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0. Introduction. Let SL(n, R) denote the group of all nxn real
matrices of determinant 1. In the previous paper [12], we classified real
analytic SL(n, R) actions on the standard n-sphere for each n = 3. In
this paper we study real analytic SL(n, R) actions on the standard
m-sphere for 5 <n < m < 2n —2. We shall show that such an action is
characterized by a certain real analytic R* action on a homotopy
(m — n + 1)-sphere. Here R* is the multiplicative group of all non-zero
real numbers.

In Section 1 we construct a real analytic SL(n, R) action on the
standard (n + k — 1)-sphere from a real analytic R* action on a homo-
topy k-sphere satisfying a certain condition for each n + %k >=6. In
Section 3 we state a structure theorem for a real analytic SL(n, R)
action which satisfies a certain condition on the restricted SO(n) action,
and in Section 5 we state a decomposition theorem and a classification
theorem. In Section 6 we construct real analytic R* actions on the
standard k-sphere. It can be seen that there are infinitely many (at
least the cardinality of the real numbers) mutually distinet real analytic
SL(n, R) actions on the standard m-sphere.

1. Construction. Let : R*XY — 23 be a real analytic R* action
on a real analytic closed manifold 3 which is homotopy equivalent to
the k-sphere. Define a real analytic involution T' of X by T'(x) = (—1, x)
for x€3. Put F = F(R*, %), the fixed point set. We say that the
action r satisfies the condition (P) if

(i) there exists a compact contractible k-dimensional submanifold
X of ¥ such that XUTX =23 and XNTX = F,

(ii) there exists a real analytic R* equivariant isomorphism j of
R X F onto an open set of X such that j(0,x) =« for x€ F. Here R*
acts on R by the scalar multiplication.

Notice that F' = F(T, %), the fixed point set of the involution T by
the condition (i), and hence F' is a real analytic (k¥ — 1)-dimensional
closed submanifold of ¥. Define a map
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iR —0O)XF—(R"—0)x& —F)
R)(

by f(u, x) = (u, j(, x)) for ue R* — 0,z F. Then the map f is a real
analytic SL(n, R) equivariant isomorphism of (R" — 0)xF onto an open
set of (R® — 0)xzx(¥ — F'), where SL(n, R) acts naturally on R*, R* acts
on R" by the scalar multiplication and R* acts on X by the given action
4. Here (R" — 0) X zx(¥ — F') is the quotient of (R — 0)x (2 — F') ob-
tained by identifying (u, y) with (t~'u, 4(¢, y)) for ue R* — 0,yec¥ — F,
te R*. Put

My, j) = R“XFLfJ(R” - 0Ox@ —-F),

R*

which is the space formed from the disjoint union of R"XF and
(R® — 0) X gx(¥ — F) by identifying (u, ) with f(u, ) for ue R* — 0, x € F..
By the construction, it can be seen that the space M(s, j) is a compact
Hausdorff space with SL(n, R) action, and M(y,, 7) admits a real analytic
structure so that the SL(n, R) action is real analytic.

ProrosITION 1.1. (a) Let j,: RXF—2X% be a real analytic R* equi-
variant isomorphism of R X F onto an open set of ¥ such that 5,(0, x) = x
for xe F. Then M(¥, j) is real analytically isomorphic to M(vyr, j) as
SL(n, R) manifolds.

(b) Suppose n =1 and n + k=6. Then M(y, j) is real analyti-
cally isomorphic to the standard (n + k — 1)-sphere.

PROOF. It is easy to see that there is a real analytic function
s: F'— R* such that j,(¢, ) = j(s(@)t, ) for te R,z F. Let g be a real
analytic automorphism of the disjoint union of R" X F and (R"—0) X zx(2 —F)
defined by

g(u, x) = (s(x)u, x) for weR", xek,

gw,y) =@, y) for veR"—0, ye¥ —F.
Then it is easy to see that g induces a real analytic SL(n, R) equivari-
ant isomorphism of M(+, 5,) onto M(y, J).

To show (b), we consider the restricted SO(n) action on M(+, J).
We can assume j([0, «)x F)c X by the condition (P). Put X, =X —
4([0, 1)x F'). Let D" denote the closed unit disk of R*. Let 0Y denote
the boundary of a given manifold Y. Then it can be seen that there
exists an equivariant diffeomorphism

MG, §) = D*x FUSD*X X,

as smooth SO(n) manifolds, where h:oD"xX F —oD"x0X, is a C> diffeo-
morphism defined by &(u, x) = (4, 51, x)) for weoD", xecF. Hence
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M(+p, g) is C= diffeomorphic to o(D*x X,). Here X, is a compact con-
tractible k-manifold; hence o(D"x X)) is simply connected for = = 1.
Therefore M(+, j) is C= diffeomorphic to the standard (n + k& — 1)-sphere
for n + k = 6 by the h-cobordism theorem (cf. Milnor [8, Theorem 9.1]).
It is known by Grauert [3] and Whitney [13, Part III] that two real
analytic paracompact manifolds are real analytically isomorphic if they
are C= diffeomorphic. Consequently, M(y, j) is real analytically iso-
morphic to the standard (» + & — 1)-sphere for n + k = 6. g.e.d.

REMARK. By the condition (P), it is shown that ¥ is real analyti-
cally isomorphic to the standard k-sphere for k¥ = 5 by the h-cobordism
theorem.

2. Certain subgroups of SL(n, R). As usual we regard M, (R) with
the bracket operation [A, B] = AB — BA as the Lie algebra of GL(n, R).
Let gl(n, R) and 8o(n) denote the Lie subalgebras of M,(R) correspond-
ing to the subgroups SL(n, R) and SO(n) respectively. Then

8l(n, R) = {X € M,(R): trace X = 0},
8o(n) = {Xe M,(R): X is skew symmetric} .
Define certain linear subspaces of 3l(n, R) as follows:

00

8l(n — r, R) = {(0 4

go(n — r) = 8o(n) Nslin — r, R),

sym(n — 1) = {Xesl(n — 1, R): X is symmetric} ,

a = {(a;;) €8l(n, R):a;; =0 for o +1},

a* = {(a;;) €8l(n, R): a;; =0 for j=+1},

b= {(a;;)es8l(n, R):a,; =0 for i+ j,ap=0a3= - = a,,} .
Then

>: A is (n — r)X(n — ) matrix of trace 0} ,

8i(n, R) =8l(n — 1L, Y PaDa* Db,
3l(n — 1, R) = 8o(n — 1) @ sym(n — 1)
as direct sums of vector spaces. Moreover we have
[a,a*]=8l(n — 1, R)PD,
2.1) [a,a] = [a*, a*]=[b,b] =[b,8l(n —1, R)] =0,
[a, 6] = [a, 8l(n — 1, R)] = a, [a* b] = [a* 8l(n — 1, R)] = a*.
Let SL(n — r, R) and SO(n — r) denote the connected subgroups of

SL(n, R) corresponding to the Lie subalgebras 3l(n — », R) and 8o(n — 7),
respectively.
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Let Ad: SL(n, R) — GL(3[(n, R)) be the adjoint representation defined
by Ad(A)X = AXA- for Ac SL(n, R), X€3l(n, R). Then the linear sub-
spaces 8l(n — 1, R), a, a* and b are Ad(SL(n — 1, R)) invariant, and the
linear subspaces 3o(n — 1) and 8ym(n — 1) are Ad(SO(n — 1)) invariant.
Moreover, the linear subspaces 3ym(n — 1), a, a* and b are irreducible
Ad(SO(n — 1)) spaces respectively for each » = 3. Put

0 qx, ---qu,

2. 0O --- 0
o, =" 0 T LaeR

0L, 0O --- 0

for », ge R. Then (p, q) is an Ad(SO(n — 1)) invariant linear subspace
of a@a*, and we have

(2.2) (0 for p¢ =0,
[t(p, @), E(p, ©)] = so(n — 1) for pg#0.

LEMMA 2.3. Suppose n =3. Let g be a proper Lie subalgebra of
8l(m, R) which contains 8o(n — 1). Then g is one of the following:
8o(m — 1), 3o(n —1)P Db, 8o(n —1)PDa, 8o(n — 1) P a*, 3o(n — 1) P (p, q)
for pq # 0, 8o(n —1)PaPb, 3o(n —1)Pa*Ph, 8l(n — 1, R), 8l(n — 1,
RYDY, 8l(n —1, R)Da, 8l(n — 1, R)Pa*, 8l(n —1, R)Padh, 8l(n — 1,
RYDa*Phb.

PrOOF. Since g contains 8o(n — 1), g is an Ad(SO(n — 1)) invariant
linear subspace of 8l(n», R). Hence we have g = 3o(n — 1) @ (g N 8ym(n—1))P
gnN@da*) D (gnb) as a direct sum of Ad(SO(n — 1)) invariant linear
subspaces. Since 8ym(n — 1) is irreducible, we have gNsym(n — 1) =0
or 3ym(n — 1). Since g is a proper Lie subalgebra of 8l(n, R), g does not
contain a@a* by (2.1). Suppose » = 4. Then we derive that gn(aPa*)
coincides with certain f(p, q). If g contains 8ym(n — 1), then (2.2) im-
plies that gN (@@ a*) =0, a or a*. Now we can prove the lemma for
% = 4 by a routine work from (2.1) and (2.2). The proof for » = 8 is
similar, so we omit the detail. q.e.d.

