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Introduction. Let 4 be a combinatorial triangulation of the ordinary
(d — 1)-sphere, or, more generally, a (d — 1)-dimensional finite simplicial
k-homology sphere with a field & (cf. (1.10) below). Number the vertices
(= 0-simplices) of 4 from 1 through ». Consider the collection &, of
subsets of {1, ---, r} defined as follows: a subset & belongs to &, if and
only if either & is the empty set or there exists a simplex ¢ of 4 such
that ¢ is the set of vertices of o.

In the r-dimensional affine space A, over k, let Y be the d-dimensional
closed reduced subscheme obtained as the union

Y=UV(©

fesy
of the affine subspaces V(¢) defined by
Ve ={t=(=, ---,t)ecd,; t;=0 if j¢&.
Since V(&)DV(n) if £¢Dn, it suffices to take V(¢)’s with ¢ in &, of
cardinality d to cover Y. Thus the normalization of Y is the union of
these d-dimensional affine subspaces, hence is nonsingular. Here, let us
tentatively ecall such Y a d-dimensional k-spherical scheme with the

nonsingular normalization. Hochster and Ishida showed that such Y is
Gorenstein (cf. (1.8) and (1.10) below).
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In terms of rings, we have Y = Spec(S), where S is the residue ring
S = k[t, ---, t)J
of the polynomial ring by the ideal J generated by the monomials
ity -+ L,

for all subsets {7, %, ---, ¢,} of {1, ---, 7} not belonging to Z,. Thus we
need, in general, too many equations to define Y, hence Y is far from
being a complete intersection.

Nevertheless, we can use the rich combinatorial information on Z,
to compute the hyperextension sheaves, the “tangent complex”,

Gl (LY, ) i=10,1,2,

where L' is the cotangent complex of Y introduced and studied by
Lichtenbaum-Schlessinger [LS], Grothendieck [G,], Rim [R] and Illusie [I,]
(ef. (1.14) below).

We carried out the computation for the following reasons. For one
thing, we intend eventually to study the deformations of those varieties
locally and formally isomorphic to such Y. As far as we know, no
explicit computation of the second hyperextension sheaf was ever
systematically carried out for nonnormal higher dimensional varieties
which are not local complete intersections. For another, we wanted to
test the reasonableness of the notion of Zk-sphericity. We hope we
succeeded in doing so.

As a consequence of our slightly more general main theorems
announced in Section 2 and proved in later sections, we get the following
results:

(0) (cf. Remark after Corollary 2.2). The zeroth hyperextension
sheaf

& (LY, )
which classifies local infinitesimal automorphisms of Y and is nothing but
the sheaf L., (%) of germs of k-derivations of <%, is canonically iso-
morphic to the kernel of the homomorphism induced by the restriction
maps

@ 0y (—log D(a)) — @ 6y 5 (—log D(3))

with @ and @ running through the sets belonging to &, with |a| =d
and |B] = d — 1, respectively, where for £€ 5, in general, we let

Oy (—log D(§)) = % Tytiolot; ,
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which is the sheaf of germs of k-derivations on V(&) with logarithmic
zeros along the divisor D(£) on the affine subspace V(&) defined by

D(g) = V()

with 7 running through the subsets of ¢ satisfying |&| — |7| = 1. This
is a generalization of a result obtained by Nakamura [N,, Proposition
2.5].

(1) (cf. Theorem 2.3). The first hyperextension sheaf

g"/&]’y(L?’ ﬁY) ’
which coincides with the ordinary extension sheaf
ol (D%, %)

for the sheaf Q) of 1-forms, is canonically isomorphic to the kernel of
a homomorphism

e: ? (B) — @ ()

with g8 and v running through the sets belonging to =, with |3| =d — 1
and |v| = d — 2, respectively, where the (¢“,-modules Z(8) and < (V)
defined in Section 2 have the following properties: For || =d — 1, £ (B)
is an invertible 7 ;-module on the (d — 1)-dimensional affine subspace
V(B), while for |v|=d — 2, £’(v) is either zero or a locally free -
module of rank two on the (d — 2)-dimensional affine subspace V(v). This
is a generalization of another result obtained by Nakamura [N,, Section 5].

(2) (cf. Theorem 2.4 and Corollary 2.5). The most difficult to
compute is the second hyperextension sheaf

@t (LY, %)

which measures local obstructions for deformations of Y. We reduce its
vanishing to that of more computable H, ,(@(s’, s”), k) for various s’ and
s"”, which coincide with the (d — 1)-dimensional reduced k-homology group
of certain “local” subcomplexes of 4. In particular for d =dimY <3, we
can completely classify those Y’s with the vanishing second hyperextension
sheaf as follow:

Case d < 1. Always. Here Y is either a point or a transversal
intersection of two affine lines (thus with the ordinary double singularity
at the origin).

Case d = 2. Y, in general, is the elliptic polygonal r-cone in the
sense of Mumford [M] for » = 8, i.e., Y is the union in A4, of the (¢, t.)-,
(ty, to)-, =+, (t,_y, t,)- and (¢,, t,)-planes. The second hyperextension sheaf
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for Y vanishes if and only if » < 5. Here the cases » = 3 and r = 4,
i.e., Y = Spec(k[t, - -, t;]/(t,t:t;)) and Y = Spec(k[t, - - -, t.)/(tt, t,t,)) are
complete intersections, while the case » = 5 is not.

Case d = 3. There are many combinatorially different triangulations
4 of the 2-sphere even if the number » of the vertices is fixed. Among
them, there are only ten different 4’s listed in Corollary 2.5 for which
the second hyperextension sheaf vanishes. Only three of them are
complete intersections.

The proof of these results is accomplished after lengthy combinatorial
study in Sections 3, 4, 5 and 6.

Recently Kagami [K,] showed that all these Y’s of dimension three
with the vanishing second hyperextension sheaf have stable singularity
at the origin, generalizing Mumford’s result in the case of elliptic polygonal
cones in [M]. Note that there are some other Y’s with the nonvanishing
second hyperextension sheaf, which have stable or semistable singularity
at the origin.

Here is the motivation for our study of k-spherical schemes Y with
the nonsingular normalization, as we have already announced in [IO].

In connection with the compactification problem of various moduli
spaces, we encounter many examples of “degenerate varieties”, for
instance, (i) stable curves of Deligne-Mumford [DM], (ii) degenerate
jacobian varieties of Oda-Seshadri [OS] and Ishida [I,] or, more generally,
degenerate abelian varieties of Namikawa [N,] and Nakamura [N,], (iii)
degenerate hyperelliptic surfaces of Tsuchihashi [T], (iv) degenerate forms
of Hopf surfaces and other class VII, surfaces by Kodaira [K,], Miyake-
Oda [MO] and Nakamura [N,] and (v) degenerate K3 surfaces by Kulikov
[K,], Persson [P] and Persson-Pinkham [PP].

