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1. Introduction. This paper is concerned with the so-called Landau-
Kolmogorov (or Hardy-Littlewood) inequalities

(L.1) [Tl = M| T | Ju |~ 0 <k<mn),

for linear dissipative operators T in a Hilbert space 5. (T is dissipative
if Re (Tu, w) < 0 for all we 2 (T) (domain of T). See Chernoff [1] for
a survey of the inequalities for more general operators.) In [1] it was
shown that the constants M, , for the special operator T'= D = d/dt in
&# = L*0, =) are universal, strengthening older results due to Ljubié
[2], Kupecov [3], and Kato [4]. A similar result was recently published
by Kwong and Zettl [5]. For related results under somewhat different
assumptions, see Protter [6].

Chernoft’s proof of (1.1) is extremely simple and elegant, but it is
transcendental in the sense that a large “model space” is used. The
proof by Kwong-Zettl is relatively elementary but appears more compli-
cated. Here we present a “finite” proof based on an elementary polynomial
identity. A merit of this method is that it leads to a simple necessary
and sufficient condition for the equality to hold in (1.1), generalizing a
condition given in [4] (which is in turn a generalization of the one due
to Hardy and Littlewood [7]). It is also shown that the constants M, ,
have interesting algebraic properties; they are algebraic units except
for certain simple factors, a well-known fact for small values of n (see

[5D).

Our main results are summarized in

THEOREM. Let n, k be integers such that 0 <k <m. There exist real
algebraic integersc,a; (j =1,2, ---,m — 1), and a; =a; (1,7=0,1, ---,
n — 1), depending on n and k, with the following properties.

(i) ¢ is an algebraic unit, with 0 < ¢ < ¢, = (k/n)"**(1 — k/n)*"*.

(ii) All the zeros of the polynomial 1+ ax + --- + a,_,x** + 2
have megative real part (so that a; = 0).
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(iii) The m X n symmetric matriz (a,;) is positive semi-definite, but
not strictly positive-definite.

(iv) For any linear dissipative operator T in any Hilbert space
57, one has

[T = (cof)”* [ Tu [ |w|}*~*"  for we=(T).
(v) Equality holds in (iv) if and only if there is a 7real number
s > 0 such that
w+ a,sTu + --- + a,_s"'T"'u + s"T"u =0,

S 0 (T, Touw) + (Tu, TV u)) = 0

1,5=0

(vi) The factor (c,/e)”* in (iv) is the best possible, with the equality
attained by the differential operator T = D = d/dt in 5% = L0, ) for
certain u € .S[0, ) (the Schwartz space).

2. The inequality. In this section, we prove the theorem except
for the algebraic properties of the numbers ¢, a;, a;;.

In what follows % and k are fixed. We introduce a polynomial
@1 po(x, y) = 1 — ca*y* + 2™y,
where ¢ is a real parameter and z, ¥ are noncommuting indeterminates.

LEMMA 2.1. If ¢ <e¢, (see the Theorem), there is a unique 7real
polynomial f,(x) such that (the a; depend on c)

(2.2) f@=1+ax+ -+ +a, 2"+ 2",
(2.3) all the zeros of f, have negative real part,
(24) pc(xy —x) = fc(x)fc(—x) .

PrOOF. It is easy to see that if ¢ < ¢, p.(x, —x) has no zeros on
the imaginary axis. Since these zeros are symmetrically distributed with
respect to the real and imaginary axes, p,(x, —x) admits a unique
factorization of the form (2.4) with all the zeros of f, having negative
real part.

LeEMMA 2.2. Set

(25) gc(xy y) = fc(x)fc('y) - pc(xy y) .
Then there is a real symmetric matrix (a;;), 2,5 =0, ---, n — 1, depend-
ing on ¢, such that

(2.6) 0.2, ) = 3 0@ + 9y’ -
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ProOOF. In the proof one may assume that x and y commute, since
x’s stand to the left of %’s in each term in (2.5) and (2.6). Then (2.6)
follows by long division by « + y because g.(x, —x¢) = 0 by (2.4). The
symmetry of (a,;) follows from that of g¢.(z, ) in z, y.