REMARK. Let G(p, q) denote the connected Lie subgroup of SL(n, R)
corresponding to the Lie subalgebra 8o(n — 1) P t(p, @) for pq # 0. If
pg < 0, then G(p, q) is conjugate to G(1, —1) = SO(n). If pq > 0, then
G(p, q) is conjugate to G(1, 1), which is non-compact.
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10 0 |
Put X, =(11 .
(_0_ I, )
LEMMA 2.4. (i) Assume that g is one of the following:
8o(n — 1),80(n — 1)EPb, 8o(n — 1) Pa, 3o(n — 1) PaPhb,
so(m — 1) Ptw, q) for pg+#0,8(n—1 R),8(n—1 R)PbH.
Then 8o(n) N Ad(X,)g = 3o(n — 2).
(i1) Assume that g is one of the following:
go(n — 1) Pa* 8o(n —1)Pa*Pb.
Then 8o(n) N Ad(*X;")g = 8o(n — 2) .

ProOOF. Since 8o(n) N Ad(X,)g = {A €8o(n): X;'AX, €g}, we have the
desired equations by a routine work from the following relation:

a; + & (4373 Qg3 te Ay

Qop + Aoy — Qyp — Qg Aoy — Qg Qg — Qg * *° Ay — Qyyy
X (a; )X, = Qg + Qg A3, Qg3 T A3y
anl + a"rﬂ a’n2 a‘ns ctt a’nn

q.e.d.

Let L(n), L*(n), N(n) and N*(n) denote the connected Lie subgroups
of SL(n, R) corresponding to the Lie subalgebras 8l(n — 1, R)Pa,
dlln —1, R)YPa*8l(n —1, R)Padb and 8l(n — 1, R) Pa*Pbh, respec-
tively. Then these are closed subgroups of SL(n, R).

PROPOSITION 2.5. Suppose m =3. Let M be an SL(n, R) space.
Assume that the restricted SO(n) action on M has at most two orbit
types SO(n)/SO(n — 1) and SO(n)/SO(n). Then the identity component
of an isotropy group of the SL(n, R) action on M s conjugate to one
of the following: L(n), L*(n), N(n) N*(n) and SL(n, R).

PrROOF. Let g be the Lie algebra corresponding to an isotropy
group. By the assumption on the restricted SO(n) action, we see that
Ad(x)g contains 8o(n — 1) for some x € SL(n, R). Such a Lie subalgebra
is determined by Lemma 2.3. Moreover, we can derive 3o(n) N Ad(y)g #
8o(n — 2) for any y € SL(n, R) by the assumption on the restricted SO(n)
action. Hence we see that g is one of the following up to conjugation:
8l(n — 1, R)Pa, 8l(n — 1, R)Pa*, 8l(n — 1, R)y Pa@dhb, 8l(n — 1, R)Pa*Ph,
8l(n, R) by Lemma 2.3 and Lemma 2.4. On the other hand, it is easy
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to see that the restricted SO(n) actions on the homogeneous spaces
SL(n, R)/L(n), SL(n, R)/L*(n), SL(n, R)/N(n) and SL(n, R)/N*(n) have
only one orbit type SO(n)/SO(n — 1) respectively. q.e.d.

3. Structure theorem. Let ¢: Gx M — M be a real analytic G action.
Let g be the Lie algebra of all left invariant vector fields on G. Let
L(M) denote the Lie algebra of all real analytic vector fields on M.
Then we can define a Lie algebra homomorphism ¢*: g — L(M) as follows
(ef. Palais [10, Chapter II, Theorem II]):

¢7(X)(f) = lim (f(g(exp(—tX), @) — f@)/t

for Xeg,ge M and a real analytic function f defined on a neighborhood
of g. It is easy to see that ¢*(X), = 0 iff ¢ is a fixed point of the one-
parameter subgroup {exp¢X}. For each subgroup H of G, let F(H, M)
denote the fixed point set of the restricted H action of ¢. Then F(H, M)
is a closed subset of M.

LemmA 38.1. Let ¢: SL(n, R) XM — M be a real analytic action. Let
pe F(SL(n, R), M). Suppose that there exists anm analytic system of
coordinates (U;u,, « -+, u,) with origin at p, such that

() $r(@ )=~ 3 wus(@)0/ou)

for (x,;)€8l(n, R),ge U. Then, (i) there exists an open neighborhood V
of p in F(SL(n, R), M) and there exists an analytic isomorphism h of
R*X V onto an open set of M such that
(a) R0,v)=wv for veV,
(b) h(gu, v) = ¢(g, h(u, v)) for g€ SL(n, R), ue R*, ve V.
Moreover, (ii) if pairs (V,, h) and (V,, h,) satisfy the conditions (a), (b),
then

hq(R“X Vx) N hz(RnX V2) = hL(RnX (Vl N Vz)) ’

and there exists a unique real analytic real valued function f on V,NV,
such that h,(u, v) = h,(f(v)u, v) for ue R, ve V,NV,.

ProOF. The assumption () implies F(SL(n, R), M)N U={q € U: u,(q)=
- = u,(q) = 0}. Define a real analytic isomorphism %k of U onto an
open set of R™ by k(q) = (w,(q), -+, u.(¢)). There is a positive real

number 7 such that D?x Dr*cCk(U), namely (u,, ---, u,) €k(U) for
Wy ++, u,) €D, (Wpsyyy **+, Uy) € Dm ™. Here we denote D?={(v, ---, v,) €
R*: v} + --- 4+ 92 < %. Consider the following curves

a(t) = alt; X, u, v) = k(g(exp tX, k(x, v) ,
b(t) = b(t; X, u, v) = ((exp tX)u, v)
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for Xe8l(n, R), uec D, ve Dr~". The curve b(t) is defined for each tc R,
the curve a(t) is defined on an interval (—i, t,) for some positive real
numbers t, t,. Put X = (z,;), a(t) = (a,(t), - - -, an(t)) and b(t) = (b(¢), - - -
b,(t)). Then it follows from the assumption (x) that

’

(@/dt)at) = 3, wyat) for 1=i<a,

(d/dt)a,t) =0 for n<i<m.
On the other hand,

(d/dt)by(t) = §_; vbit) for 1<ism,
(d/dt)p(t) =0 for n<i=m
by the definition of b(¢). Since a(0) = b(0), we can derive that
(#%) a(t; X, u, v) = b(t; X, u, v)

on the interval (—t¢, t,). Put w,= (#/2,0, ---,0)e D;. Then it follows
from the equation (x+) that the identity component of an isotropy group
at k*(u,, v) coincides with L(n) for each ve Dr ™. Hence we can define
a map h': R*"x D" " — M by

(70, v) for =0,
 |g(g, k' (uyy v)) for w = gu,, geSL(n, R).

First we shall show that kh’' = identity on D?x D7-*. Let uec D"
and » = 0. Then u can be expressed as follows: u = (expX,-expX,)u,
for X, e8o0(n), and X, is a diagonal matrix with diagonal components
¢, —¢,0,---,0 for cc¢ R. The equation (xx) implies that k(s(exptX,,
k' (o, v)) = ((exptX,)u,, v) for || = 1 and k(s(exp tX,, k~'((exp X,)u,, v))) =
((exp tX)(exp X)u,, v) for t€ R. Then we have kh’' = identity on D? X
Dr-". Since k: U—k(U) is a real analytic isomorphism, it follows that
the restriction of A’ to D:xD?™ is a real analytic isomorphism of
D?x D" onto an open set of M. On the other hand, the restriction of
K to (R* — 0)x D is real analytic by definition. Moreover, the map
' is SL(n, R) equivariant by definition. Hence the map b’ is a real
analytic local isomorphism at each point of R™x Dr—".

Now we shall show that &’ is an injection. Assume that 4'(g,u,, v,) =
h'(g,u,, v;) for some g, € SL(nc R), v,e Dy~". Since A’ is equivariant, we
have k~'(u,, v,) = ¢(91'9,, k™ '(%y, v,)). Put g = gi'g.. Let L, be the iden-
tity component of the isotropy group at k'(u, v;). Then L, = gL,g™*
and L, = L(n) by the assumption (x). Hence g € NL(n), the normalizer
of L(n) in SL(n, R). The equation (xx) implies that k(g((x,;), k=" (u,, ))) =

k' (u, v)
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(%0, v) for ve Dr—, (x;;) € NL(n), 0 < |2,] < 2. We can choose g or g*
as (x;;) such that 0 < |x,,| < 2. It follows that », = v, and g = ¢7'¢g, €
L(n). Hence g,u, = g;u,. Therefore h’ is an injection. The map v —
K'(0, v) is a real analytic isomorphism of D™ " onto an open neighborhood
V of p in F(SL(n, R), M).

Define a map h: R*"X V — M by h(u, v) = h'(u, k(v)) for uc R", ve V.
Then it is easy to see that h is a real analytic isomorphism of R*X V
onto an open set of M satisfying the conditions (a), (b).

Next, let h,;: R*x V,— M be a real analytic into isomorphism satis-
fying the conditions (a), (b) for 1 =1,2. Pute= (1,0, ---,0)c R". As-
sume that ¢(g, (e, v)) = é(g,, h.(e, v,)) for some g,€SL(n, R), v,€ V..
Then &,(e, v,) = ¢(g97'g., h.(e, v,)), and hence g;'g, € NL(n), because the iso-
tropy group at h,(e, v,) coincides with L(n). Put x, the diagonal matrix
with diagonal components ¢, ¢t 1, ---,1. Then =x,€ NL(n). Since
hte, v;) = ¢(x,, hie, v;)) and NL(n)/L(n) is abelian, it follows that
hi(te, v,) = ¢(g9:'g,, hy(te, v,)) for t = 0. Let t — 0. Then v, = (979, v,)=
v,. It follows that h,(R"x V)Nhy(R"x V,) is contained in h,(R"x V) for
V=V.,NnV, Since h(R"xV) is a smallest open SL(n, R) invariant
neighborhood of V' = h,(0x V'), we can derive that A, (R*"X V) = h(R"xX V),
and hence A,(R"X V))Nh,(R"X V,) = h(R*X V).