These degenerate varieties are usually reduced and connected. But,
in general, they are reducible with the irreducible components mnot
crossing normally. Their singularities are very often formally isomorphic
to our k-spherical schemes Y with the nonsingular normalization. As we
saw above, however, it is rather hard to deal with them through their
too many defining equations. Fortunately, we have a way of dealing
systematically with monomials by means of the theory of torus embedd-
ings, or Demazure varieties, introduced and studied by Demazure [D],
Mumford et al. [TE], Satake [S] and Miyake-Oda [MO].

Ishida [I,] already began to study, more generally, closed invariant
reduced subschemes Y of normal torus embeddings. He gave a good
description of the dualizing complex K; of Y and described when Y is
Cohen-Macaulay or Gorenstein. He could single out a very nice class of
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k-spherical Y’s. We recall in Section 1 some of his results in a dual
formulation convenient for our purpose.

The results in Ishida [I,] as well as here grew out of our effort to
understand and generalize those of Nakamura [N,, Lemma 2.2, Lemma
5.2 and Proposition 5.1] in the case of degenerate abelian varieties. A
generalization in another direction is being carried out by Ishida [L].

Now that the local theory of ‘“degenerate varieties” is reasonably
well established, we hope to formulate a good global theory of “degenerate
varieties”, which, in a sense, is a generalization of the theory of toroidal
embeddings by Mumford et al. [TE].

1. The review of relevant results and amplifications. Partly to fix
notations, we recall and supplement some of the relevant results obtained
by Ishida [I,] and Miyake-Oda [MO], in the dual formulation which is
more convenient for our purpose. We also recall the hyperextension
sheaves of the contagent complex necessary for the formal deformation
theory developed by Lichtenbaum-Schlessinger [LS], Grothendieck [G,],
Rim [R] and Illusie [L].

Throughout, we fix a field k¥ and a free Z-module M of finite rank
r. Let N = Homz M, Z) be the dual Z-module with the canonical pairing
(, > M X N—Z.

(1.1) Let w be a convex rational polyhedral cone in My =RX, M
which generates My as an R-vector space, i.e., there exist elements
m,, -+, m,€ M which span M, over R such that w = R.ym, + --- +
R.m, Then w N (—w) is the largest R-subspace contained in w. Here
R., is the set of nonnegative real numbers.

(1.2) We consider the group ring k[M] of M over k by introducing
the multiplicative base e(m) satisfying ¢(0) = 1 and e(m + m') = e(m)e(m’)
for m, m' e M so that k[M] = @,.x ke(m). We consider k[M] as an M-
graded ring by letting e(m) to be homogeneous of degree m.

(1.3) For w as above, let P = k[M N w] be the semigroup ring of
the subsemigroup MNw of M. Then Spec(P) is exactly a normal affine
embedding of the torus T' = Spec(k[M]). For details, we refer the reader
to [MO]. For instance, P is smooth over % if and only if & is nonsingular,
i.e., there exists a Z-basis {m,, ---, m,} of M and s < » such that o =
R.m, + -+ + R.ym, + Rm,,, + --- + Rm, by [MO, (5.6), p. 21].

(1.4) Let I'(w) be the set of the faces & of w, i.e., those subsets ¢
for which there exists a Z-linear functional » e N on M such that » has
nonnegative values on w and that ¢ is exactly the set of points of @ on
which » vanishes. Those &’s are again convex rational polyhedral cones.
I'(w) is a finite partially ordered set with the largest element w and
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the smallest element & N (—w) via the order ¢ > % meaning 7 is a face
of ¢&. For & nel(w), we denote by £ Un the smallest face of w con-
taining & and 7 as faces, while the intersection £ N 7 is the largest face
of @ contained in ¢ and in 7. We regard I'(w) as an abstract complex.
A subset B I'(w) is a subcomplex (resp. star closed subset, resp. local
subcomplex) if ¢€ 5 and £ > 7 imply e & (resp. if e F and ¢ > 7 imply
geE, resp. if 5 is the intersection of a subcomplex and a star closed
subset). More generally, subcomplexes, star closed subsets and local sub-
complexes of a local subcomplex &/ (w) are defined in a similar manner.

(1.5) For &’s in I'(w), p(&) = k[MN o \MNE] = Bueunoun: ke(m) are
exactly the M-homogeneous prime ideals of P = k[MnN w] by [MO, pp.
16-18].

DEFINITION. For a subcomplex Zc I'(w), we define the M-homo-
geneous semiprime ideal J = J(Z) and the M-graded quotient ring S =
S(Z) by J(B) = Mec=9(&) and S(&) = P[J(5).

S(&), as a k-vector space, coincides with k[J..-(M N &)], with, however,
the multiplication defined for m, m’' € U;.:(MN &) by e(m)e(m’) = e(m + m’)
if there exists &€& containing both m and m’' while e(m)e(m’) = 0
otherwise. For &el'(w), P/p(¢) is isomorphic to the semigroup ring
E[M N ¢], which we always regard as an M-graded quotient ring of P.
Y(Z) = Spec(S(Z)) is a reduced T-invariant closed subscheme of the
torus embedding Z = Spec(P)D T = Spec(k[M]). For ¢el'(w), let V(&) =
Spec(P/p(£)), which is an irreducible reduced T-invariant closed subscheme
of Z with dimV(¢) = dim¢ and with V(&) D V(%) if and only if & > 7.
We have V(&) Y (&) if and only if £e€ & so that Y(&) = U,..: V(&) = U.V(a),
where a runs through the maximal elements of Z.

(1.6) For a local subcomplex Fc I'(w) and 7 = 0, let

&; ={¢e&; dim¢ = j}
and let
=dim 7 = max {dim¢; £€ 5} .

For &€ Z;, consider the Z-submodule Z(M N &) of M of rank j generated
by M n¢g, and its highest exterior power

det Z(MNg) = A ZIMN &) .

For ne &;_, with & > 7, there exists a primitive element n e N, unique
mod NN &Y, such that n has nonnegative values on £ and that 7 is
exactly the set of points of £ at which » vanishes. Thus we have an
exact sequence
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0-ZMN7)—ZMNE)SZ—0,

hence a canonical isomorphism det Z(M N &) — det Z(M N 7) sending m, A
<o Amy, with m,e Z(MnN¢) and m,, ---, m;e ZIMN7R), to {(m, n)m, N\
c«« Am;. For j=0, let

Cy(5) = @ det Z(M N &)

with the map
0: C,(&8) — C;_(&)

defined so that its (&, 7)-component for € 5, and ne &, , is zero if 7 is

not a face of ¢, and is the above isomorphism det Z(M N &) — det Z(M N 7)
if £ > 7. Then by Ishida [I,, Proposition 1.6], we see that C (&) together
with 0 is a finite complex of free Z-modules.

If we fix a Z-basis u, of detZ(M N &) for each £e &, we see that
for ce &,

o(ue) = 3 [&: 7luy

€55

for numbers [¢: ] = 0,1 or —1, which we call the incidence numbers.