LEMMA 2.3. Let 57 be a Hilbert space. Given any n + 1 wvectors
Ugy Uy, ***, W, Of 57, one has

@1 ul® = ellwal® + [uall = Juo + @y + <+ + @ty + U
n—1
—'_Zoaij((uiﬂ, ;) + (Usy Ujir)) -
1,5=

PROOF. One may assume, without loss of generality, that 5 has
dimension # + 1 and wu,, ---, %, form a basis of 57~ Define a linear
operator T' on &# by Tu; = u;, for 5=0,1,---,n —1 and Tu, =0,
so that T%u, = u;, 0 < 7 < n. Then (2.7) may be written

D(T*, T, o) = (fol T*)fol T, o) — (9(T*, T Itho, %) -
But this is true because of the identity (2.5).
LEmMMA 2.4. For any uc H"0, «) (the Sobolev space), one has

@8 [ul} = el Dl + || Dulf = | £ Dulf + 5 0D uO D),

where D = d/dt and || || denotes the L0, «)-norm.
Proor. Apply Lemma 2.3 with 57 = L*0, «), u; = D’u, noting that
(D*'u, D) + (D'u, Di*'u) = —D'u(0)D7u(0) .
LEMMA 2.5. Suppose the matrixz (a;;) is positive semi-definite. For
any dissipative operator T in any Hilbert space, one has
(2.9) el T | = lwll + [[T*u]f,
(2.10) cl| T*u | e, |) T™u || 2™ || w||2-+m for we=2(T".

Proor. If T is dissipative, the (Hermitian) matrix with elements
(T, Tw) + (T'u, T""'u) is negative semi-definite. Thus we see that
the right member of (2.7) is nonnegative if u; = T%«. (The second term
in (2.7) is nonnegative, being the trace of the product of two positive
semi-definite matrices.) This proves (2.9). Then (2.10) follows by replac-
ing T with sT and optimizing in s > 0.

LEMMA 2.6. Suppose (a;;) is mot (strictly) positive-definite. Then
there is u € [0, ), u # 0, such that

(2.11) cllD*u|f = [Jull* + [ D"u|f .
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Note that D is dissipative in L*0, o).

PrROOF. There is a nontrivial real n-vector (s, ---, s,_,) such that
> a,s8:8; = 0. Solve the n-th order differential equation f,(D)u = 0 on
[0, =), with the initial conditions Du(0) =s;,j =0, ---, n — 1. The
solution % exists, is nontrivial, and belongs to &[0, <) because all the
zeros of f, have negative real part. Thus (2.11) follows from (2.8), of
which the right member is nonpositive.

LEMMA 2.7. There is a unique positive number v < ¢, such that (a;;)
is (strictly) positive-definite if and only if ¢ <. (a;) is positive semi-
definite for ¢ = 1.

PrOOF. Let I' be the set of all ¢ < ¢, such that (a,;) is positive
definite. I is not empty, since Lemma 2.6 shows that ¢ = 0 belongs to
I'. In view of Lemmas 2.5, 2.6, it is obvious that I” is an open interval
of the form (— o, ). It remains to show that v < ¢, Otherwise, one
would have, on letting ¢ — ¢, in (2.10),

Tl < (| Tl [l e Z(T)

for any dissipative operator 7' in any Hilbert space 52 But this is not
true, as is seen from the example

1 2 0
—C, T=— , u = Tl =1+ 452,
F =C (0 1> " <1> | Toull = 1 + 4j

because 1 + 4k* > (1 + 4n?) ",

PrOOF oF THE THEOREM (up to the algebraic properties of ¢, a;, a,;).
It suffices to set ¢ = v and take the corresponding values of a; and a,;.

3. The integrality. In this section, we prove that the a,, a,;; deter-
mined above are algebraic integers and ¢ is an algebraic unit. We put
a,=a,=1and a,=0 for 1< 0 or ¢4 >n. From (2.1), (2.2), (2.4), one
obtains

1— (—1)kca®™ + (—1)"a* = <an a,.xi)(g (—1)"aiw‘> ,
which gives the relation:
1 if 7=0
(=1 if =2k
(—=1)" if 7=2n
0 otherwise .

(3.1) 3 (—Diaa; =
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For =2l 1 1< n —1), this can be rewritten as
(3.2) dpuc + af = 23 (—DMar
(All other relations in (8.1) are trivial.) From (2.1) ~ (2.5), one has

n—1
e+ Yy = > aexty + cxtyt,
i,5=0 1Sitgs2n—1

which gives, for 0+ n —1,

Qio = Qoy = Q1 Qpop—1 = Qymg,s = Ay

and, for ¢,5=1,---,m — 1,

a: + ¢ if 1=7=k
(3.8) Qisyj + Qpjy = { y )
@.0; otherwise .
Let A denote the n X n matrix (a,;) and set
Ay @y, 51
a,=|: | (GeZ), A;j=| l=j=sm),
Ay Ay, i1

(a;=0 for ¢ >m or 1 <1—m); A; is the j-th column vector of the
matrix A.

LEMMA 8.1. Ome has
(3.4) 2 (—Diaa,; =e; + (=D cey_; + (—1)"€p_; ,
where e, denotes the I-th (standard) unit vector in R" and we set e, = 0
fl=0o0rl>mn.

