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1. A distortion theorem of Holder type for certain quasiconformal
mappings of the unit disc onto itself was considered first by Lavrentieff,
Ahlfors, and then the best estimate (Theorem B) was established by
Mori [4] who used his module theorem as a tool. Afterwards, Lehto-
Virtanen [3] showed a modification (Theorem A) of Teichmiiller's module
theorem which implies Mori's module theorem, and presented an alterna-
tive proof of Theorem B by applying Theorem A.

THEOREM A. If a ring R separates zλ and z2 from 0 and °o in the
complex plane, then

m o d i ? ^ l o g Φ 2 ( { 2 ( | ^ | + Iz.D

where log Φ2(a) denotes the module of the plane Grotzsch ring and
V/z1, Λ/Z2 belong to the same branch of the square root, single valued in R.

THEOREM B. Let w be a K-quasiconformal mapping of the unit
disc onto itself, normalized by w{ϋ) = 0. Then, for every pair of points
z19 z2 with {Zil ̂  19 \z2\ ίS- I, we have

\w{z,) - w{z2)\ ^ 1 6 1 ^ - s J 1 ' * ,

where 16 cannot be replaced by any smaller number if the inequality is
to hold for all K.

2. Since for n ^ 3 there is no 1-quasiconformal mapping in the n-
dimensional case corresponding to analytic branches w = ± l / # used in
the proof of Theorem A, we used previously two branches y = y+(x)
and y-(x): 2/1 = r cos (0/2), y2 = r sin (0/2), y5 = xό (3 ^ j ^ n) for — π ^
0 < π and π ^ 0 < 3ττ, respectively, which are called foldings and are
2-quasiconformal. And we deduced an estimate for the module of a
ring in w-space corresponding to Theorem A. This estimate means a
modification of Teichmϋller's module theorem in w-space. Then, it follows
that the estimate obtained by using such a modification for certain K-
quasiconformal mappings in %~space corresponding to Theorem B has the
exponent 1/2K (see [2]).
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The main purpose of this paper is to improve on the exponent in
the latter estimate. That is to say, we establish, as Theorem 1, another
modification of Teichmuller's module theorem under an additional condi-
tion that the unbounded component of the complement of the ring in
w-space contains the ball Bn(Q, r0) with certain radius r0 centered at the
origin, and, as its application, we obtain in Theorem 2 an estimate,
where the exponent can be taken to be 1/K, for certain if-quasiconf ormal
mappings in w-space corresponding to Theorem B.

THEOREM 1. Suppose that a ring R in n-space separates a pair of
points a and β from the origin and the point at infinity, and that the
unbounded component of the complement of R contains the ball {x | | x | ^ r0}
for certain positive number r0. Then, we have -

moάR ^ \ogΦn({2{\a\\\β\ + r0)
2 + \β\\\a\ + ro)

2}}1/2/ro|α - β\) ,

where log Φn(a) denotes the module of the Grotzsch ring in n-space.

THEOREM 2. Let y be an n-dimensional K-quasiconformal mapping
of the unit ball onto itself normalized by y(0) = 0. Then, for every
pair of points a and β with \a\ tί 1, \β\ ^ 1, we have

\y(ct)-y{β)\ ^c\a- β\1/κ ,

where c = 21+1/iΓ(l + l/pQ)Xn, and Xn is such a bound that Φn(a) ̂  Xna,
p0 = llΦ~ι[{Φn(4)}κ], and Φ~ι is the inverse function of Φn.

REMARK 1. It should be noted that the exponent 1JK in Theorem 2
cannot be replaced by any larger number. Because, if we consider the
following iίΓ-quasiconformal mapping y = τ/0(r, Θu , θn_1):

2/i = r1/κ cos θγ ,

y3. = r

1/κ sin θx - > sin Θ5_x cos θά (j = 2, 3, , n — 1)

Vn = r

1/κ sin θ1 sin θn_2 sin θn_x ,

then there exists such a point a that \yo(a) — yo(O)\ > c\a\*9 \a\ < 1 for
each constant c provided that t is larger than 1/K.

3. As regards the definition of the module of a ring in the case of
dimension n ^ 3 and its fundamental properties, i.e., the superadditivity
of the module, Grotzsch's and Teichmuller's module theorems, and the
definition of a iΓ-quasiconformal mapping and its fundamental properties,
we refer the reader to Mostow [5] and Vaisala [6]. We here note only
that a UL-quasiconformal mapping in this paper is equivalent to a Kn~ι-
quasiconformal one in the sense of Vaisala.

4. Proof of Theorem 1. We may assume, without loss of generality,
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that the point a lies on the positive xraxis, since this can be obtained
by a suitable rotation around the origin and the inequality to be es-
tablished is invariant with respect to such rotations. Now, let a =
(α, 0, ...,0) (α >0) and β = (δlf -. ,bn).