From the above argument, there exists a unique real analytic fune-
tion f: V — R such that h(e, v) = h,(f(v)e, v) for ve V. Then h,(u, v) =
hy(f(v)u, v) for ue R*, ve V, because h, and h, are SL(n, R) equivariant.

q.e.d.

REMARK 38.2. Let M be a real analytic paracompact manifold. Then
M admits a real analytic Riemannian metric, because M is real analyti-
cally isomorphic to a real analytic closed submanifold of R” (ef. Grauert
[38, Theorem 3]). Suppose that M admits a real analytic action of a
compact Lie group H. Then M admits a real analytic H invariant Rie-
mannian metric, by averaging a given real analytic Riemannian metric.
In particular, each connected component of F(H, M) is a real analytic
closed submanifold of M.

LemMA 3.3. Suppose m =3. Let ¢: SL(n, R) X M — M be a 7real
analytic SL(n, R) action on a conmnected paracompact m-manifold. Sup-
pose that the restricted SO(n) action of ¢ has just two orbit types
SO(n)/SO(n — 1) and SO(n)/SO(n). Then

(a) each connected component of F(SO(n), M) is (m — n)-dimen-
sional,

(b) F(SO(n — 1), M) is connected and (m — n + 1)-dimensional,

(e) F(SO(n — 1), M) coincides with either F(L(n), M) or F(L*(n), M).
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Moreover, if F(SO(n — 1), M) = F(L(n), M), then there is an equivariant
decomposition:
M — F = SL(n, R) 2( F(L{n), M — F),
NL(n)

where F = F(SL(n, R), M) = F(SO(n), M).

Proor. It follows from the assumption that the isotropy represen-
tation at a point of F(SO(n), M) is equivalent to p, @ trivial. Here p,
is the canonical representation of SO(n). Hence (a) follows. Put X =
F(SO(n — 1), M) — F(SO(n), M). There is an equivariant decomposition:

M — F = SO(n)/SO(n — I)E;X )

where W = NSO(n — 1)/SO(n — 1) = Z,. In particular, dim X=m—n+1.
Let nm: M — M* = SO(n)\M be the canonical projection to the orbit space
M*. Then M* = n(F(SO(n — 1), M)) by the assumption. Put g, the
diagonal matrix with diagonal components —1, —1,1, --., 1. Define a
map T: F(SO(n — 1), M) — F(SO(n — 1), M) by T(x) = ¢(g,, ). Then T
is an involution on F(SO(n — 1), M) and the fixed point set agrees with
F(SO(n), M). Then orbit space T\F(SO(n — 1), M) is naturally homeo-
morphic to a connected space M*. Let Y be a connected component of
F(SO(n — 1), M) such that YN F(SO(n), M) is non-empty. Then TY = Y
and the orbit space T\Y is a connected component of T\F(SO(n — 1), M).
Hence Y = F(SO(n — 1), M) is connected. Hence (b) follows. By the
assumption, Lemma 2.3 and Proposition 2.5, we have the following:

F(SO(n — 1), M) = F(L(n), M) U F(L*(n), M) ,
F(SO(n), M) = F(L(n), M) F(L*(n), M) = F(SL(n, R), M) .

It follows from the above argument that X has at most two connected
components. If X is connected, then it is easy to see that F(SO(n—1), M)
coincides with either F(L(n), M) or F(L*(n), M). Suppose that X has
two connected components X, and X,. Then TX, = X,. Since g, L(n)g;'=
L(n) and g,L*(n)g;* = L*(n), we see that if X, is contained in F(L(n), M)
(resp. F(L*(n), M)), then X, is also contained in F(L(n), M) (resp.
F(L*(n), M)). Hence (c) follows.

Suppose now that F(SO(n — 1), M) = F(L(n), M). Consider the fol-
lowing commutative diagram:

SOm)x X ixd SL(n, B)x X

. 2 M—F 23 o

Som) x X2 TOSIm R X X.
J NL(n)

NSO(n-1)
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Here X = F(SO(n — 1), M)—F(SO(n), M) = F(L(n), M) —F(SL(n, R), M),
7, ©' are the natural projections; ¢, ¢, are the restrictions of the map
#; ¢, ¢, are the induced maps. Then ¢, is an SO(n) equivariant real
analytic isomorphism. Since SL(n, R) = SO(n)-N(n), it is easy to see
that the map j is a surjection. Here the group N(n) is defined in
Section 2. It follows that ¢, is an SL(n, R) equivariant real analytic
isomorphism. q.e.d.

We require the following result due to Guillemin and Sternberg [4]:

LEMMA 3.4. Let g be a real semi-simple Lie algebra and let o: g —
L(M) be a Lie algebra homomorphism of g into a Lie algebra of real
analytic vector fields on a real analytic m-manifold M. Let p be a
point at which the vector fields in the image p(g) have common zero.
Then there exists an analytic system of coordinates (U;u,, - -, %,), with
origin at p, in which all of the vector fields in po(g) are linear. Name-
ly, there exists a;; € g* = Homg(g, R) such that

o(X),= —Z]l a:;(X)u(@)0/ou,) for Xeg, qelU.

REMARK 3.5. The correspondence X — (a,;(X)) defines a Lie algebra
- homomorphism of g into gl(m, R). Let P = (p,;;) € GL(m, R). Define an
analytic system of coordinates (U;wv, -, v,) by v.(q) = 27, p:;4q), g€
U. Then p(X),=—23,;b:,(X)v;(q)(0/ov,) for Xeg,qe U. Here (b (X)) =
P(a(X))P".

LEMMA 3.6. Suppose n = 3. Let ¢: SL(n, R)YxM — M be a real an-
alytic action on m-manifold. Suppose that the restricted SO(n) action
of ¢ has just two orbit types SO(n)/SO(n — 1) and SO(n)/SO(n). Sup-
pose F(SO(n — 1), M) = F(L(n), M). Then for each pc F(SL(n, R), M)
there exists an analytic system of coordinates (U;wu, ---, U,), with
origin at p, such that

7 ((®i;))e=— ]Z_. x,;u;(q)(0/ou,) for (x;)esl(n, R), qeU.

ProOF. By Lemma 3.4, there exists an analytic system of coordi-
nates (U; v, ---, v,) with origin at p and there exists a,; € 8l(n, R)* such
that ¢7(X),=—2.7;- . ;(X)v;(q)(6/ov;) for Xesl(n, R),qeU. Then
F(SO(n), M)N U={g e U: $*(X),=0 for X eso(n)}={g € U: 37, a,;(X)v,(q)=
0 for Xedo(n),l <1< m}. Since dim F(SO(n), M) = m — n by Lemma
3.3 (a), we can assume F(SO(n), M)NU = {ge U: v(q) = --- = v,(q) = 0}
by Remark 3.5. Then ¢, (X)=0forn+1=j7=<m,1< i< m for each
X e3l(n, R), because F(SO(n), M)=F(SL(n, R), M) by Lemma 3.3. There-
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fore the representation X —(a,;(X)) of 8l(n, R) has (m — n)-dimensional
trivial subspace. It is well known that any real representation of
8l(n, R) is completely reducible (cf. Humphreys [6, Section 6]). Hence
the representation X — (a,;(X)) is a direct sum of an n-dimensional re-
presentation and (m — m)-dimensional trivial representation. It is known
that an n-dimensional real representation of 3l(n, R) is equivalent to the
canonical representation X — X or the contragredient representation
X — —'X. By Remark 3.5, there exists an analytic system of coordi-
nates (U;uy, ---, %,), With origin at p, such that

(a) $ (@)=~ 3 wus(@)0/ou)
or
(b) 6 (@) = 3 wsau(@(0)ou)

for (x;)e8l(n, R),qe U. The case (b) contradicts the assumption
F(SO(n — 1), M) = F(L(n), M). q.e.d.

THEOREM 3.7. Suppose m = 3. Let ¢: SL(n, RYXxM — M be a real
analytic action on a conmected paracompact m-manifold. Suppose that
the restricted SO(n) action of ¢ has just two orbit types SO(n)/SO(n — 1)
and SO(n)/SO(n). Suppose F(SO(n — 1), M) = F(L(n), M). Put F =
F(SL(n, R), M). Then (i) there exists a real analytic left principal R*
bundle p: E— F, and there exists a real analytic isomorphism h of
R"X px B onto an open set of M such that

(@ 0, u) =p(w) for uwek,

(b)  h(gx, w) = #(g, h(x, u)) for geSL(n,R), xzecR", uck.
Moreover, (ii) if there exists a real analytic left principal R* bundle
0 E' — F and if there exists a real analytic isomorphism h' of R* X xx E’
onto an open set of M such that

(a’) R0, u') =p' W) for wek’,

) h'(gx, W) = ¢(g, B'(w, ")) for geSL(n,R), zeR"uek’,

then there exists a real analytic R* bundle tsomorphism f: E — E' such
that h(z, w) = h'(x, f(w)) for x€ R*, uc E.

Proor. From Lemma 3.1 and Lemma 3.6, there exists an open
covering {V,, a« € A} of F' and there exists a real analytic SL(n, R) equi-
variant isomorphism h, of R*x V, onto an open set of M for each ac A,
such that k0, v) = v for ve V,. Put U = Uses h(R"X V,). Then U is
an SL(n, R) invariant open neighborhood of F in M. Put E = F(L(n),
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U — F), and define k,: R* X V, — E by k,(t, v) = h.(te, v) for te R*, ve V,.
Here e= (1,0, ---,0)e R*. The group NL(n)/L(n) = R* acts naturally
on E, and the map k, is R* equivariant. It follows from Lemma 3.1
that E = U,es b R* X V) and b (R* X V) NEs(R* X Vi) = ko (R* X (V,N V)
for @, € A, and there exists a unique real analytic function g, V,.N
Vs, — R* such that k(t, v) = k.(9.:(v)t, v) for te R*, ve V,NV,.