This follows from (3.1).
LEMMA 3.2. One has

i-1

> (—1)i_j+la¢a¢_j+1 for 1=k,

1=0

(3.5) A; =4
%(—1)¢—j“*ai—i+1 for E+1=5j=mn.
PrROOF. Set
o, 0 01
1. ..
P=| - , P*= .
1
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Then, by the definition, one has a,,, = P'a,, a_,= P*'a, for 1> 0. From
(3.3) one has

Aj + PA_,'_H = a;a, , P*AJ + A.’/'+1 = a;a,
for 1<j=<mn—137+k. We prove (83.5) for 1 < j < k by induction on
j. For j=1 A, = a, is trivial. Assuming the validity of (3.5) for
7 (<k), one has

j—1 oo J .
A = aa,— P*A; = a;a) — Z:)(—1>1_1+1aiai—j = Z:a) (=D a.a,_;,
1= =

which proves (3.5) for 7 +1. The case k + 1< 7 < n can be treated
similarly, starting from the case j = m», where (3.5) reduces to 4, = a,.
q.e.d.

(In view of Lemma 3.1, we see that both expressions in (8.5) are
valid for all j, 1 = j < m, if one replaces a,a;_j,, by aa,_;,, + cey_j,..)
Now from our choice of ¢ (Lemma 2.7) we have

(3.6) det(4) = 0 .

We will show that the relations (3.2), (3.4), (3.6) imply the integrality of
the a,’s. It is known that, under these conditions, the a,’s are algebraic.
(See the remark below.) Let K be an algebraic number field of finite
degree containing all a; 1 <4< n — 1) and let p be any prime ideal in
K. Put

y, = Min y,(a;) ,

0sisn
where v, denotes the (exponential) valuation defined by p.
LEMMA 3.3. If v, <0, one has v,(a,) = v, and v,(a;) > v, for |l # k.

Proor. Let I, = {i|y,(a,) = v, %2 # k}. Suppose v, <0 and I, % @.
Then there exists either a maximal element [ in I with k<1 <% or a
minimal element ! in I, with 0 <l < k. In (3.2) one has for any
>0

”p(zat—ia'lH) = v,(2) + y(a,_;) + ’)v(aH—i) = 2y, = Dp(a%) .
Hence there must be at least one ¢ > 0 such that v,(a;_;) = v,(a1;;) = v,.
If I >k (resp. < k), then [ + 1 (resp. !l — 1) € I,, which is absurd. q.e.d.

Now we prove that a,, ---, a,_, are algebraic integers and ¢ is an
algebraic unit. By (3.6) the vectors A4, ---, A, are linearly dependent.
By Lemma 3.2, this is equivalent to saying that the ¢, 1 — k<1 <
n — k) are linearly dependent. Thus one has
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Qg """ a, 1\\ 0
: ax | o
3.7 4= |ans ax Ly =0
1\\ \\\L,ln_l \ \?1
0 "1 clln_l-----_--:::>(:1k
Suppose v, < 0. Then, by Lemma 3.3, one has
1 0
ard=| - =1 (mody),
0 1

which is absurd. Thus one should have y, = 0 for all prime ideals p in

K. This proves that a,, ---, a,_, are integral. By (3.1), (8.5), ¢ and a;;
are also integral.

REMARK. By a similar argument, one can show that, for any gen-
eralized valuation ¢ (with values in a linearly ordered abelian group) of
any field containing @,, ---, @,_,, one has ¢(a;) = 0. This proves that the
a, are algebraic.

Next, we prove that ¢ is a unit. Since the constant ¢ is unchanged
if we replace k¥ by » — &k, we may assume that & < #/2. By Lemma 3.1,
one has for 1< 5=k

n

(*) g“o (=D'aa;_py; = (—1)*'ce;yy
J )
(xx) ;‘L (=", ;@ np = (—1)"; .

Applying (—1)"*¢P* on (xx) and adding it to (x), one obtains

n—J J . .
(38) 3 (~Daa; s+ 2 (-1, @i =0 AS5SK),

where a,_;.; = @,_j; + (—1)**cP*a_,,,. Since a,_, ---, a,_, are linearly
dependent, this implies that a,, ---, a,_;, @,_;.1, - -+, @, are also linearly
dependent. From |a, -+, a,_;, @r_4sy, -+, a@,| = 0, one obtains a relation
of the form

cg(e, @y <v 0,0y ) +1=0,

where ¢ is a polynomial with coefficients in Z. Hence ¢ is integral,
and so ¢ is an algebraic unit.
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