For a subcomplex 5’ C &, we can canonically regard C(Z’) as a sub-
complex of Z-modules of C(5). Then the quotient complex C(&)/C.(&")
coincides with C (2\ &) defined for the local subcomplex £\ &Z’. We denote
by H.(Z, k) and H'(5, k) the homology group of C (5, k) = C(5) ®.k and
the cohomology group of C'(5, k) = Hom,(C (&), k). We call & homo-
logically trivial (resp. k-homologically trivial) if H (5)=0 (resp. H (5, k)=
0).

(1.7) For Le&, let

Star,(8) = {¢e5; 6> =E\{ne&; 7% {

be the star of { in &, which is a star closed subset of & with the
smallest element {. Thus we can think of C (Star.(&)) as a quotient
complex of C(&).

Recall that for { e I'(w), we have bijections

Star, (I'(w)) > I'(w + R() > I'((w + RC)/RL)

by sending & to & + R{ and then to (¢ + R{)/RC (cf. [MO, Proposition
3.1] and [I;, Proposition 1.3]).

(1.8) A local subcomplex & cC I'(w) with the smallest element ¢ is
called k-spherical if for any (€ Z we have
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k j=dim &

H,(Star.(®), k) =
i(Star,(7), k) 0 otherwise .

A local subcomplex 5ZcC I'(w) is called k-semispherical if there exists
0 €5 such that Star,(Z) contains all the maximal elements of 5 and that
Star,(Z) is k-spherical.

Note that a k-spherical 5 is k-semispherical by taking o to be the
smallest element ¢. Note also that by Ishida [I,, Proposition 5.8], o in
the definition of the k-semisphericity of Z is uniquely determined, and
for { € 5 we have

k-spherical if £ > p

Star.(Z) is
(&) 1 k-homologically trivial if ( % po.

Moreover, by [ibid. Corollary 5.6], we see that for { > p and d = dim &,
the canonical map

H,(Star,(8), k) — H,(Star.(5), k)

is an isomorphism.
The importance of the k-sphericity and k-semisphericity lies in the

following basic:

THEOREM (Ishida [I,, Theorem 5.10 and Proposition 5.13]. See also
Hochster [H, Added in proof].). If a subcomplex = cCI'(w) with the
smallest element ¢ is k-spherical, then S(5) is a Gorenstein ring. If w
is nomnsingular, then S(5) is a Gorenstein ring if and only if 5 is k-
semispherical. In this case, S(5) is noncanonically isomorphic to the
temsor product over k of S(5'), for a k-spherical E'c I'(w’') for a mon-
singular rational polyhedral come w', and the k-smooth ring k[M N o],
where p is the one appearing in the definition of the k-semisphericity
of 5.

(1.9) Let & c I'(w) be a subcomplex. If Y = Y(Z) has the nonsingular
normalization Y, then we have

Y = 11V

with ¢ running through the maximal elements of 5. In this case, replacing
w by a possibly higher dimensional cone if necessary, we may assume
w itself is nonsingular.

If @ is nonsingular, with

v =R.m + --- +R.ym, + Rm,,, + --- + Rm,
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for a Z-basis {m, ---, m,} of M and s < », then the complex I'(w) is
isomorphic to that of the family of subsets of {1, ---, 7} containing
{s+1,---,r} via the map sending c¢el'(w) to {1; 1 <1 < r, m; €&}

If Y=Y(&) with a Fk-semispherical 5 c I'(w) has a nonsingular
normalization ¥, then Y is noncanonically isomorphic to the product

Y=Y(E)x A, x T'

of an affine space A,, an algebraic torus 7" and Y(&') for a k-spherical
subcomplex 5’ < I'(w’) for a nonsingular convex rational polyhedral cone
w'’ with @' N (—w’) = {0}. Thus for many purposes it is enough to study
Y(Z) for a k-spherical subcomplex Z c I'(w) for a nonsingular convex
rational polyhedral cone w with o N (—w) = {0}. Thus if

w =R.m + -+ + Ryym,

for a Z-basis {m,, ---, m,} of M, then E can be identified with a sub-
complex of the complex of subsets of {1, ---,r} via the map sending
teFto{i; 11 r, meg).

(1.10) (cf. Hochster [H]). As above, let w = R.ym, + --- + R.ym,

for a Z-basis {m,, ---, m,} of M and let & cI'(w) be a d-dimensional
subcomplex. Then & is k-spherical if and only & = &, for a (d — 1)-
dimensional simplicial k-homology sphere 4 with r vertices {1, ---, 7},

where Z,c I'(w) is the collection of all ¢e I'(w) such that {1;1 =1 7,
m; €&} is the set of vertices of a simplex of 4 or the empty set. The
reason for this is that for {0} = { € 5, H,,,(Star,(Z,), k) coincides with the
(j — dim {)-dimensional reduced k-homology group of the link in 4 of
the simplex corresponding to {, while for { = {0}, it is the j-dimensional
reduced k-homology group of 4 itself.

Combinatorial triangulations 4 of the ordinary (d — 1)-sphere are
typical examples. Conversely for d = 1, 2, 3, (d — 1)-dimensional simplicial
k-homology spheres are known necessarily to be combinatorial triangula-
tions of the ordinary sphere. Thus when d = 1, we have

S(&,) = k[tn tz]/(t1tz) ’

hence Y(Z,) is a curve with an ordinary double point at the origin. When
d = 2, then 4 is necessarily a decomposition of a cirecle into » ares. Y(Z))
is realized in the r-dimensional affine space with the coordinates (¢, ---, t,)
as the union of (¢, t,)-, (¢, t,)-, -, (t,_y, t,)- and (¢,, t,)-planes. Such Y(Z,)
is called the elliptic polygonal r-cone by Mumford [M]. The ring S(Z,)
is of the following form:
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k[tlr tz» t3]/(t1t2t3) r=3
S(Ed) = k[tl’ t27 tS’ t4]/(t1t3, t2t4) r = 4
kt, -+, t,)/tt; %4~ 1,41+ 1 (modr) »=5.

When d = 3, 4 is again necessarily a triangulation of the ordinary 2-
sphere. There are, however, many combinatorially different ones even
when the number » of the vertices is fixed. By Steinitz’s theorem (cf
Grinbrum [G,, Chapter 13]), the combinatorial classification of 4’s coincides
with that of 3-dimensional simplicial convex polytopes, i.e., bounded
convex polyhedra in R® whose 2-dimensional faces are triangles. We
encountered this classification problem in another context in [MO,
Section 9].