Define p: E — F by pk,t, v) =v forte R*,ve V,. This is a desired
real analytic left principal R* bundle. We can define a map h: R"X zx E—M
by h(z, k.(t, v)) = h,(tx, v) for xe R*", te R*, ve V,. The map h is a real
analytic SL(n, R) equivariant isomorphism onto U. This is a desired map.
Suppose finally that there exists a real analytic left principal R* bundle
p': E' — F and there exists a real analytic isomorphism i’ of R"X zx E’
onto an open set of M, satisfying the conditions (a’), (b’). It is easy
to see from Lemma 3.1 (ii) that image h = U = imageh’. It follows
that there exists a unique SL(n, R) equivariant real analytic isomorphism

FiR*}XE — R*"}XE'
RX RX

such that h(x, u) = B'(f(x, u)) for xc R", wc E. Considering the fixed
point sets of the restricted L(n) action, we have a real analytic R*
equivariant isomorphism f: E — E’ such that f(te, u) = (te, f(u)) for te
R,uc E. Then f: E— E’ is a bundle isomorphism of principal R* bun-
dles, because p(u) = (0, u) = A'(F(0, w)) = 1'(0, f(u)) = p'(f(u)) for ue K.

q.e.d.

4. Smooth SO(n) actions on homotopy spheres. First we state the
following two lemmas of which proofs are given in Section 7.

LEMMA 4.1. Suppose n=5. Let G be a closed conmected proper
subgroup of O(n) such that dim O(n)/G < 2n — 2. Then it is one of the
following listed im Table 1 up to an inner automorphism of O(n).
Here

pi: SO(k) — O(k) ,  tu: Uk) — O@2k) , 4 SUKk) — O(2k)
are the canonical inclusions, 0% is the trivial representation of degree
k, and 4,, o, B are irreducible representations, respectively.

LEMMA 4.2. Suppose 5 = n <k < 2n — 2. Then an orthogonal non-
trivial representation of SO(n) of degree k is equivalent to o, @ 6" by
an tnner automorphism of O(k).

Now we shall prove the following result.

LEMMA 4.3. Suppose 5 = n=<=k=<2n—2. Let 3% be a homotopy
k-sphere with a mon-trivial smooth SO(n) action. Then the principal
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TABLE 1
n G 1: G— 0(n) dim O(n)/G
n SO(n—1) On—1P0* n—1
n SO(n—2) On—oP6? 2n—3
% S0(n—2) xS0(2) Pn—2Dps 2n—4
9 Spin(7) 4,561 15=2n—38
8 Spin(7) 4; T=n—1
8 G, oot 14=2n—2
8 U@4) A 12=2n—4
8 SU@4) 70 183=2n—3
7 G, ® T=n
7 U@) ¢t 12=2n—2
7 SO0(3)xS0(4) 0sDps 12=2n—2
6 S0(3) x SO(3) 0sDps 9=2n—3
6 U(3) s 6=mn
6 SU(3) 20 7=2n—5
6 U©@) x UQ) 1D 10=2n—2
5 U@ 1oHor 6=2n—4
5 SUQ) 120" T=2n—3
5 UQ1)x UQ) P Pot 8=2n—2
5 SO0(8) B 7=2n—3

1sotropy type is (SO(n — 1)) and the fixed point set F(SO(n), 2*) is non-
empty.

Let us start with some observations. In the following, let M be a
closed connected k%-dimensional manifold with a non-trivial smooth SO(n)
action, let (H) be the principal isotropy type, and suppose 5 S n < k <
2n — 2. Denote by H° the identity component of H.

OBSERVATION 4.4. If F(SO(n), M) 1is non-emply, then (H)=
(SO(n — 1)).

This is a direct consequence of Lemma 4.2, by considering the iso-
tropy representation at a fixed point.

OBSERVATION 4.5. Suppose that M is 2-connected and the SO(n) ac-
tion is transitive. Then M = SOn)/SO(n — 2) or M = SO(5)/3S0(3).

This is a direct consequence of Lemma 4.1.

OBSERVATION 4.6. Suppose that the principal isotropy type (H) 1s
one of the following listed in Table 2. Then M is mot 3-commected.

Proor. Since F(SO(n), M) is empty by Observation 4.4 and H° is
a proper maximal connected subgroup of SO(n) by Lemma 4.1, there is
an equivariant decomposition: M = SO(n)/H°Xy F(H°, M), where W =
N(H®)/H® is a finite group. If M is simply connected, then M = SO(n)/



158 F. UCHIDA

H°X F and it is not 3-connected, where F' is a connected component of
F(H*, M).

TABLE 2

n H° 7:(SO(n)/H°)
n S0(n—2)xS0(2) i no=2

8 Spin(7) =2,

8 U4) to=2Z

7 G, m=2,

7 S0(3) x S0(4) wo=2Zs

6 S0(3) xS0(3) 1o=2,

6 U@3) no=2

5 BSO(3) 7370

OBSERVATION 4.7. Suppose that (H) is one of the following:
H° = SO(n — 2)xS02); U4),n=28; U3),n=6; U2),n=5.
Then M is mot stably parallelizable.

Proor. If M is stably parallelizable, then the principal orbit
SO(n)/H is stably parallelizable; hence SO(n)/H® is also stable paralle-
lizable.

OBSERVATION 4.8. Suppose that dim M=2n — 2, w,(M)={1}, X(M)+0,
and H° is conjugate to SO(n — 2). Then X(M) = 4. Here X(M) is the
Euler characteristic of M.

ProOOF. The principal orbit SO(n)/H is of codimension one. Since
7.(M) = {1}, there are just two singular orbits (cf. Uchida [11, Lemma
1.2.1]). By Observation 4.4, F(SO(n), M) is empty. Hence the follow-
ing are the only possibilities of the singular orbit types:

SO(n)/SO(n — 1) = 8>, SOn)/S(O(n — 1)x0(1)) = P,(R) ,
SO(n)/SO(n — 2)x80(2) = @, , SO(n)/S(O(n — 2)X02)) = Qu-/Z, .
By the general position theorem and the assumption z,(M) = {1}, it is
easy to see that the pair of singular orbits is none of the following:
(S“_ly Pﬂ.—l(R))9 (Sn-—l’ Qn—2/Z2)9 (Pﬂ'l(R)’ Pn—l(R)); (P —l(R)’ Qn—Z/Z2)' Since

X(M) = X (singular orbits), we have the desired result.

OBSERVATION 4.9. Suppose that dimM = 2n — 2 and (H) is one of
the following:

H® = Spin(T), n =9; SU4),n=8; SUZ2),n=5.
Then w (M) # {1} or X(M) = 4.

This is similarly proved as Observation 4.8.
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OBSERVATION 4.10. Suppose that n = 6 and H® is conjugate to SU(3).
Then M is mot 2-conmected.

Proor. By Observation 4.4, F(SO(6), M) is empty. Hence the
identity component of an isotropy group is conjugate to SU(3) or U(3)
for each point of M. It follows that there is an equivariant decomposi-
tion: M = SO(6)/SU3) x F(SU3), M), where W = NSU(3)/SUB3) = UQ).
Then it is seen that M is not 2-connected by the following homotopy
exact sequence:

(M) — w(W) — m,(S0(6)/SUR)) x 7 (F(SU3), M)) — m,(M) .

ProoF orF LEMMA 4.3. It is sufficient to prove that the set F(SO(n),
Y*) is non-empty by Observation 4.4. It is well known that every
homotopy sphere is stably parallelizable (ef. Kervaire and Milnor [7,
Theorem 3.1]). Let (H) be the principal isotropy type of a non-trivial
smooth SO(n) action on a homotopy k-sphere X*. Then it follows that
H° is conjugate to SO(n — 1) by Lemma 4.1 and the above Observations.
Suppose that F(SO(n), 3*) is empty. Then there is an equivariant de-
composition: I* = SO(n)/SO(n — 1) x, F(SO(n — 1), 3*), where W =
NSO(n — 1)/SO(n — 1) = Z,. But this is impossible for k& = n. g.e.d.

THEOREM 4.11. Suppose 5= n <k <2n — 2. Let X* be a homotopy
k-sphere with a mnon-trivial smooth SO(n) action. Then there is an
equivariant decomposition: X* = o(D*"XY) as a smooth SO(n) manifold.
Here Y is a compact contractible (kK — n + 1)-manifold with trivial
SO(n) action, and D™ is the standard mn-disk with the camonical SO(n)
action.

PrROOF. Put F = F(SO(n), 3¥). By Lemma 4.3, F is non-empty. It
follows from Lemma 4.2 that each connected component of F' is of
(k — m)-dimension. Let U be a closed SO(n) invariant tubular neigh-
borhood of F in ¥*. Then U is regarded as an n-disk bundle over F
with a smooth SO(n) action as bundle isomorphisms. It follows that
there is an equivariant decomposition: U = D"x, F(SO(n — 1), oU),
where W = NSO(n — 1)/SO(n — 1) = Z,. Put E = 3* — intU. Then there
is an equivariant decomposition: E = SO(n)/SO(n — 1) X ,F(SO(n — 1), E).
Notice that F(SO(n — 1), 0U) = 0F(SO(n — 1), E). It is easy to see that
7(E) = {1} by the general position theorem. Hence F(SO(n — 1), E) has
just two connected components. Let Y be a connected component of
F(SO(n — 1), E). Then Y is a compact simply connected (k¥ —n + 1)-
manifold with non-empty boundary, and there is an equivariant decom-
position: ¥*= UUFE =0o(D"XY).
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It remains to prove that Y is contractible. By the Poincaré Lefs-
chetz duality, H(D"x Y, 2% Z) = H*"'-(D*"x Y; Z) = {0} for each ¢ < m.
Consider the homology exact sequence: H,,(D"xY, X% Z)— H(3% Z) —
H(D*"XY;Z)— H(D"xY, 3% Z). Then H(Y; Z) = {0} for0 < i< mn — 2.
On the other hand, Y is a compact simply connected manifold with non-
empty boundary, and dimY < » — 1 by the assumption £t < 2n — 2. It
follows that Y is contractible. q.e.d.

