', ’I't, 0+D) ’
fix, t,0) = (ra+a,;, ri, 6+v,),

where v, v, --+, vy, are integers. For ¢ > 0 the orbit G(SXR. X R|M)-
(0, t, 0) contains x, = f*f;7~0, ¢, 0) = (+"a;, rit,v;)forn=1,2, ---. Since
the sequence z,, @, :--- converges, the map poh~' cannot be a covering
map. This contradiction completes the proof of Lemma 6.

By Lemmas 5 and 6 we see that D-%(S) = @ and dim S = 0. Now we
can determine 7.

LEMMA 7. In the case n = dim M = 3 the web %%~ 1is isomorphic to
F " (r) for some r € B(n)=(0,1) and the manifold M is diffeomorphic to
Stx S 1,

PrOOF. In this case D: — R" — {0} is a diffeomorphism, the map
poD~: R* — {0} — M is a covering map and (peD)*% = %Z°|R* — {0}.
Every diffeomorphism g: R* — {0} —» R" — {0} preserving %7 °|R" — {0} has
the form g(x) = sz for all x € R* — {0}, where s € R, if g preserves a trans-
verse orientation of some foliation in %77°|R* — {0}. Therefore the cover-
ing transformation group G(R" — {0}|M) is a cyclic group generated by
such a map g. Then %7 is isomorphic to %7 (s), and we may assume
that 0 <s <1 as in Example 3. Clearly M is diffeomorphic to S'x S

LEMMA 8. In the case n = dim M = 2 the web %  is isomorphic to
F (s, 8, d) for some (8, s,, d) € B(2) and the manifold M is diffeomorphic
to S'xS.

ProoF. Clearly M is diffeomorphic to S'xS. As in the case
dim S =% — 2 in the proof of Lemma 6, we consider the covering map
poh~: R, x R— M. Note that (poh=")*% =q*(%#°|R*—{0}), where q: R, X
R— R — {0} is the universal covering map defined in Example 4. Every
diffeomorphism k: R, X R—R, X R preserving ¢*(7%7"°| R*—{0}) has the form
h(t, 8) = (st, 60 + p) for all (¢,0)e R, Xx R where se R, and p#cZ. The
group G(R. X R|M) is generated by two elements, say k, and h, having
the form h,(t, 6) = (s;it, 0 + ;). Let d>0 be the greatest common divisor
of ¢, and g,. Changing the generators h,, we may assume that ¢, =0
and g, = d. Then it follows that s, # 1. Therefore %7 is isomorphic to
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(s, S, d). Furthermore, we may assume that (s, s, d)e B(2) as in
Example 4.

5. Completion of the proof of the theorems.

PrROOF OF THEOREM 1. It remains to prove that if W(v,) = W(v,) for
Y. Y. € B(n) then v, = 7,. ,

First consider the case n=3. Let », se B(n)=(0,1). Suppose that
there is a homeomorphism f: R*—{0}/m,—R"*—{0}/m, with 27 (r)=f*%# (s).
By the theory of covering maps we can find a homeomorphism f: R* —
{0} —» R® — {0} with p,of = fop,, where p, and p, are the projections to
R* — {0}/m, and R" — {0}/m,, respectively. Since f*(Z°|R" — {0}) =
f*pf?/(s):pff*W(s)zpf?/('r)=W°l R"—{0}, the map f has the form
flx) = tx for all xe R* — {0}, where £ + 0. Furthemore, it follows that
m, = fm,f ' =m,. Therefore r = s.

Now consider the case n = 2. Let (r, s, d,), (7, 8,, d,) € B(2). Sup-
pose that there is a homeomorphism h: R, X R/{f, 9.} — R+ X R/{f, 9.}
with 2 (r,, s, d) = h*% (1, s,, d,) where f, and g, are the maps defined
by means of 7, s; and d;, as in Example 4. As above we can find a
homeomorphism #: R, X R— R, x R with p,ch =hop,, where each p, is the
projection to R, X R/{f;, 9.}. Since h*q*(5#7 | R*—{(0) =h*p2# (1, 8, d,) =
PIREH (g, 85y do) =05 (v, s, d,)=q*(#Z°| R*—{0}), where q: R, X R—R*—
{0} is the covering map in Example 4, the map % has the form h(t, 6) =
(rt, 6+v) for all (¢, 6) e R, X R, where re R — {0} and ve€Z. By an easy
computation we see that hf,h~! = f, and hg,h—* = g,. Hence the group
generated by f, and g, is equal to the one generated by f, and g,. Con-
sidering the forms of f; and g,, we conclude that f, = f, and g, = g,.
Therefore (7, s, d,) = (1, s,, d,) and we are done.

PrOOF OF THEOREM 2. Since M has a codimension-one C” foliation,
the Euler number of M is zero. By Proposition 1 (4) it follows that M
is orientable. Therefore M is C* diffeomorphic to S'x S*. Now consider
a developing map D: M— R" and the total holonomy homomorphism
H: G(M|M)—POW(n) associated with D. Since G(M|M) is isomorphic
to ZEZ, the total holonomy group Im H is abelian. When Im H con-
sists of parallel translations, the web % is C" isomorphic to %7 (I")
for some lattice group I by the argument in §3. When Im H contains
f=f,. for some r€ R, — {1} and a € R", we may suppose that a =0 by
changing D, if necessary. Let gelIm H. Since fog=gof, it follows that
9(0) = 0. Therefore g = f,, for some s€ R,. Take elements f,, f,eIm H
so that f, f; and f, generate Im H. Then the subspace S defined by f,,
f, as in §4 is {0}. It follows that 97  is C* isomorphic to #7(r, s, d)
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for some (7, s, d) € B(2) by the argument in § 4.

PROOF OF THEOREM 3. Note that x,(M) is isomorphic to G(IM|M).
Consider the case (1) of Theorem 3. We need the following theorem of
Inaba [3].

THEOREM (Inaba). Let M be a closed orientable connected analytic
3-manifold such that 7w, (M) has mon-exponential growth. If M has a
transversely orientable analytic foliation of codimension one, then M is
diffeomorphic to S*XS* or to a torus bundle over S'.

By the theorem of Inaba and Corollary 1, the case (1) can be re-
duced to the case (8), since the fundamental group of a torus bundle
over S' is generated by 3 elements.

Now consider the case (2). As in the proof of Theorem 2, when a
total holonomy group of %7~ consists of parallel translations, we see
that %7~ is C” isomorphic to %7 (I") for some I'e€ A(n). In the other
case we can apply the argument in the case dimS =0 of §4. We see
that %7 is C" isomorphic to %7 (») for some #» € B(n).

Finally consider the case (8). Suppose that a total holonomy group
of % contains f,, for some re R,—{1} and ac R*. Then we can apply
the argument in §4, because dimS<n —1 in such a case. As above we
can apply the argument in §3 in the other case. Thus the proof of
Theorem 3 is completed.

REFERENCES

[1] W. BLASCHKE AND G. BoL, Geometry der Gewebe, Springer-Verlag, Berlin, 1938.

[2] S. S. CHERN AND P. GRIFFITHS, Abel’s theorem and webs, Jahresberichte der deut.
Math-Verein. 80 (1978), 13-110.

[3] T. INABA, On the structure of real analytic foliations of codimension one, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 26 (1979), 453-464.

[4] W. THURSTON, The Geometry and Topology of 3-manifolds, mimeographed notes, Princeton
Univ., 1977/78.

MATHEMATICAL INSTITUTE
TOoHOKU UNIVERSITY
SENDAI, 980 JAPAN





