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1. Introduction. This paper is concerned with the so-called Landau-
Kolmogorov (or Hardy-Littlewood) inequalities

(1.1) || Tku || ^ Mn>k || T*u \\k/n || u W1-*'* (0 < k < n) ,

for linear dίssipative operators T in a Hubert space <££?. (T is dissipative
if Re (Tu, u)^0 for all u e &(T) (domain of T). See Chernoff [1] for
a survey of the inequalities for more general operators.) In [1] it was
shown that the constants Mn,k for the special operator T = D = djdt in
3f? = L2(0, oo) are universal, strengthening older results due to Ljubic
[2], Kupcov [3], and Kato [4]. A similar result was recently published
by Kwong and Zettl [5]. For related results under somewhat different
assumptions, see Protter [6].

ChernofFs proof of (1.1) is extremely simple and elegant, but it is
transcendental in the sense that a large "model space" is used. The
proof by Kwong-Zettl is relatively elementary but appears more compli-
cated. Here we present a "finite" proof based on an elementary polynomial
identity. A merit of this method is that it leads to a simple necessary
and sufficient condition for the equality to hold in (1.1), generalizing a
condition given in [4] (which is in turn a generalization of the one due
to Hardy and Littlewood [7]). It is also shown that the constants MΛfk

have interesting algebraic properties; they are algebraic units except
for certain simple factors, a well-known fact for small values of n (see

[5])
Our main results are summarized in

THEOREM. Let n, k be integers such that 0 < k < n. There exist real
algebraic integers c, aβ (j = 1, 2, , n — 1), and ai3 = aίt (i, j = 0, 1, ,
n — 1), depending on n and k, with the following properties.

( i ) c is an algebraic unit, with 0 < c < c0 — (k/n)~k/n(l — k/n)k/n~\
(ii) All the zeros of the polynomial 1 + aλx + + α ^ ^ " 1 + xn

have negative real part (so that aά ^ 0).
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(iii) The n x n symmetric matrix (ai5) is positive semi-definite, but
not strictly positive-definite.

(iv) For any linear dissipative operator T in any Hilbert space
f, one has

II Tku || ^ (co/c)1/21| Tnu \\k/n || u H 1 -"* for u e

(v) Equality holds in (iv) if and only if there is a real number
s > 0 such that

u + aLsTu + + a^s^T^u + snTnu = 0 ,

Σα<y8
i+>((T<+1w, Γ%) + (T% T*+1u)) = 0 .

i,d=o

(vi) The factor (cjc)m in (iv) is the best possible, with the equality
attained by the differential operator T = D = d/dt in 3$f — L2(0, oo) for
certain ueS^[0, oo) (the Schwartz space).

2. The inequality. In this section, we prove the theorem except
for the algebraic properties of the numbers c, a5, aiά.

In what follows n and k are fixed. We introduce a polynomial

(2.1) Pe(x, y) = 1 - cxkyk + x*y* ,

where c is a real parameter and x, y are noncommuting indeterminates.

LEMMA 2.1. If c < c0 (see the Theorem), there is a unique real
polynomial fc(x) such that (the a5 depend on c)

(2.2) fc(x) = 1 + a& + + α ^ α - 1 + x* ,

(2.3) all the zeros of fc have negative real part ,

(2.4) Pax, -x) = fc(x)U-x) .

PROOF. It is easy to see that if c < c0, pc(x, —a?) has no zeros on
the imaginary axis. Since these zeros are symmetrically distributed with
respect to the real and imaginary axes, pc(x, —x) admits a unique
factorization of the form (2.4) with all the zeros of fc having negative
real part.

LEMMA 2.2. Set

(2.5) gc(χ, y) = fc(χ)fc(y) - vλx, y).

Then there is a real symmetric matrix (aid), i, j = 0, , n — 1, depend-
ing on c, such that

(2.6) gc(x, V) = Σ aidx\x + y)yj .
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PROOF. In the proof one may assume that x and y commute, since
x's stand to the left of y'& in each term in (2.5) and (2.6). Then (2.6)
follows by long division by x + y because gc(xf —x) = 0 by (2.4). The
symmetry of (ai5) follows from that of gc(x, y) in x, y.

LEMMA 2.3. Let Sίf be a Hubert space. Given any n + 1 vectors
u0, ulf , un of £έf, one has

(2.7) | | u Q | | 2 — c\\uk||
2 + | | u n | | 2 = | | u 0 + axuλ + + α ^ V i + ^»II 2

Λ - l

PROOF. One may assume, without loss of generality, that έ%f has
dimension n + 1 and uOf , un form a basis of έ%f. Define a linear
operator T on ^f by Tu3- = uj+1 for j1 = 0, 1, , n — 1 and 2%Λ = 0,
so that Tju0 = Uj, 0 ^ j" <: n. Then (2.7) may be written

(pc(T*, 2> 0 , u0) - (fc(T*)fc(T)u0, u0) - (gc(T*, T)u0, u0) .