REMARK. Theorem 4.11 for # = 9 has been proved already by Hsiang
[6, Theorem III].

5. Decomposition and classification. Suppose 5 < n < m £ 2n — 2.
Let ¢ be a non-trivial real analytic SL(n, R) action on S™. Consider the
restricted SO(n) action of ¢. By Theorem 4.11, there exists an equi-
variant decomposition: S™ = 9(D"x Y) as a smooth SO(n) manifold. In
particular, the SO(n) action has just two orbit types SO(n)/SO(n — 1)
and SO(n)/SO(n). Then, by Lemma 3.3, F(SO(n — 1), S™) coincides with
either F(L(n), S™) or F(L*(n), S™). We shall show first the following
decomposition theorem.

THEOREM 5.1. Suppose5 =n < m = 2n — 2. Let ¢ be a non-trivial
real analytic SL(n, R) action on S™. Suppose

F(SO(n — 1), S™) = F(L(n), S™) .

Then, (i) 2 = F(L(n), S™ 4s a real analytic (m — n + 1)-dimensional
closed submanifold of S™ which is homotopy equivalent to a sphere, and
R* = NL(n)/L(n) acts naturally on ¥, (ii) F' = F(SL(n, R), S™) is a real
analytic (m — m)-dimensional closed submanifold of X, and there exists
a real analytic R* equivariant isomorphism j of RXF onto an open
set of X such that 7(0, x) = x for xe€F, (iii) there exists an equivariant
decomposition:

S = R*"xFU(R" — 0)x (X — F)
I RX

as a real analytic SL(n, R) manifold, where SL(n, R) acts naturally on
R", R* acts on R" — 0 by the scalar multiplication, and f is an equi-
variant isomorphism of (R*—0)X F onto an open set of (R"—0) X zx(Z —F)
defined by f(u, x) = (u, 51, x)) for uc R* — 0, xzeF.

PrOOF. Consider the restricted SO(n) action of ¢. By Theorem 4.11,
there exists an equivariant decomposition: S™ = d(D"xY) as a smooth
SO(») manifold. Here Y is a compact contractible smooth (m — n + 1)-
manifold. Then ¥ = F(SO(n — 1), S™) is a real analytic (m — n + 1)-
dimensional closed submanifold of S™ which is C= diffeomorphic to a



ACTIONS ON SPHERES 161

double of Y; hence Y is a homotopy sphere. By Lemma 3.3, F =
F(SO(n), S™) is a real analytic (m — n)-dimensional closed submanifold
of S™ which is C~ diffeomorphic to 0Y; hence F is homology equivalent
to a sphere. Moreover, there exists an equivariant decomposition:
S™— F = SLn, R)/L(n) x & —F)=(R"—0x((X —F)
NL(n)/L(n) RX

as a real analytic SL(n, R) manifold. By Theorem 3.7, there exists a
real analytic left principal R* bundle p: £ — F and there exists a real
analytic SL(n, R) equivariant isomorphism % of R"X ,x E onto an open
set of S™ such that h(0, u) = p(u) for ue E. It is easy to see that the
bundle p: E — F' is trivial as a C~ bundle by the decomposition S™ =
oD"xY).

To show that FE is trivial as a real analytic R* bundle, we need the
following.

LEMMA 5.2. Let p: V—X be a 7real analytic vector bundle over a
paracompact real analytic manifold X. Then the bundle V admits
a real analytic Riemannian metric.

Proor. Let 7: X —V be the zero section. Then it follows from a
calculation of transition functions that there is an isomorphism *z(V) =
Vér(X) as real analytic vector bundles. Here z( ) denotes the tangent
bundle. Since V is a paracompact real analytic manifold, there exists
a real analytic embedding f: V — RY such that f(V) is a closed real
analytic submanifold of RY (cf. Grauert [3]). It follows that there is
an isomorphism (V)@ v = RY X V as real analytic vector bundles. Here
v denotes the normal bundle. Therefore there is an isomorphism V
7(X) @ 1*y = R¥ x X as real analytic vector bundles. The product bundle
RY x X admits canonically a real analytic Riemannian metric; hence its
real analytic subbundle V admits a real analytic Riemannian metric.

q.e.d.

We now return to the proof of Theorem 5.1. Let RXgx E— F be
the line bundle associated to the principal bundle p: £ — F. Then it
has a real analytic Riemannian metric; hence the associated sphere bundle
is a real analytic double covering over F. Since p: F — F is trivial as
a C~ bundle, the sphere bundle is trivial as a real analytic bundle, and
hence the principal bundle p: E — F has a real analytic cross-section.
Therefore E is trivial as a real analytic R* bundle. It follows that
there exists a real analytic SL(n, R) equivariant isomorphism A: R"X
F — S™ onto an open set of S™ such that h(0, ) = « for x€ F.

Consider the fixed point sets of restricted L(n) actions. We have



162 F. UCHIDA

a real analytic R* equivariant isomorphism j: RXF — % “onto an open
set of ¥ = F(L(n), S™), defined by j(t, ) = h(te, x) for te R,xc F. Here
e=(1,0,---,0)e R, and R* acts canonically on 3 through the identi-
fication R* = NL(n)/L(n). It is easy to see that there exists an equi-
variant decomposition:

S*=R'xXFUR"—0)x2 — F)
f RX

as a real analytic SL(n, R) manifold. Here f is an equivariant iso-
morphism of (R* — 0)x F onto an open set of (R" — 0)Xxx (J — F') de-
fined by f(u, z) = (u, j(1, x)) for ue R* — 0, x€ F. This completes the
proof of Theorem 5.1.

REMARK. By this theorem, the action ¢ on S™ is completely deter-
mined up to an equivariant isomorphism by X = F(L(n), S™) with R*
action and an equivariant map j: Rx F — 3.

To state a classification theorem, we introduce the following notions.
Let G be a Lie group, and let ¢,: GX M, — M, be a real analytic G ac-
tion for ¢ =1,2. We say that ¢, is weakly C” equivariant to ¢, if there
exists an automorphism & of G and there exists a C~ diffeomorphism
f: M, — M, such that the following diagram is commutative:

Gx M, 25 M,

(5-a) lhx f lf

‘ Gx M, & M, .
In particular, ¢; is said to be C” equivariant to ¢, if the identity map
of G can be chosen as the automorphism #.

Let h be an automorphism of G, and let ¢: GXM — M be a real
analytic G action. Define a new real analytic G action h%*$ on M as fol-
lows: (h*¢)(g, x) = ¢(h(g), ) for geG,xe M. Then the action A% is
weakly C“ equivariant to ¢, because the following diagram is commuta-
tive:

GxMﬁ» M
(5-b) lhxid lid
Gx M- 1.

Let I, denote the inner automorphism of G defined by I,(¢') = gg'g~" for
g,9'€G. Then, for any real analytic G action ¢ on M, ¢ is C“ equi-
variant to Iip, because the following diagram is commutative:
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Gx M- M
(5-¢) lidxf lf
It
GxM=25 M,
where f(x) = ¢(g, x) for x e M.

THEOREM 5.3. Suppose 5 < n=<m=<2n — 2. Then there is a nat-
ural one-to-ome correspondence between the weak CT equivariance class-
es of mom-trivial real analytic SL(n, R) actions on the standard
m-sphere and the C™ equivariance classes of real analytic R* actions
on homotopy (m — m + 1)-spheres satisfying the condition (P), for each
r=20,1, -+, o, w. The correspondence is given by the construction in
Section 1.

Proor. Let A,(n, m) denote the weak C™ equivariance classes of
non-trivial real analytic SL(n, R) actions on the standard m-sphere, let
Al(n, m) denote the C” equivariance classes of non-trivial real analytic
SL(n, R) actions on the standard m-sphere such that F(SO(n — 1), S™) =
F(L(n), S™), and let B,(k) denote the C” equivariance classes of real
analytic R* actions on homotopy Fk-spheres satisfying the condition (P)
in Section 1.

Let «: R*xX¥ —2Y be a real analytic R* action on a homotopy
k-sphere Y satisfying the condition (P). We constructed, in Section 1,
a compact real analytic SL(n, R) manifold M(y, j) such that the C*
equivariance class of M(y, j) does not depend on the choice of j,
F(SO(n — 1), M(v, j)) = F(L(n), M(+y, 7)), and M(y, j) is real analytically
isomorphic to the standard (» + k& — 1)-sphere for n + k¥ = 6. The cor-
respondence « — M(+, j) defines a mapping e¢,: B,(k) —> A/(n, n + k — 1)
for »r=0,1, ---, o, ® and each n + k = 6. It follows from Theorem 5.1
that ¢, is a bijection (» =0,1, ---, 0, w)if n=65and 1<k<n—1.

It remains to show that there is a natural one-to-one correspondence
between Al(n, m) and A,(n, m). Let ¢ be a real analytic non-trivial
SL(n, R) action on S™ such that F(SO(n — 1), S™) = F(L(n), S™). Then
¢ represents a class of A/(n, m) and a class of A,(n, m). Hence there
is a natural mapping ¢,: A/(n, m) — A, (n, m).