(1.11) For simplicity, we adopt the following notation: If Zcl'(w)
is a d-dimensional local subcomplex, then we denote d-dimensional cones

in & by a, &, ---, (d — 1)-dimensional cones in 5 by 3, &/, - -+, and (d — 2)-
dimensional cones in & by v, v/, ---. Suppose & c I'(w) is a d-dimensional

k-spherical subcomplex with @ nonsingular. For Bez,., we see by
(1.7), (1.8) and (1.9) that Star,(5) is isomorphic to a one-dimensional k-
spherical subcomplex of the complex of subsets of {1, ---, »}\\ 8. Hence
by (1.10), there exist exactly two distincet «, a’ € &, satisfying «, a’ > 3.
On the other hand for ve &, ,, we see again by (1.7), (1.8) and (1.9)
that Star,(Z) is isomorphic to a 2-dimensional k-spherical subcomplex of
the complex of subsets of {1, ---, r}\v. Again by (1.10), the latter is
necessarily isomorphic to a subdivision of a circle into v ares with v > 3.
Thus Star,(Z) consists exactly of vez3,., 8, -+, B €54, and a, ---,
a, €5, such that a,_, > B8, < a; for 1 < ¢ < v, where we let @, = a,. In
this case, we call v v-valent and denote v(y) = v.

(1.12) For a k-scheme V, we denote, as usual, by 0, = Z%.,(Z,) the
sheaf of germs of k-derivations of the structure sheaf ~7,. For a closed
subscheme Wc V, we denote by .47, the normal sheaf of W in V, i.e.,
the 7,-dual of the conormal sheaf I/I?, where I is the ideal sheaf of
W in V. Recall, furthermore, the following:

DEFINITION. For a k-scheme V and its effective divisor D with the
ideal sheaf J, we define the sheaf ©,(—log D) of germs of k-derivations
with logarithmic zeros along D to be that of k-derivations ¢ of &,
satisfying 6(J)cJ. Its &-dual is denoted by 2.(log D) and is called
the sheaf of germs of differential 1-forms with logarithmic poles along D.

DEFINITION. For a subcomplex Zc I'(w) and &€ &, let D(&) be the
reduced effective divisor of V(¢) = Spec(k[M N &]) defined by D() =
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> V(), where % runs through the codimension one faces of & (cf.
(1.5)).

In connection with this, we will have occasions later to need the
decomposition

D(@) = 3, D(8)
when Z is k-spherical and ge &,;_, as follows (cf. (1.11)):

DEFINITION. Suppose & is d-dimensional and k-spherical with o
nonsingular. For e &, , and v = 3, we denote by D,(8) the divisor of
V(B) defined by D,(B) = >,V(v), where v runs through the v-valent
(d — 2)-dimensional faces of 3.

To an element n of the Z-module N dual to M, we have a k-deriva-
tion 6, of k[M] defined by

da(e(m)) = {m, nye(m)

for all me M. We see easily that the map »n+ d, induces an isomorphism
from k& ®, N to the Lie algebra Lie(T) of T. More concretely, let {m,,
.-+, m,} be a Z-basis of M and let {n,, ---, n,} be the dual basis of N.
Then in terms of the coordinates ¢, = e(m,) of T, we have 4,, = t,0/6¢,.

The k-derivation §, obviously preserves the subring k[M N ] and
its M-homogeneous prime ideals p(&) = kK[M N o\ M N¢] defining V(&) for
el (w) (cf. (1.5)). Thus 4, induces a global section of 6,,,. The divisor
D(&) on V(¢) is defined by the ideal k[M N (the relative interior of &)] of
E[M N &), which is preserved by d,. Thus we have a canonical homo-
morphism

e @ N — 6y, (—log D(8))

which kills the elements of &7, X, (NN &t). We have:
PROPOSITION. For tel'(w), there are canonical isomorphisms

Crier @ (NIN N &) = By(—log D(&))
ey @ Z(MN &) = Da(log D)) -

Proor. It is enough to prove the isomorphy of the first homo-
morphism on the ring level for A = k[MNn¢&]. Let Ic A be the ideal
defining D(¢). Then we have I =p, N --- NP, where n, ---,7, are the
codimension one faces of ¢ and p, ---, p, are the corresponding M-
homogeneous height one prime ideals of A defined by p,=k[MN e\ MN7,].
There exist primitive elements =, ---, n, in N, having nonnegative
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values on & and being uniquely determined mod N N &', such that 7, =
gN{n}-. By [MO, p. 18, Remark], we see that for each me M N &, we
have a primary decomposition

Ae(m) = pi' N - NP,

where p'» is the p-th symbolic power of p and g, = (m, n,>. Clearly a
k-derivation 6 of A with 6(I) c I preseves the symbolic powers. Thus
we have d(e(m)) = u(m)e(m) for an element u(m)e A. Obviously u is an
additive semigroup homomorphism from MN¢ to A. Thus u can be
uniquely extended to a group homomorphism from Z(M N ¢) to A, hence
to an element of A Q;(N/N N &YH).

(1.18) Let ZcI'(w) be a d-dimensional subcomplex for a convex
rational polyhedral cone w. &, considered as an ordered set is almost
never a directed set. Nevertheless, we can consider the projective system
{Tver}ecs of Ty s-algebras with the restriction maps &7 ) — &) for £>9
as the transition homomorphisms. Sometimes convenient is the following
fact, whose proof can be easily carried out on the ring level:

PROPOSITION. For a subcomplex ZCI'(w) for a convex rational
polyhedral cone w, we have a canonical isomorphism

Ty — pI‘Oé). lEim e
€

Ishida [I,, Corollary 3.5] showed, in the dual formulation, that Y(&)
is Cohen-Macaulay if and only if

H,(Star, (8), k) = 0

for all {e & and all j +d = dim &Z. If this condition is satisfied, we call
& k-Cohen-Macaulay. Thus k-semispherical 5 is k-Cohen-Macaulay (cf.
(1.8)). Note that if 5 is k-Cohen-Macaulay, then it is equidimensional,
i.e., for each &€&, there exists ac&; with @ > ¢ In the k-Cohen-

Macaulay situation, the projective limits taken over Z is determined by
the information on codimensions zero and one as follows:

LEMMA. Let {X}..z be a projective system of sets with the transition
maps fre: X, — X, for §>1n. If 5 s d-dimensional k-Cohen-Macaulay,
then there exists a camonical bijection

proj lim X, > projlim X, .
tes 7/e£dU5d__1

PrROOF. We have canonical maps f;: projlim,.; X, — X,, hence

projlim X, — projlim X, .
tel resqU8g 4
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We first claim f to be injective. Indeed, if x = (x,) and 2’ = (x;) are
in projlim,.. X, with x, =x, for each neZ,UZ&, ,, then z, = z. for
each €& since by the equidimensionality, there exists ae &, with
a > & Let us show the surjectivity of f. Let x = (x,) be an element
of the projective limit for 5, U &, ,., Each {eZ is a face of some
7'e&,U5;, by the equidimensionality. Let us fix one such 7’ for
each { and define z, to be f,,(x,). We claim that x, is independent of
the choice of 7', hence (x;) is an element of the projective limit for Z.
Indeed, consider the subsets of Star.(Z) defined by

' =med, U8, ;0> fule,) =},
E'"={meB UE; ;0> fulw,) # a) .
Then we obviously have & N 5" = @ and &' U &” = (&, U &,_,) N Star,(&).
Z' is nonempty, since it contains 7’. Thus by Ishida [I,, Proposition 5.3],
we conclude that B” = @ and B = (&, U 5,_,) N Star.(&).
Combining our Proposition and Lemma, we have:

COROLLARY. If Y(&) s d-dimensional and is k-Cohen-Macaulay,
then we have a canonical tsomorphism

Oy — projlim &, .
VeEgUEg

(1.14) Let X be a k-scheme. Illusie [I,] defined the cotangent complex
L*¥ of y-modules using the homotopical algebraic technique. This
complex plays the following role in the theory of infinitesimal deforma-
tions of X.