But this is true because of the identity (2.5).

LEMMA 2.4. For any ueHn(0, oo) (the Sobolev space), one has

(2.8) IÎ H2 - c| |£>^| | 2 + \\Dnu\\> = \\fc(D)u\\> + Σ M ? 1

where D = d/dt and \\ \\ denotes the L2(0, oo)-norm.

PROOF. Apply Lemma 2.3 with £έf = L2(0, oo), Uj = Dju, noting that

(Dί+1u, Dju) + (D%

LEMMA 2.5. Suppose the matrix (atj) is positive semi-definite. For
any dissipative operator T in any Hubert space, one has
/ O Q \ ^ II φkn. 112 < ^ II Λ * 112 _ι_ | | T 7 ^ . 112

^ ώ . ϊ / y k | | - ^ M' I] = | | W ' | | " i 11 J t M ' l l ,

\Δ.L\j) ^ 1 1 - ^ ^ 1 1 = ^ Ό I | - ^ ^ 1 1 l l ^ ' i l joΓ UJ

PROOF. If T is dissipative, the (Hermitian) matrix with elements
(Tί+1u, Tju) + (T% Tj+1u) is negative semi-definite. Thus we see that
the right member of (2.7) is nonnegative if uό — T5u. (The second term
in (2.7) is nonnegative, being the trace of the product of two positive
semi-definite matrices.) This proves (2.9). Then (2.10) follows by replac-
ing T with sT and optimizing in s > 0.

LEMMA 2.6. Suppose (ati) is not (strictly) positive-definite. Then
there is ueS^[0, oo)y u Φ 0, such that

(2.11) C | | J D ^ | | 2 ^ IHI2 + HZ^II2 .
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Note that D is dίssίpatίve in L2(0, °o).

PROOF. There is a nontrivial real ^-vector (s0, * ,sw_1) such that
Σ aίjSίSj ^ 0. Solve the n-ih order differential equation fc(D)u = 0 on
[0, oo), with the initial conditions D3'u(0) = sjt j = 0, , n — 1. The
solution u exists, is nontrivial, and belongs to S^[Q, oo) because all the
zeros of fc have negative real part. Thus (2.11) follows from (2.8), of
which the right member is nonpositive.

LEMMA 2.7. There is a unique positive number 7 < c0 such that (aίά)
is {strictly) positive-definite if and only if c < 7. (ai5) is positive semi-
definite for c — 7.

PROOF. Let Γ be the set of all c < cQ such that (atj) is positive
definite. Γ is not empty, since Lemma 2.6 shows that c = 0 belongs to
Γ. In view of Lemmas 2.5, 2.6, it is obvious that Γ is an open interval
of the form (—°°, 7). It remains to show that 7 < c0. Otherwise, one
would have, on letting c->cQ in (2.10),

\\Tku\\2^ HΓ ̂ II^ II^IΓ-*^ ( u e ^ ( Γ ) ) ,

for any dissipative operator T in any Hubert space £έf. But this is not
true, as is seen from the example

because 1 + 4fc2 > (1 + 4n2)k/n.

PROOF OF THE THEOREM (up to the algebraic properties of c, aί9 atί).
It suffices to set c = 7 and take the corresponding values of ad and aiά.

3. The integrality. In this section, we prove that the aif aίά deter-
mined above are algebraic integers and c is an algebraic unit. We put
α0 = an = 1 and α, = 0 for i < 0 or i > n. From (2.1), (2.2), (2.4), one
obtains

1 - {-l)kcx2k + (- l )V*

which gives the relation:

(3.1)

a if j = o
- l ) k + 1 c if j = 2fc

-1)" if j = 2w

,0 otherwise .
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For j = 21 (1 <; I ^ n — 1), this can be rewritten as

(3.2) δ4iIc + a\ = 2 Σ (-1)<+Iα,_4αl+, .

(All other relations in (3.1) are trivial.) From (2.1) ~ (2.5), one has
n-l

Σ aiSx\x + y)yj =
ί,ί=0

which gives, for 0 ^ i ^ ^ ~ 1,

425

a n d , f o r i, j = 1, -•-,%-I,

f*v\ „ J-, ία | + c if ΐ = j = A;
( α ^ otherwise .

Let A denote the n x n matrix (aiS) and set

(i ^ i ^

(at = 0 for i > n or i < 1 — n); As is the "̂-th column vector of the
matrix A.