We shall show that 4, is a bijection (r =0,1, -++, o, @) if 5= n =
m < 2n — 2. Let o be the automorphism of SL(n, R) defined by ¢(X) =
tX-' for XeSL(n, R). Then it is seen that ¢ is an involution and
o(L(n)) = L*(n). Let ¢ be a real analytic non-trivial SL(n, R) action on
S™. Then, by Lemma 8.8 (¢) we have that F(SO(n — 1), S™) coincides
with F(L(n), S™) or F(L*(n), S™). Since o(L(n)) = L*(n), we see that if
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F(SO(n — 1), S™) = F(L*(n), S™) for ¢, then F(SO(n — 1), S™) = F(L(n), S™)
for the induced action ofs. By the diagram (5-b), % is weakly C*
equivariant to ¢; hence the natural mapping ¢, is surjective.

To show that ¢, is injective, we consider the automorphism group
of SL(n, R). Let Aut SL(n, R), Inn SL(n, R) denote the automorphism
group and the inner automorphism group of SL(n, R), respectively. De-
fine an automorphism v of SL(n, R) by v(X) = YXY~* for Xe SL(n, R),
where Y is the diagonal matrix with diagonal elements —1,1, ---, 1.
Then it is known that ¢ and v generate the quotient group Out SL(n, R) =
Aut SL(n, R)/Inn SL(n, R). In fact

Z, for m:odd =3

Out SL(n, R) =
Z, D Z, for m:even=4,

and v is an inner automorphism for # odd (cf. Murakami [9]).

Let ¢, ¢’ be real analytic non-trivial SL(n, R) actions on S™. Suppose
that ¢’ is weakly C" equivariant to ¢. Then by the diagrams (5-a), (5-b),
(5-¢c) ¢' is C" equivariant to one of the following: ¢, o*¢, v*¢, o*v*6. Notice
that if F(SO(n — 1), S™) = F(L(n), S™) for ¢, then F(SO(n — 1), S™) =
F(L(n), S™) for ~%¢, and F(SO(n — 1), S™) = F(L*(n), S™) for o*s, o*v*s.
Therefore, if ¢ and ¢’ represent classes of Al(n, m), respectively, and if
¢ is weakly C* equivariant to ¢, then ¢’ is C" equivariant to ¢ or ~%s.
To show that 4, is injective, it suffices to prove 7% is C“ equivariant
to ¢. Consider the real analytic SL(», R) manifold

M, j) = R*"XFUR" — 0)x (3 — F)
f RX
constructed in Section 1. Define a real analytic isomorphism g: M(+p, j) —
M(y, 5) by
g(u, z) = (Y-u,x) for (u,x)eR*"XF,
9, y) = (Y-v,9) for (v,9)e(R"—~0)x( —F).

Here the matrix Y is as before. Then the following diagram is com-
mutative:

SL(n, R)x M(, ) —— M(y, 7)
lT Xg 19
SL(n, R)x M(y, ) —— My, 7 ,

where ¢ is the natural SL(n, R) action on M(y, j). By the diagram
(5-b), we have the following commutative diagram:
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SL(n, R)x My, )% My, j)

lrxid lid

SL(n, R)x M(y, 5) —— M(y, 5) .

Since v* = 1, it follows that v is C® equivariant to ¢; hence the map-
ping 14, is bijective. q.e.d.

6. R* actions on spheres. In the previous section, we showed that
the classification of real analytic SL(n, R) actions on the m-sphere can
be reduced to that of real analytic R* actions on homotopy (m — n + 1)-
spheres satisfying the condition (P). So we study now R* actions on
spheres.

Let S* be the standard k-sphere in R**', k= 1. Let T be an involu-
tion of S* defined by T(x,, @, -, %) = (—Xy, Xy, -+, ;). Put

& = ol — dale)(/or) — aia(a) 3, @ 6/ow,)

where a(t) is a real analytic function defined on an open neighborhood
of the closed interval [0, 1]. It is easy to see that ¢£* is a real analytic
tangent vector field on S* such that T, =g Let {0,; t€ R} be the
one-parameter group of real analytic transformations of S* associated
with the vector field &*. It follows from T.t* = & that T-0, = 6,-T for
te R. Now we can define a real analytic R* action +* on S* by

v((—1)"e, ) = T"(0,(x)) for xeS*, teR, meZ.

It is easy to see that the R* action . satisfies the condition (P)-(i).
We shall give a sufficient condition for «* to satisfy the condition (P)-
(ii).

PROPOSITION 6.1. If a(0) =1, them the R* action ~* satisfies the
condition (P).

PrROOF. It is sufficient to construct a real analytic into isomorphism
j: Rx F — S* satisfying the following conditions:

(1) 30, ) =z,
(2) T, ) = i(—t, @),
(3) jle't, @) = (e, 5, %))

for xe F;t,se R. Here F is the fixed point set of 7. It is easy to see
that the condition (3) is equivalent to the following condition:

(3) 3x(8(0/01)) = & .
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By the assumption a(0) = 1, there is a real analytic function b(¢) such
that a(t) =1 + t-b(t). Put F(t, u)=—tu® + tu’d(t*u®) — t*u’b(t*u*). Then
there is a unique real analytic function c¢(f) defined on an interval
(—e¢, ¢) for a positive real e such that (d/dt)c(t) = F(¢, c(t)), ¢(0) =1,
—1<te(t) < 1.

Define a real analytic mapping j,: (—¢, ¢) X F' — S* by j.(¢, ) = (t-¢(t),
1 — te®)®"*x). Then it is easy to see that j,.(t(d/ot)) = &* at j,(¢, x).
Since F(—t, w)=—F(t, u), we have c¢(t) = ¢(—t). Therefore the map j,
satisfies the following conditions: (1) 7,(0, ) = (0, x), () T(4.(t, x)) =
Ji(—=t, ®), (8") 7..(t(0/at)) = &* at j,(t, x), forxe F, —e < t <e. By the de-
finition of the action «°, the curve s— (¢, 7., )) is an integral
curve of the vector field £*. By the condition (8’), the curve s — j,(e’t, x)
is also an integral curve of ¢°. It follows that

(%) ¥i(e’, 5.(L, ®)) = Ji(e't, x)
for xeF, —e <t <g —e < et <e Define a mapping j: Rx F — S* by

_ (v"(@te, gi(e/2, ®)) for t+#0

o
I6® =10 2) for t=0.

Then j is an extension of j, by (+); hence j is real analytic. By de-
finition, the map j satisfies the conditions (1), (2) and (3).

Finally, we shall show that j is an into isomorphism. Let O(k) be
the orthogonal transformation group of the Euclidean space R*+' leaving
fixed the z,-coordinate. Then the vector field & and the map j, are
O(k) invariant by definition. Hence we have

(xx) A(j(t, x)) = j(t, Ax) for AcOk), (t,x)eRXF.

Since ¢(0) = 1, the map j is non-singular at each point of O0XF. It re-
mains to show that j is injective. Assume j(¢, x,) = j(t, ®,) for some
(t, x) e RXF. Then j(st, x,) = j(st, x,) for any s + 0 by the definition
of 5. Let s—0. Then j(0,x,) = 50, x,). Hence we have z, = x, and
i@, x) = j(t, x,). It follows from (xx) that j(t, x) = j(t, «) for any
x€F. Assume ¢, # t,. Then j induces a real analytic isomorphism of
S'x F' onto an open set of S*. This is a contradiction. Therefore the
map j is injective. g.e.d.

By Proposition 6.1, we can construct many examples of real analytic
R* actions on the standard k-sphere satisfying the condition (P). Let

a=(a,a, ---,ay)eR” for N=1,2 ---,

and define a real analytic tangent vector field &* on S* as follows:
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&= (ﬁ a- aix%))-@co(l — a})(8/0m,) — =t z ,(8/0.)) .

Let * be the real analytic R* action on S* determined by the vector
field &* and the involution 7. Then the action * satisfies the condition
P).

PRrOPOSITION 6.2. Let a = (a, -+, ay) and a’ = (a, ---, ay).

(i) If 4" is C° equivariant to ', then the cardinality of the set
{a;: a; > 1} is equal to that of the set {aj: a; > 1}.

(ii) If 4 is C* equivariant to 4, then JI)-, 1 — a,) = [T, (1 — af).

ProOOF. The points x,=+ 1 are isolated zeros of the vector field &,
and the other zeros of & are the hypersurfaces

2, =0 and z,= *+1l/a}* for a;>1.

If there is an equivariant homeomorphism of S* with the R* action
to S* with the R* action ', then the zeros of the vector field & is
homeomorphic to the zeros of the vector field &~'. Hence the cardinality
of the set {a;: a; > 1} is equal to that of the set {aj: aj > 1}.

Suppose next that there is an equivariant C® diffeomorphism f of
S* with the R action « to S* with the R* action . We shall show
that there is an equivariant C® diffeomorphism g of S* with the R* ac-
tion +* to S* with the R* action . Put

A) ={¢, Q1 —tH)"x)e St -1 <t < 1},
C(x) = {(sin @, cos §-x) € S*: 6 € R} ,

for x€ F. Then C(x) is the closure of the union A(x) U A(—=z). Since
the map f is equivariant, we have f(A(x)) = A(f(z)) for € F. Then
we have f(—x)=—f(z) for x € F, by the differentiability of f at =, = 1.
Hence f(C(x)) = C(f(x)) for x € F. Since the R* action " is compatible
with the O(%k) action (see the proof of Proposition 6.1), we can assume
f(y) = y for some ye€ F. Then the restriction f: C(y) — C(y) can be re-
garded as an equivariant C* diffeomorphism g of S* with the R* action
4 to S* with the R* action .