Let R be an Artin local k-algebra with the residue field k.. Then
a deformation of X over R is an R-scheme X, flat over R, such that
X, ®k=X. Let R be another Artin local k-algebra with a surjective
local k-homomorphism R’ — R whose kernel has length one. Given a
deformation X, of X over R, the obstruction for lifting X, to a de-
formation X, over R’ lies in the second hyperextension group

Ext® (L*, &) .

When the obstruction vanishes, the set of liftings X, of X, to R’ is a
principal homogeneous space under the first hyperextension group

Extl (L¥, &) .

Incidentally, the set of R’-automorphisms of X, inducing the identity
on X is the group

Extl (L¥, 7).
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The computation of these hyperextension groups is reduced to that of
the local hyperextension sheaves

&t jX(LX; évX) .7 = 0; 1, 2
via the local-global spectral sequence
HY(X, &) (LF, Oy)) = Ext™i(LY, %) .

Fortunately, by Rim [R], we can compute these local hyperextension
sheaves as follows:

(0) &’ (LT, Tx) = Sy (D, Ty) = Zeof(Ty).

(1) If X is reduced, then &' (LY, &) = &s) (2%, ) (cf. Artin
[A, Proposition 6.1]).

(1) Suppose X = Spec(S) is affine. If S = P/J for a polynomial
k-algebra P and an ideal J of P, then the <”;-module corresponding to
the S-module

Exty(L5, S) = coker[Der,(P, S) — Hom(J/J?, S)]

is exactly Zor' (LY, &y).

(2) Let X = Spec(S) with S = P/J as above. Suppose there exists
a surjective P-homomorphism F — J — 0 from a free P-module F’ of finite
rank. Consider the Koszul complex constructed out of this surjection

Kosz =[--+ > A°F - AN*F— F — P].
Then .2 (L, ¢7y)is exactly the ¢7;-module corresponding to the S-module

Exti(L5, S) = coker [H'(Kosz, S) — Homy(H,(Kosz), S)]
= coker [Hom,(F, S) — Hom(H,(Kosz), S)] .

2. The announcement of the main results. We are ready to state
our main theorems and their consequences, whose proofs will be completed

at the end of the paper.
We need much less condition on Y for our description of the zeroth

hyperextension sheaf <%.,(<%) than for that of the higher hyperexten-
sion sheaves.

THEOREM 2.1. Let 5 C I'(w) be a subcomplex for a convex rational
polyhedral cone w. Then we have a canonical imjective homomorphism

pr(:je;im Oy )(—log D(&)) = Ze( (T s)

which is an isomorphism if and only if one of the following equivalent

conditions are satisfied:
(1) FEach ne& is the intersection of all the maximal elements ¢ € 5
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satisfying & > 7).
(2) The cardinality of Star,(5) is not two for each e Z.

COROLLARY 2.2. If Ec'(w) is a d-dimensional k-Cohen-Macaulay
subcomplex (cf. (1.13)) for a comvex rational polyhedral come w and if
H,(Star,(5), k) # 0 for any Be&,,, then we have canonical 1so-
morphisms

Lo (Ty ) o progel_im Oy (—log D(&))

= proj lim 6,,(~log D(7) .
/,e:d\ Zd—1
REMARK. This is, in a sense, a generalization of a result obtained
by Nakamura [N,, Proposition 2.5]. Note that by (1.8), the conditions
in Corollary 2.2 are satisfied if 5 is k-spherical. See Ishida [I,] for a
long exact sequence extending the isomorphism in Corollary 2.2.

ExamMpPLE. Let X be an algebraic surface over & with an ordinary
double curve C as the only singularity. Let v: X — X be the normaliza-
tion. If C is nonsingular, then v~*(C) is the disjoint union of iso-
morphic nonsingular curves C’ and C” on X isomorphic to C via v.
We have an exact sequence

0—Ox(—log(C" + C") > Ox —> NG ,x P AN, —0.
By an easy local calculation, we have a canonical isomorphism
0, = ker[y,03(—log(C' + C")) — 6],

where the homomorphism is the difference of the two obvious restriction
maps. Our result generalizes this to special but combinatorially more
complicated varieties of the form Y(&). Obviously, X above is locally
isomorphic to Y(Z) for a very simple Z.

Recall that for a closed subscheme W of a scheme V, we denoted
by _+4, the normal sheaf of W in V (ef. (1.12)). In stating our des-
cription of Z.s' (L%, 7y) = &2}, (2%, O%), we need the following:

DEFINITION. For a convex rational polyhedral cone w, let & c I'(w)
be a d-dimensional k-spherical subcomplex with Y (&) having the nonsingular
normalization.

(1) For gek&, ., let a, @’ be the two distinct elements of 5, satisfy-
ing « > 8 and a’ > 3. Then we define an invertible <7 ;-module < (B)
by
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Z(B) = S ww @ Aveman Q@ Trie(Dy(B) — ;g:;_’ D,B)) -

(2) For vek&,, we define a locally free 7 -module < (v) as
follows: If v(v) =5, then we let £ (v) =0. If v(v) = 4 and B, B: Bs, Bs
are the distinct elements of 5,_, satisfying 8, > v and B, U B;, B. U B, ¢
g, we let

O, B) =Z, B) = A varwey @ Avawey Q@ Tvi(D(Y))
S, L) =Z(, B) = ATavesy &® AT @ vy & Ty (D)) .

Then

Z(7) ={Z(, B) B < (v, B,)}/diagonal
D {Z (v, B D Z (v, B)}/diagonal.

Finally, for v(v) = 3, let 8, B3,, B; be the distinet elements in &, ; with
B: > . Let

g(’% Bl) = g(’Y; 182) = g(’% 33)
= %(r)/V(ﬁl) ® AV wisy ® A Vv & Ty (D(7)) .
Then
g ={Z{, B) O (1, B) D < (7, B:}/diagonal .
(8) We define an % ;,-homomorphism
e: @ B — B T
Besqg_, refg_s
as follows: Let ge &, , and vye€&;_,. The (B, v)-component of ¢ is zero
if either 8 # v or v(v) =2 5. If v(y) =4 and 8 > v, then 8 = B, for some
1=1,2,3 4 as above. In this case, the (B, v)-component of ¢ is the
composite Z(B) — Ty Q L (B) — £ (v, B) — £ (7) of the restriction map,
the obvious injection and the map induced by the inclusion into the
(v, B,)-factor. Finally if v(v) =3 and @ > v, then g8 = 3, for some ¢ =
1, 2, 3. In this case, the (3, 7)-component of ¢ is the composite Z(8) —
Ty @ T (B) — £ (v, B) — T (v) exactly as above.