First, let us map the ring R into the ball Bn(0, r0) by the inversion
£ =/i(») = rox/|Λ;|2 with respect to the sphere S -^O, r0). Denote by a',
βr the images of α, /5, under <? = /i(αθf respectively. Then α' =
(ri/a, 0, , 0) and /9' = (robj\β\\ , ro6%/|/3|2).

Next, let us map the ball Bn(0, r0) onto the half space {η \ η1 ^ r0}
by the inversion rj = /2(<J) = — roβx + 4r2(f + roβi)/|£ + roej2 with respect
to the sphere Sn~\-roelf 2r0), where βx = (1, 0, , 0). Let α", β" be the
images of a', β', respectively, by η = /2(f). Then we have α" =
(-r 0 + 4ro/(ro/α + 1), 0, , 0), β" = (-r 0 + 4(|/3|2 + rjb,)r,l\β + nβj 2,

Finally, let a'", β"r be the images of a", β" by the translation ζ =

f*(V) = V + nβi Then
Jα'" - (4ro/(ro/α + 1), 0, - . . , 0 ) ,

[βm = (4(|/512 + rΛWI/3 + r^J2, 4^/1/3 + nej2) (2 ^ i ^ w) .

We set hereafter 4ro/(ro/α + 1) as a[" for simplicity sake. Then, the
ring R is mapped onto the ring Rf in the half space {ζ | ζx ^ 2r0} by the
composite mapping of ξ = fx(x)9 y = /2(f), ζ = /8(^). Let i?" be the ring
symmetric to Rr with respect to the hyperplane {ζ | ζx = 0}. Then,
mod R = mod R' = mod R".

Now, denote by Co, Co" the bounded components of complements of
R', R", respectively, and let Ro be the ring with Co, Co' as its comple-
mentary components. Then, Rr and R" are disjoint rings each of which
separates the boundary components of RQ, and hence we have mod R! +
modi2"^modi20 by the superadditivity of the module of a ring, so that

( 2 ) mod R ^ (1/2) mod Ro .

Put α'+" = a"' and /3+" = β"\ and let α'_", /3'_" be the points sym-
metric to α+, β", respectively, with respect to the hyperplane {C i Ci = 0}.
Then a'ϋ = (-4ro/(r0/α + 1), 0, - , 0), β'i' = (-4(|/9|2 + rjbdrjlβ + nej 2 ,
4rJ6y/|/3 + roβχ.12) (2 <£ i ^ %), which belong to the unbounded component
G[ of the complement of Rf.

Here, we consider the auxiliary Mobius transformation

Σ

2<Ci/{(C1 + αί")2 + ΣQ} (2 ^ i ^
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which maps Ro onto a ring Ro and carries α'+", a'" into the origin and
the point at infinity, respectively. Denote by β+, β_ the images of
β"', β"!, respectively, under the above Mδbius transformation. Then
the ring Ro separates the origin and β+ from the point at infinity and
/3_. Thus, we can apply Teichmϋller's module theorem in w-space to
the ring Ro to obtain the estimate

( 3 ) mod RQ = mod Ro ^ 2 log Φn({(\ β+1 + I β-1)/| β+1}1/2) .

Since β+ = ({ΣjU β'"2 ~ a["2}/{(a[" + β["f + Σ;=2 β'"% 2aϊ'β'/'/{(a[" +
βϊΎ + Σ?=2 βT2)) and β_ = ({Σ?=i β'Γ - a["2}/{(a[" - β[")2 + Σi=2 /37'2},
2a'1"β'/'/{(a'1" - βT)2 + Σi=2 β'"2}) for i = 2, 3, ., n, we have, after some
elementary computations,

Substituting (1) into the right hand side and continuing elementary
computations, we obtain

^ (4ro)
2{|α|2(|/3| + r0)

2 + \β\\\a\ + ro)
2}/(|α| + ro)

2\β + r0e,\2

and \a!" - β"r\2 = (4r2)2|α - /3|2/(|α| + ro)
2\β + roej2. Consequently, we

have from (3) and (4) into which these two relations are substituted,

modtfo ^ 21og^({2{M2(|/3| + r0)
2 + \β\\\a\ + ro)

2}}1/2/ro|a - β\) .

Combining it with the preceding (2), the statement of the theorem
follows immediately.

5. We need the following two lemmas together with Theorem 1
for the proof of Theorem 2.

LEMMA 1. For n ^ 2, Φn(a) ^ Xna and 4 <; λΛ.

The upper bound for λw is omitted since it is not used immediately
(see [1]).

REMARK 2. It is well known that Φn(a) is increasing and is continu-
ous for a > 1 (see, for instance, Mostow [5, Sections 6 and 7]).

LEMMA 2. (A space analogue of Schwarz's lemma). Let y — f{x)
be a K-quasiconformal mapping of \ x | < 1 onto | y | < 1 in n-space
normalized by /(0) = 0. Then, for 0 < |a?| < 1, we have

PROOF. Let Rx be the ring obtained by deleting from the unit ball
I x I < 1 the segment connecting the point x to the origin, and let Ry be
the ring, in ^/-space, similar to Rx. Then,
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y = logΦn{l/\y\).