Finally we shall show that the existence of g implies [[}-, (1 — a;) =
T2, 1 — a}). Since g is equivariant, we have g,(¢) = &. Letm: S'—R
be a map defined by m(x,, 2,) = #,. Then 7 is a local diffeomorphism at
x,=+1, and

N
Ty(g)=—ay(1 — ovi)jlg1 (1 — a;(1 — zD))(d/da,) .
There is a local C? diffeomorphism ~ of R such that 2(0) =0,7-g =
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h-m. Then it follows from h,(7,(&%) = 7, (¢¥) that —2,(1 — &) TT,5(1 —
a;(1 — ad))(@dh/da,)(x) = —y,(1 — yDITL 1 — aj(1 — 9D) for y, = h(x). Dif-
ferentiate by x,, and put 2, = 0. Then we have the desired equation,
because dh/dx,(0) == 0. g.e.d.

7. Closed subgroups of O(n). In this section, we shall prove Lem-
mas 4.1 and 4.2. The method used here is essentially due to Dynkin[2].

ProOOF OF LEMMA 4.1. Let G be a connected closed subgroup of
O(n). Suppose that

(%) n=5, 0<dimO®n)/G=<2n—2.

The inclusion map +: G — O(n) gives an orthogonal faithful representa-
tion of G.

(A) Suppose first that the representation ¢ is irreducible.

(A-1) Suppose that G is not semi-simple. Let T be a one-dimen-
sional closed central subgroup of G. Since % is irreducible, the central-
izer of T in O(n) agrees with U(n/2) by an inner automorphism of O(n)
(ef. Uchida [12, Lemma 5.1]). Put » = 2k. Then it can be assumed
that G is a subgroup of U(k) and the inclusion G — U(k) is irreducible.
It follows that the center of G is one-dimensional by Schur’s lemma.
Moreover the condition (x) implies k(k — 1) = dim O2k)/U(k) < 4k — 2.
Hence k& = 3, 4. It is easy to see that SU(3) has no semi-simple proper
subgroup of codimension < 4, and SU(4) has no semi-simple proper sub-
group of codimension < 2. Therefore the case (A-1) occurs only when
n = 6, 8; G agrees with U(n/2) up to an inner automorphism of O(n).

(A-2) Suppose that G is semi-simple and the complexification ¢ of
the representation ¢ is reducible. Then = = 2k, G is isomorphic to a
subgroup G’ of U(k), and the inclusion G’ — U(k) is irreducible. Hence
k=3,4 and G’ = SU(). Calculating the centralizer of the center of G
in O(n), we can show that G agrees with SU(n/2) up to an inner auto-
morphism of O(n).

(A-3) Suppose that G is semi-simple, non-simple, and ¢ is irreduc-
ible. Let G* be the universal covering group of G, and let p: G* - G
be the projection. Since G is not simple, there are closed semi-simple
normal subgroups H,, H, of G* such that G* = H,x H,. Consider the
representation i°p: G* — U(n). Then there are irreducible complex re-
presentations r,: H, —» U(n,) for ¢t = 1,2 such that the tensor product
@7, is equivalent to ip. Since °p has a real form, the representa-
tions 7, 7, are self-conjugate; hence 7, (resp. #,) has a real form or a
quaternionic structure, but not both (ef. Adams [1, Proposition 38.56)).
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Moreover, if , has a real form (resp. quaternionic structure), then 7,
has also a real form (resp. quaternionic structure).

Suppose first that r, », have quaternionic structures. Then it fol-
lows that =, n, are even, and dim H, < dim Sp(%,/2) = n,(n, + 1)/2 for
t = 1, 2. The condition (x) implies dim O(n) — dim Sp(n,/2) — dim Sp(n,/2) <
2n —2,n = nm,. Therefore n* —3n + 4= (0, + n,)(n, + n, + 1)< (2+n/2) X
(3 + m/2). Hence » < 7. But = is a multiple of 4 and » = 5. There-
for 7, r, cannot have quaternionic structures simultaneously.

Suppose next that 7, », have real forms. Then, since H, is semi-
simple, it follows that », = 3 for¢ = 1, 2. Moreover, dimH, < dimO(n,) =
nn, — 1)/2 for ¢ = 1, 2. The condition () implies dim O(n) — dimO(n,)—
dim O(n,) < 2n — 2, » = nm,. Therefore n* — 3n + 4 < (n, + n)(N,+n, —
D=3+ n/3)2 + n/3). Hence n<5. But n=nm,=9. Therefore
7, 7, cannot have real forms simultaneously. Therefore the case (A-3)
does not happen.

(A-4) Suppose finally that G is simple and ¢ is irreducible. Put
r = rank G, and denote by G* the universal covering group of G. De-
note by L,, L,, ---, L, the fundamental weights of G*. Then there is a
one-to-one correspondence between complex irreducible representations of
G* and sequences (a,, ---, a,) of non-negative integers such that o, L, +
-+ + a,L, is the highest weight of a corresponding representation (cf.
Dynkin [2, Theorems 0.8 and 0.9]; Humphreys [6, Section 21.2]). Denote
by d(a,L + *--- + a,L,) the degree of the complex irreducible represen-
tation of G* with the highest weight a,L, + -+ + a,L,. The degree can
be computed by Weyl’s dimension formula (cf. Dynkin [2, Theorem 0.24,
(0.148)-(0.155)]; Humphreys [6, Section 24.3]). Notice that if a, = a’ for
=12, ---,r, then d(a, L, + --+ + a,L,) = d(a;L, + -+ + a,L,) and the
equality holds only if a, = a; for 1 =1,2, ---, 7.

(A-4-1) Suppose that G is an exceptional Lie group. Then we have
Table 3. Here m(G) is the least degree of non-trivial complex irreduci-

TABLE 3
G* k=dim G m=m(G)
G, 14 7
F, 52 26
E; 78 27
E, 133 56
E; 248 248

ble representations of G* (cf. Dynkin [2, p. 378, Table 30]). The condi-
tion () implies that dim G = dimO(n) — (2n — 2) = (n — 1)(n — 4)/2. Hence
(m — 1)(m — 4) < 2k. The possibility remains only when G* = G, and
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n < 8. Since d(L,) =17, d(L,) = 14, d(2L,) = 27 for G* = G,, there is no
complex irreducible representation of &, of degree 8. The complex ir-
reducible representation of G, of degree 7 has a real form. Therefore the
case (A-4-1) occures only when » =7 and G = G,, where the inclusion
G, — O(7) is uniquely determined up to an inner automorphism of O(7).

(A-4-2) Suppose that G* is isomorphic to SU(»r + 1) for » = 1.
Since rank G < rankSO(n), it follows that

(a) 2r<m.
The condition () implies that
(b) m—1Dn—42=r@r+2)=nn—1)J/2, n=5.

It is easy to see from (a), (b) that » < 13. If the pair (n, ») satisfies
the conditions (a), (b), then it is one of the following: (12, 6), (11, 5),
(10, 5), (9, 4), (8, 4), (8, 3), (7, 3), (6, 2), (5, 2), (5,1). Notice that d(L,) =
~+:Ci, AL, + L,) = rv(r + 2), d@L,) = d(2L,) = (r+1)(r+2)/2. Hence there
is no complex irreducible representation of SU(r + 1) of degrees 27 and
2r +1for r=4. If =38, then d(L, = d(L,) = 4, d(L,) = 6, d(2L,) =
d2L,) = 10, d(2L,) = d(L, + L,) = d(L,+ L,) = 20, d(L, + L,) = 15. Hence
there is no complex irreducible representation of SU(4) of degrees 7 and
8. If r=2, then d(L,) = d(L,) = 8, d(2L,) = d(2L,) = 6, d(L, + L,) = 8.
Hence there is no complex irreducible representation of SU(3) of degree
5. There are just two complex irreducible representations of SU(3) of
degree 6 which are not self-conjugate. Therefore there is no possibility
for » = 2. Finally there is only one complex irreducible representation
of SU(2) of degree 5 which has a real form. Therefore the case (A-4-2)
occurs only when n =5 and G = SO(3), where the inclusion SO(3) — O(5)
is an irreducible representation uniquely determined up to an inner
automorphism of O(5).

(A-4-3) Suppose that G* is isomorphic to Sp(r) for » = 2. The con-
dition () implies that (n — )(n — 4)/2 < r@r + 1) < n(n — 1)/2. Hence
n=2r+2or n=2r + 3. Notice that d(L,) = ,,+.C; — ;,+:.Ci—,, d2L,) =
r@2r +1). If r=3, then d(L,) <d(L,) < - < d(L,) = d(L,+;) > -+ >
d(L,) for some s. It is easy to see that there is no complex irreducible
representation of Sp(r) of degrees 2r +2 and 2r + 38 for »=38. If
r =2, then d(L,) = 4, d(L,) = 5, d(2L,) = 10, d(2L,) = 14, d(L, + L;) = 186.
Hence there is no complex irreducible representation of Sp(r) of de-
grees 2r + 2 and 2r + 3 for » = 2. Therefore the case (A-4-3) does not
happen.