THEOREM 2.3. Let w be a convexr rational polyhedral cone. For a
d-dimensional k-spherical subcomplex 5 C I'(w) with Y(E) having the
nonsingular normalization, we have a canonical isomorphism

Gy (L1, Cro) Dker| @ @5 @ T |

edg_g 7849
REMARK. This is a generalization of a result obtained by Nakamura
[N,, Section 5].
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THEOREM 2.4. For a Z-basis {m, ---,m,} of M, let w = R.ym, +
-+ + R.ym, and let 5 I'(w) be a d-dimensional k-spherical subcomplex.
Then we hawve
Set (LY9, Oyi) =0

Y (8)
if and only if H,_(@(s', s"), k) =0 for all s’ € 5 and " € I'(w) satisfying
s'Ns" ={0} and |s"| = 2, where by freely identifying the elements of
I'(w) with the subsets of {1, ---, r} as in (1.9), we define |s”| to be the
cardinality of s" and

O, s") ={eemd;e>48,6Us"\{l}e& for all les"}.

When d = dim & < 3, we can simplify this condition further in the
following way, where by (1.10), we identify & with &, for a (d — 1)-
dimensional finite simplicial 4-homology sphere 4, which is nothing but
a triangulation of the ordinary (d — 1)-sphere now:

COROLLARY 2.5. For d < 3, let 4 be a combinatorial triangulation
of the (d — 1)-sphere. Then for Y = Y(&5,), we have

@t (LY, ) = 0

if and only if one of the following ts satisfied:

(1) d£1.

(2) d=2andv{0}) <5,1.e.,Y is an elliptic polygonal r-cone with
r < 5.

(83) d =3 and the stereographic projection, from ome of the ver-
tices, of 4 to the plane looks like ome of the diagrams except [8-14]
in Figure 1, where the names [4-1] through [8-14] are those used in
[MO, p. 77].

REMARK. Among those listed in Corollary 2.5, only the following
are complete intersections (cf. (1.10) and below), hence the vanishing of
the &.-® in these cases are already known:

(1) always.

(2) with v({0}) = 3 or 4.

(3) [4-1] S = kla,, - - .y )/ (@, ,050,)

[5_1] S = k[xu Tty x5]/(x1x2x3, x,%s5)
[6-1] S = kla,, - - -, o]/(x.2,, 252, ©:,).

REMARK. As we see in Proposition 6.3, the eleven triangulations
[4-1] through [12] in Figure 1 are exactly those for which each vertex
is incident to five or less edges.
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é

<1,

[4-1] (5-1]

(6-1] (6-2] [7-1]

[7-5] [8-13] [8-14]
[9] 10] [12]

The triangulations of the 2-sphere with all the vertices having
the valency = 5.

FIGURE 1

3. Barycentric subdivisions. In computing the higher hyperexten-
sion sheaves in question, we will later need the results in this section
on the barycentric subdivision, which is an adaptation of the usual one:
to our situation.

Let @ be a partially ordered set. Later, we will be mainly concerned
with the case where @ is a local subcomplex of I'(w) for a convex
rational polyhedral cone w.

DEFINITION. For ¢ = 0, define the set Sd,(®) as follows: Sd,(®) is
the one-element set consisting of the symbol ( ). For <=1, Sd,(®) is
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the set of strictly increasing sequences (5, =& = --- = &) of length ¢ in
®. SA(®) = 120 5d,(®) is called the barycentric subdivision of @. We
regard it as an abstract complex by taking faces to be subsequences. The
chain complex of Z-modules C(Sd(®)) is defined by letting C,(Sd(®@)) to be
the free Z-module with the basis Sd;(®) and by letting the boundary

map 0: C,., — C, to be
J
5(51 == 5i+1) = 1(_%‘“_1(—1)“1(51 Ve = Siﬂ) .

We define the homology group H (Sd(®)), the cohomology group H'(Sd(®))
and H (Sd(®), k), H (SA(®), k) for a field k& in the usual manner. We call
Sd(®) homologically trivial (resp. k-homologically trivial) if H (Sd(®@)) =0
(resp. H (SA(®), k) = 0).

It is easy to see that if @ is empty, then we have
VA 1=20
0 1#0,
while if @ is nonempty, then we have H,(Sd(®)) = 0.

REMARK. Itis sometimes more convenient to consider, instead, another
barycentric subdivision §i(@) consisting of all the nondecreasing sequences
G <&H< -+ <g) in @, Thus Sd(®@) is a subcomplex of §Ei(@). It is
standard to show that the induced map C.(Sd(®)) — C_(§El(@)) is a quasi-
isomorphism, i.e., the complement D(®) = STi(@)\Sd((D) consisting of the
degenerate sequences is homologically trivial. Just define the chain

homotopy for C.(D(®)) by sending (¢ < --- < &) to (=)' < - <
E=6<E&n< - <§&), where [ is the smallest j such that &; = &;,,.

H,(8d(?)) =

The following lemmas are standard and useful below.

LEMMA 3.1. Let @' be a subset of an ordered set ®. Suppose there
exists an order preserving retraction map p:®— @', i.e., poi = idy for
the inclusion map ©: @' — @. If either (1) p(g) > & for all £€® or (2)
p(&) < & for all £€ @, then i induces an isomorphism

iy H(SA@)) > H.(Sd(®)) .

ProoOF. By the above remark, we may replace Sd by Sd allowing
nondecreasing sequences. Then, as usual, we construct the chain homotopy
s for C(Sd(®)) connecting top and id, by sending (& < -+ < &;) to s(&, <
e < gy = Shas (DG < s <E < pE) < --- < p(Ey)) in case (1), and
tO)S(& < e <) = Shas (DN eE) < - < p(E) <& < - < §) in case
(2).
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LEmMMA 3.2. If @ has either the smallest element or the largest
element, then Sd(®) is homologically trivial.

PROOF. Apply Lemma 3.1 (1) (resp. (2)) to the subset @ consisting
of the largest (resp. smallest) element only, with p sending every element
of @ to the unique element of @’. We are done, since Sd(@’) is obviously
homologically trivial.

The proof of the following lemma is left to the reader.