It is well known that the inverse mapping f~\y) of f{x) is also if-quasi-
conformal. Denote by f~ι{Ry) the image of Ry under f~\y). Then we
have mod f~\Ry) ^ mod Rx by Grδtzsch's module theorem in %-space
which is deduced by means of the spherical symmetrization (see Mostow
[5, Sect. 8]). This together with the characterization of the if-quasi-
conformality {IIK) modRy ^ mod f'\Ry) yields

{IIK) mod Ry £ mod Rx .

Taking (5) into account, we have t h e desired relat ion.

REMARK 3. I t follows from Lemma 2 t h a t on \x\ = r 0, 0 < r 0 < 1,

we have | f{x) | ^ l/ΦίΉΦ»(l/r0)}*]. Since ljφ-\{Φn(χl\ x\)}κ] is an increasing

and continuous function in \x\, Lemma 2 and Remark 2 imply t h a t t h e

image of t h e ball \x\ ^ r 0 under y — f{x) contains t h e ball {y\\y\ ^

6. Proof of Theorem 2. Since \y{a) - y{β)\ ^ \y{a)\ + \y(β)\ ^ 2,
it follows that for \a - β\ ^ l/λΛ,

\v(ot) ~ 3/03)1 ^ 2 < c ^ cλ.d/λ.)^ ^ cλ jα - β\1/κ .

The theorem is trivial for \a — β\ = 0 , and so it suffices to prove it
for 0 < \a — β\ < l/λn. For that purpose, we consider the following
two cases: (i) \a + β\ ^ 1 and (ii) \a + β\ > 1. Note that |α - >S|/2 <
l/2λw ^ 1/8 by Lemma 1.

( i ) The case \a + β\ ^1. Consider the spherical ring A =
{x\\a — β\/2 < \x — (a + β)/2\ < 1/2}. Then A is contained in the unit
ball, hence so is the image y(A) of A under y(x). Therefore, y{A) is
contained in the ball {y\\y — y{a)\ < 2}. Hence one of the complementary
components of y(A) contains both y(a) and y(β), and the other contains
the outside of a ball {y\\y — y(a)\ ^ 2}. Thus, by the monotonicity of
the module of a ring and Grotzsch's module theorem in %-space, we
have

mod y{A) ^ log Φn(2/\y(a) - y(β)\) .

Taking into account the module condition of the ίΓ-quasiconformality
(XIK) mod A = {IIK) log (l/|α - β\) ^ mod y{A), we have l/|α - /3|1/ί: ^
Φ%(2/|τ/(α) — 2/(/S)|). By means of Lemma 1, we have l/\a — β\ι/κ ^
2\J\y{a) — y{β)\, from which it follows that

\y{a) - y{β)\ £ 2Xn\a - β\ί/κ < cXn\a - β\ί/κ .
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( i i) The case \a + β\>l. Consider then the ring B =
{x\ \a — /3|/2 < \x — (a + β)/2\ < 1/4}. It is either completely contained
in \x\ < 1 or not. In the latter case, consider the following mapping
y*(x)f instead of y(x), defined by

v (x) — Ί
\ v ( χ / \ χ \ 2 ) / \ y ( χ / \ χ \ 2 ) \ 2 , \ χ \ > i ,

representing an extension of y also outside of the unit ball as a K-
quasiconformal mapping.

The ring B separates a pair of points a, β from the origin and the
point at infinity. On the other hand, the unbounded component C^B)
of the complement of B contains the ball |a?| ^ 1/4. Hence Lemma 2 and
Remark 3 yield that the unbounded component of the complement Cx{y*{B))
of the ring y*(B) contains the ball \y\ ^ p0, where p0 = 1IΦ*\{ΦJ£)}K].
Thus, the ring y*(B) separates a pair of points y(ά), y(β) from the origin
and the point at infinity, and C1(i/*(J5)) contains the ball \y\ ^ p0. Con-
sequently, we have by Theorem 1, mod y*(B) ^ log Φn({2{\y(a)\\\y(β)\ + ρ0)

2 +
\y{β)\\\y{a)\ + Po)2}Y/2/Po\y(a) - y(β)\) = logΦn({2{\y(a)\\\y(β)\/p0 + I)2 +
I y{β) \\\ y(a) \lp0 + l)2}}1/2/l Via) - y(β) I). Hence, we have

mod y*(B) £ logΦn(2(l + l/po)/\y(a) - y{β)\) .

Combining it with the module condition of the if-quasiconformality
{IIK) mod B ^ mod y*(B), we obtain (1/2|α - β\)1/κ ^ Φ.(2(l + l/po)/\y(a)-
y(β)\. By virtue of Lemma 1, we have (1/2\a-β\) y κ ^2(1 + l/jθ0)λn/|y{ά)-
y(β)\, from which it follows that

\vta) ~ V(β)\ ^ 2(1 + l/po)Xn2
ί/κ\a - ^ l 1 ^ = c\a - β\ί/κ

as desired.
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