(A-4-4) Suppose that G* is isomorphic to Spin(k) for k = 5. The
condition (x) implies that (n — 1)(n — 4) < k(k — 1) < n(n — 1). Hence
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n=k+lorn=~k+2 If k=2r then d(L,) =,C, for 1<i<r—2,
d(L,-) = d(L,) =27, d2L,) = (r + 1)@2r — 1), d(2L,-,) = d(2L,) = ,,-,C,,
dL,+ L,,) =d(L, + L,) = 2(2r — 1), d(L,—, + L,) = ,,C,_,. Hence there
is no complex irreducible representation of Spin(2r) of degrees 2r + 1
and 2r + 2. If k=2r + 1, then d(L,) = ,,,C;for1 < i< » — 1, d(L,) =
27, d2L,) = »@2r + 3), d(L, + L,) = 2r+'», d(2L,) = 2*. Hence there is no
complex irreducible representation of Spin(2r + 1) of degrees 2» + 2 and
2r + 3 for 7 # 3, there is no complex irreducible representation of
Spin(7) of degree 9, but there is only one complex irreducible represen-
tation of Spin(7) of degree 8 which has a real form. Therefore the
case (A-4-4) occurs only when n =8 and G = Spin(7), the inclusion
Spin(7) — O(8) is a real spin representation uniquely determined up to
an inner automorphism of O(8).

Consequently, the case (A) occurs only when G is one of the fol-
lowing listed in Table 4 up to an inner automorphism of O(n). Here

TABLE 4
n G i: G—0(n) dim O(n)/G
8 Spin(7) 4, T=n—1
8 U4) 2 12=2n—4
8 SU(4) 20 13=2n—3
7 G, ) T=n
6 U3) s 6=n
6 SUQ3) us° 7=2n—5
5 SO(8) B 7=2n—3

e Uk) — 02k), t: SUk) — O(2k) are the canonical inclusions, and 4,
®, B are irreducible representations uniquely determined up to an inner
automorphism of O(n), respectively.

(B) Suppose next that the representation i: G — O(n) is reducible.
Then, by an inner automorphism of O(n), G is isomorphic to a subgroup
G’ of O(k)xO(n — k) for some k such that 0 < k < n/2. The condition
(%) implies that

(e) k(n — k) = dimO(n)/0(k) X O(n — k) < 2n — 2.

Hence k =1,20r k=8 and n =6,7. If k=38 and » = 6,7, then it is
easy to see that G’ = SO(8)x SO(8), G' = SO(3) x SO(4), respectively. Sup-
pose k = 2. Then the inequality (c) implies 2 + dimG’ = dimO(2) X O(n—2).
Since SO(n — 2) is semi-simple for = =5, SO(n — 2) has no closed sub-
group of codimension one. Therefore G’ = SO(n — 2), SO2) x SO(n — 2)
or G = S02)xG", where G" is a closed subgroup of O(n — 2) of codi-
mension 2. If the inclusion G” — O(n — 2) is irreducible, then » =5, 6
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by the case (A). Hence n =6 and G’ = U@2). If the inclusion G’ —
O(n — 2) is reducible, then #n =5 and G” is a maximal torus of SO(3).
Suppose £ = 1. Then G’ is a closed subgroup of O(n — 1), and the in-
equality (c¢) implies dimO(n — 1)/G' < n — 1. It can be assumed that
the inclusion G' — O(n — 1) is irreducible. By the case (A), G’ is one of
the following listed in Table 5. Consequently, the case (B) occurs only
when G is one of the following listed in Table 6 up to an inner auto-
morphism of O(n). Here p,: SO(k) — O(k) is the canonical inclusion, and
0" is the trivial representation of degree k. This completes the proof
of Lemma 4.1.

TABLE 5

n—1 G’ G’ - 0(n—1) dim O(n—1)/G’
n—1 SO(n—1) On—1 0

8 Spin(7) 4y 7

7 G2 w 7

6 U@) M3 6

4 U@e) Ha 2

4 SU(2) }120 3

TABLE 6

n G i: G— 0(n) dim O(n)/G
n SO(n—1) 0n—1D6* n—1
n S0(n—2) On—oCDO? 2n—3
n SO(n—2) X SG(2) Pn—2Dp2 2n—4
9 Spin(7) 4,Pp0* 15=2n—3
8 G, ot 14=2n—2
7 U@) (Dot 12=2n—2
7 S0(3) x SO(4) psDos 12=2n—2
6 S0(3) xS0(3) 0:Dps 9=2n—3
6 U@2)x U(1) 1D 10=2n—2
5 U@2) 1oDO* 6=2n—4
5 SU?2) 1°po* 7=2n—38
5 U1)x U(1) 1P Dot 8=2n—2

PrROOF or LEMMA 4.2. It is sufficient to prove that there is no
irreducible real representation of SO(n) of degree m for 5 <= n<m=
2n — 2, and a non-trivial orthogonal representation of SO(n) of degree
n is equivalent to the canonical representation p, up to an inner auto-
morphism of O(n). The second half is well known and a proof is given
in our previous paper [12, Section 5]. To prove the first half, suppose
that there is an irreducible real representation ¢ of SO(n) of degree m
for 5<n <m =< 2n — 2. Then it is easy to see that the complexifica-
tion ¢¢ of o is irreducible. Let p: Spin(n) — SO(n) be the covering pro-
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jection. Then the composition ¢°p is an irreducible complex representa-
tion of Spin(n), which has a real form. Suppose n = 2. Then d(L,) =
wC; for 1=1Z»—2 d(L,-) =dL,) =2"d2L) = (r + 1)2r — 1),
d2L,-,) = d2L,) = »,-,C,, d(Ly+ L,-,) = d(L, + L,) = 27(2r — 1), d(L,-, +
L, =,C,.,. Therefore the following are the only possibilities for the
irreducible complex representation of Spin(2r) of degree m (2r < m <
4r — 2):

4%, 45: Spin2r) — U2 for » =5,
7, T¥: Spin(6) = SU(4) — U(10) .

Here the representation space of z is the second symmetric product of
the canonical representation space C* of SU(4), and z* is the dual re-
presentation. Hence 7, z* have no real form. It is known that the
half spin representations 4, 4;, are not induced from a representation
of SO(2r). Suppose n = 2r + 1. Then d(L,) = ,+,C;, for 1 <i<r —1,
d(L,) = 2, d(2L,) = r(2r + 3), d(L, + L,) = 2"*'», d(2L,) = 2**.  Therefore
the following is the only possibility for the irreducible complex repre-
sentation of Spin(2r + 1) of degree m 2r + 1 < m < 47):

dypir: Spin2r + 1) —» U27) for »=38,4.

It is known that the spin representation 4,.., is not induced from a re-
presentation of SO2r + 1). Consequently, we have the desired result.
q.e.d.

8. Concluding remark. If 5 < n < m < 2n — 2, then there exists
only one linear SO(n) action p, @ 6™ "+ on the standard m-sphere (see
Theorem 4.11). This action is the restriction of a linear SL(n, R)
action. We shall show a counterexample for n = 4.

Recall that there is a surjective homomorphism z: SO(4) — SO(3).
Through this homomorphism, SO(4) acts on R® and the action is transi-
tive on the unit sphere S? with the isotropy group U(2). Also SO(4)
acts naturally on R* and the action is transitive on the unit sphere S®
with the isotropy group SO(3). Thus we have the diagonal action of
SO(4) on the unit sphere S°® of R*@@ R*. This action is a linear SO(4)
action on S° the principal orbit type is SO(4)/SO(2) and there are just
two singular orbit types SO(4)/SO(3) and SO(4)/U(2).

PROPOSITION 8.1. The above SO(4) action on S° is not extendable to
any continuous SL(4, R) action on S°.

PrROOF. Suppose that there exists a continuous SL(4, R) action on
S¢ which is an extension of the SO(4) action. Let x e S°®be a point such
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that SO4), = U@®). Then
(1) U2)cSLA, R), # SL4, R) ,
(2) dimSL({, R)/SL4, R), < 6.

Here we shall show first the following result.

LEMMA 8.2. Let u(2) be the Lie algebra of U(2). Let g be a proper
Lie subalgebra of 8l(4, R) which contains u(2). Then dim g=4,6,7 or
10.

ProOOF. Recall

A —B
U@2) = {(B A) €eM(R): A'A+ B'B=1, A'B = B‘A} .

Put

u2) = (

X —-Y o L
{Y X>eM4(R).X+ X=0,Y= Y},

§2) = <X -Y

( _{Y X

>eM4(R):X:tX, Y +'Y =0, traceX=0} )

X Y
a=i< >6M4(R):X:‘X,Y=‘Y},
Y -X

Y - X

Then 81(4, R) = u2)P H(2) PaPb as a direct sum of Ad(U(2)) invariant
linear subspaces. Here §(2), a and b are irreducible, respectively, and
dim)(2) =8, dima =6, dimb=2. Moreover, we have [§(2), a] =b,
[B(2), b] = q, [a, b] = B(2), [, a]Cu(2), [b, b] C u(2), [§2), H(2)] Cu(2). There-
fore g is one of the following: u(2), u(2) P a, w(2) P b, u(2) P H(2). Then
dim g = 4, 10, 6 or 7, respectively. g.e.d.

g’X Y
b=1< )eM4(R):X+‘X=Y+‘Y=0}.

We now return to the proof of Proposition 8.1. By the condition
(1), (2), it follows from Lemma 8.2 that dim SL(4, R), = 10. Therefore
the orbit SL(4, R)-x contains the orbit SO(4)-x as a proper subset.
Since the orbit SO(4)-x is isolated, the orbit SL(4, R)-x must intersect
a principal orbit of the SO(4) action. Hence there is an element ge
SL(4, R) such that SO(4),, = SO(2). Put y = gx. Then there is an em-
bedding SO4)-yc SL(4, R)-y = SL(4, R)-x. But dim SO4)-y = dim
SL(4, R)-x =5. Hence SO4)-y = SL(4, R)-x. Since SO4)-y is a
principal orbit, we have x ¢ SO(4)-y. This is a contradiction. Therefore
there is no continuous SL(4, R) action on S°® which is an extension of
the SO(4) action. q.e.d.
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