LEMMA 3.3. Let B’ be a subcomplex of a local subcomplex 5 C I'(w)
for a convex rational polyhedral cone w. Letd = dim &5’ and d = dim 5.
Then we have the following:

(1) There is a decreasing filtration

SdE\E') =F‘"cFYc-.-cFTcF/c-.--cSd&)
by the subcomplexes defined by F/ = {(&, = --- = &) € SA(T); either & ¢ 5,
or £ €8 and dim ¢ = j}. In particular, F/ = SA(F) if j < min{l; &, s
nonempty}. Moreover, the quotient complex C (FI\F*) is of the form
1=20

j j+1\ 0
CENEI=1 g o (sdstar@N\@) iz1.

{eE’,diml=
(ii) There s an increasing filtration
Sd&"Yc---cFjcF;,,c---CF;=8d(5)

by the subcomplexes defined by F; = {(&, = --- = &) € Sd(&); either &€ &',
or £, ¢ 5 and dimé, < 5}, In particular, F; = SA(E’) if j < min{l; &,\ 5,
18 nonempty}. Moreover, the quotient complex C (F;\F;_)) is of the form

, . 1=0
CAFNF-) = ©  CoSdENTONG) iz1.

CeZ\&/,dims=

When E c I'(w) is a local subcomplex with the smallest element for
a convex rational polyhedral cone w, we can relate the homology group
of the barycentric subdivision and the homology group in (1.6) as follows.
It is just the usual comparison theorem in disguise between the homology
group of a finite simplicial complex and that of its barycentric subdivision,

LEMMA 3.4. Let 5C w be a local subcomplex for a convex rational
polyhedral cone w. If Z has the smallest element ¢, them we have
canonical isomorphisms for all

sd: Hl(E) -:> Hl_dxmqs(Sd(E\{gs})) ’
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where the left hand side is the homology group we defined in (1.6).

PROOF. As we saw in (1.6), we have the incidence number [&: 7] =
0,1 or —1 for e &, and ne&,, so that ou, = Xz, [&:)]u, for a Z-
basis u, of det Z(M N &). We define the map

sd;: Cy(&) — Ci—dim¢(Sd<E\ {a})
by sd(u,) = () and, for ¢€ &5, with i = 1, by

sd, () = D, 0(Eaimers = 0 = E)(Caime = -0 = &),
with the summation taken over all (&4ims = - - - =&;) € SA(F\ {¢}) satisfying
& =& where 0(&iimp = - = &)€Z is defined as follows: Denoting

& =¢ if | = dim¢, we let

O(Guimpn = -0+ 3 &) = (ZDimmetemimen® 1 g &)

dim¢sisi—

Note that dimg =1 for all dimg <1< 4. It is easy to check that
sd,_,00 = 0osd,;, since for any (€&, , and £e &, with ¢ > {, there exist
exactly two 7,7’ eZ,, such that ¢>7n>{ and &> % >{ and that
[&: nlm:C1 + [&:9'1[w': €] = O (cf. Ishida [I,, Lemma 1.4]). We thus have
the induced homomorphisms sd: H,(Z) — H,_41s(SA(Z \{¢})). We now show
these to be isomorphisms by induction on the cardinality of 5.

First of all, suppose & has the largest element &. We claim that
sd are isomorphic in this case. If ¢+ ¢, then 5\ {¢} also has the largest
element, and the right hand side is trivial by Lemma 3.2. If & = ¢,
then Z\{¢} is empty, hence the right hand side is Z for ¢ = dim¢ and
zero otherwise, as we saw at the beginning of this section. On the
other hand, if & = ¢, then the left hand side is trivial, since Z consists
of all the faces of £ containing ¢ (cf. (1.7) and, for instance, Ishida [I,,
the comment immediately after Corollary 2.3]). If ¢ = ¢, then & = {¢}
and the left hand side is Z for 7 = dim ¢ and zero otherwise. Moreover,
u, is sent by sd to ( ) by definition.

In the general case, let £ be an element of the largest dimension in
Z. We may assume ¢ # ¢, by what we saw above. The Z\{¢} is a
subcomplex of EZ with fewer elements. Apply Lemma 3.3 (ii) to the
subcomplex F\{¢, ¢} of £\ {g}. Since the complement consists of £ only,
we see that the increasing filtration is of the form Sd(Z\{g ¢}) =
F;_,c F; = Sd(E\{¢}) with 7 = dim ¢. Hence we have

1=0
CiBdENTEONE 9)) =1,
Similarly, Lemma 3.3 (ii) applied to ENI(&)\{g, ¢} ENT(E)\{¢} yields an

Il

Ci(Ffl'\Fa"—1) =
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increasing filtration SA(ENI'(e)\{s, ¢})) = F/_,cF =Sd(ENI'(¢)\{g}) with
j = dimé&. Hence

0 1=0
Ci F;’\Fil—l) = { —_ .
( Co(SAE N TENE, ) i=1.

Thus the homomorphism C (F}\Fy_) — C(F;\Fj_,) induced by the in-
clusion is an isomorphism. We are done in view of the diagram

0 ——=C.(E\ (&) C.(E) C.({&D) 0
lSd lsd lsd
0 ——C.(Fj—1) C.(F}) C.(F;\Fj_1) 0

whose first column is a quasi-isomorphism by the induction hypothesis,
and the diagram

0——C.(ENT(&)\{&)—=C.(ENT(§))——C.({§}) ——0

1sd sd sd
C.(F}) C.(Fi\Fj_;)——0

0———C.(Fj-1)

the first and second columns, hence the third column, of which are
quasi-isomorphisms by the induction hypothesis and our result at the
beginning of this proof applied to the complex 5N I'(¢) having the largest
element &.

The following is a modification in our context of the usual Alexander
duality theorem.

PROPOSITION 3.5. For a convex rational polyhedral cone w, let

Ecl'(E) be a d-dimensional k-spherical local subcomplex with the small-
est element ¢. Then for subcomplexes 5 DO DD, we have a canonical

1s0morphism
Hi(@\Y, k) = Hy,, ;(SAENO)\SAE\ D), k)

for all 0 < 7 <d. In particular, we have a canonical isomorphism

Hi(®, k) > H,_;SAE\D), k)  for all j.

Proor. The second part is the special case of the first with @’ empty,

since the long exact sequence arising from the inclusion Sd(E\ @) cSd(5)
induces a homomorphism H,,, ;(SA(Z)\SI(E\D), k) — H,_,(SA(E\D), k),
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which is an isomorphism by the k-homological triviality of Sd(&) in
Lemma 3.2.
Let us now construct a canonical duality homomorphism

D: C/(O\9?', k) — Cyy,_;(SA(ENO)\SA(E\D), k) .