LEMMA 3.1. One has

(3.4) Σ ( - 1 ) V H = e-J + ( - l)fc+1^2,-i + (-1)ne2n-3. ,
i=0

where ez denotes the l-th (standard) unit vector in Rn and we set ez = 0
i/ ϊ <; 0 or i > n.

This follows from (3.1).

LEMMA 3.2. One has

3-1

Σ
(3.5)

Σ(-l) t -% ί α ί _ ί - + 1

P R O O F . Set

p

~0

1

0"

/or 1 ^ i ^ A;,

for k + 1 ^ j ^ *ι .

-o l o"

p* =

0 l o 0 o.
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Then, by the definition, one has ai+1 = P ^ , α_̂  = P*ιaQ for i > 0. From
(3.3) one has

Aj + PAj+1 = dyd! , P*Λy + Ay+1 = CL^

for 1 ^ j ^ n ~~ 19 j Φ k. We prove (3.5) for 1 :g j ^ & by induction on
j . For y = 1, At = α0 is trivial. Assuming the validity of (3.5) for
j (<fc), one has

Aj+1 - αyα0 - P*A3. = aμ, - Σ ( ~ l ) w + 1 α Λ w = Σ (- l)
£0 ϊ0

which proves (3.5) for j + 1. The case k + 1 ^ j <* n can be treated
similarly, starting from the case j = w, where (3.5) reduces to An = α^

q.e.d.

(In view of Lemma 3.1, we see that both expressions in (3.5) are
valid for all j , 1 ^ j ^ n, if one replaces akak_j+1 by akak_j+1 + ce2Jfc_i+1.)

Now from our choice of c (Lemma 2.7) we have

(3.6) det(A) - 0 .

We will show that the relations (3.2), (3.4), (3.6) imply the integrality of
the α/s. It is known that, under these conditions, the α/s are algebraic.
(See the remark below.) Let K be an algebraic number field of finite
degree containing all at (1 ^ i ^ n — 1) and let p be any prime ideal in
K. Put

v0 = Minima,) ,

where ι>p denotes the (exponential) valuation defined by p.

LEMMA 3.3. // v0 < 0, one has vp(ak) = vQ and vp(ai) > v0 for I Φ k.

PROOF. Let Jo = {i \ vp(a%) = vQ,iΦ k}. Suppose v0 < 0 and Io Φ 0 .
Then there exists either a maximal element I in I with k < I < n or a
minimal element I in /0 with 0 < I < &. In (3.2) one has for any
i > 0

Hence there must be at least one i > 0 such that vp(α^t) = vp(αι+ί) = v0.
If i > k (resp. < &), then I + ΐ (resp. i — i) e Io, which is absurd, q.e.d.

Now we prove that au , an_x are algebraic integers and c is an
algebraic unit. By (3.6) the vectors Al9 ---,An are linearly dependent.
By Lemma 3.2, this is equivalent to saying that the at (1 — k <̂  i <;
n — k) are linearly dependent. Thus one has
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K 0
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(3.7) Δ- an-i

an-ι

= 0 .

0 1 an-ι ---a

Suppose v0 < 0. Then, by Lemma 3.3, one has

1 0

' . . = 1 (rnodW,
0 1

which is absurd. Thus one should have v0 ^ 0 for all prime ideals p in
K. This proves that au •••, an_λ are integral. By (3.1), (3.5), c and atj

are also integral.

REMARK. By a similar argument, one can show that, for any gen-
eralized valuation φ (with values in a linearly ordered abelian group) of
any field containing al9 , an_19 one has φ(a%) ^ 0. This proves that the
at are algebraic.

Next, we prove that c is a unit. Since the constant c is unchanged
if we replace k by n — k, we may assume that k ^ n/2. By Lemma 3.1,
one has for 1 ^ j ^ k

( * )

(**)

ΐ=0

3

Applying ( —l)*"*cP* on (**) and adding it to (*), one obtains

(3.8) Σ (-1)^*^-*+* + Σ ( - l ) - y + < β w + i α U + < = 0 (1 ^ i ^

where α;_fc+ί = αw_fc+i + (-l)Λ- f ccP f cα_Λ + i. Since a^kf , αΛ_fc are linearly
dependent, this implies that au , an_k, a'n_k+1, ',a'n are also linearly
dependent. From \au , αΛ_fc, a'n_k+lf - , a'n\ = 0, one obtains a relation
of the form

cg(c, al9 •••, an_,) + 1 = 0 ,

where g is a polynomial with coefficients in Z. Hence c"1 is integral,
and so c is an algebraic unit.
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