Since & is d-dimensional and k-spherical, we have H,(5Z, k) = k. Hence
by Ishida’s result quoted in (1.8), there exists a map & 5, —k*, the
orientation, such that for any (eZ, the element 3, ¢(a)u, with «
running through the d-dimensional cones of Star.Z) gives rise to the
k-basis of H,(Star.(5), k). In particular for any BeZ,,, we have
e(@)a: B] + e(@)[a’: B8] = 0 for the two d-dimensional cones a, a’ satisfy-
ing a, @’ > B. Let {u}} be the k-basis of C'(@\ @', k) dual to {u.}. Then
for e @\ @' with dim¢ = j, we let

D) = Se6 % $E)E S - &)

with the summation taken over all (¢, % --- = &) in SA(E\ @)\ Sd(Z\ )
satisfying &; = £, where ¢(&; = -+ = &) €k is defined as

ez &) = S(Sd)jglg_l[suﬂ &l .

Note that dim¢g, =1 for all j <1< d. It is easy to check as in Lemma
3.4 that 00D = D-0, where 6 is the coboundary map of C(®\ @, k) defined
by

b(uf) = 3 [7: elus

for j-dimensional ¢ € @\ @', with the summation taken over all (5 + 1)-
dimensional e @\ @',

To prove that the above D induces the required isomorphism in the
proposition, we may restrict ourselves to the case where @' is empty,
in view of the long exact sequence arising from the inclusion
SA(E)NSA(EN\ @) cSAd(Z)\Sd(Z\0). Thus we now show that D induces
an isomorphism

Hi(®, k) > H,,,_(SAE)\SAE\D), k) forall 0<j<d

by induction on the cardinality of @.

If @ is empty, then both sides vanish, and we are done. If @ is not
empty, let { be an element in @ of the largest dimension and let @' =
O\ {C}, which is a subcomplex of @. Since D is canonical, we have a
homomorphism from the long exact sequence arising from @'cC® to that
arising from SA(Z\ @)\ Sd(E\0)c SA(E)\Sd(E\®). Thus by the in-
duction hypothesis applied to @', it is enough to show that D induces
an isomorphism
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() Hi({C}, k) = Hyp_j(SAEN\ 0)\SA(E\ D), k)

for all 0 < j<d. The left hand side of (x) is zero for j # dim { and
is kuy for j = dim{. Moreover, D(u¥) = S e(&; S - S E)E S -+ 5 &)
with the summation taken over all (¢; = --- £ &,) satisfying £; = (.

As for the right hand side of (x), we have two isomorphisms
d
Hy jaime(Stard(8), k) > H, ,(Sd(Star(8)\(C}), k)
L H,.\ (SAENO)N\SAEND), k) .

Indeed, the first isomorphism sd was obtained in Lemma 3.4. Hence,
moreover by the k-sphericity of Star.(Z), we see that the right hand
side of sd is nonzero only when j = dim {, and then has the k-basis

sd(Xa. (U) = D 6(E)0E i = - S E)E = - = &)

Here the summations are taken over all d-dimensional « in Star.(Z) and
over all (&, = -+ = &) in Sd(Star,(&)\{{}), respectively. On the other
hand, the second isomorphism f is induced, up to sign, by the natural bi-
jection from Sd(Star.(5)\{{}) to SA(Z\ @")\Sd(&\ @) sending (9,=---=7,)

to == - =M.
Finally, since (&8 % = &)= (=17 %(5)0(Em 5 - 2 &)

for 7 = dim {, we have
D(ug) = (— 1) fosd (S e(ayu, ),

hence (x) is an isomorphism.

The following Propositions 3.6 and 3.8 will play a crucial role in
Sections 5 and 6, where we compute the hyperextension sheaves in
question. At the preliminary stage of our formulation, the discussion

with Hiroshi Sato was useful.

PROPOSITION 3.6. For a convex rational polyhedral cone w, let 5 C
I'(w) be a d-dimensional k-spherical local subcomplex with the smallest
element ¢. For §,s" € '(w) satisfying s’ Ns" = ¢, 8 > ¢ and s > ¢, we
define a local subcomplex Z(s', s") of 5 by

B, ") ={ceB;s'UceE, ens’ =¢,6Us"¢E}.
If either s'¢ 5 or §" = ¢, then H(s',s") is empty. On the other hand,

if €& and s # ¢, then the barycentric subdivision Sd(Z(s,s”)) is
k-homologically trivial, hence, in particular, 2(s’, s'') is nonempty.
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PrROOF. Obviously, it suffices to prove the k-homological triviality
of Sd(Z(s’, s”)) when s'e¢ & and s"” = ¢. If s’ ¢ 5, then Z(s, s") contains
the smallest element ¢, hence we are done by Lemma 3.2. Henceforth,
we thus assume s, 3"c &, Ns" =g and s”" #¢. Let® ={cecEF;s'Uce
B, enNs' =¢land @ ={{e&;s'Ule’,{Ns" =4 {Us"e&}. Obviously,
@' C @ are nonempty subcomplexes of Z and Z(s', s) = &\ @'. We now
apply Lemma 3.3 (i). Consider the decreasing filtration F" of Sd(@) by
subcomplexes F'é = {(¢ = --- = &;)€Sd(P); either £ ¢ @', or £ed and
dim ¢ =14}. Then F‘H'cCF?¢ F*"' = S8d(@\ @) and F° = Sd(®). Combining
Lemma 3.3 (i) and Lemma 3.4, we see that

i i+1 J—
HAENF R = $,Hj+i—1(Starc(¢), k) j=1.
Ced,
F° = Sd(®) is k-homologically trivial by Lemma 3.2, since @ contains the
smallest element ¢. Hence in view of the long exact sequences arising
from the inclusions Fi*'c F? we have thus reduced the k-homological
triviality of Sd(@\ @) = Sd(&(s’, s”)) to that of Star (@) for each {ec @'
For { € @', however, we have s’ UL, L U s"” e Star, (&), (S U NEUSs") =
¢, L Us"#C and Star,(®) = {¢ e Star(5); (s’ UL UgeStar, (&), eN(Us") =
{}. Thus replacing Star.(Z) by &, by ¢,s’ UL by s and L Us" by s”,
we have reduced ourselves to (ii) of the following:

LEMMA 3.7. For a convex rational polyhedral cone w, let 5 C I'(w)
be a d-dimensional k-spherical local subcomplex with the smallest element
6. For §',s"e& with ' Ns" = ¢, let

Zo(B) ={teE; s User}
Vow(B) ={6€B; 8 UseE, eNs’ =g} .
Then 7.,(B)C Z(8) are subcomplexes of 5 and we have:

(i) Z(5) is k-semispherical with respect to o = s'. In particular,
if 8"+ ¢, them ,(5) is k-homologically trivial.

(i) 7;.,(E) 1is k-homologically trivial unless s' = s" = ¢.

PROOF. The Fk-semisphericity of #/,(Z) is immediate by definition.
The second part of (i) was shown by Ishida, as we pointed out in (1.8).
We now prove (ii) by induction on the codimension of ¢ in Z. If it is
zero, then & = {¢} and there is nothing to prove.

Consider the increasing filtration 7 of %/,.(&) by the subcomplexes
7t ={er;sU¢cel dim(ns’) <. Obviously, 77'c it 7iime =
Vo o(8) and 77" = Z/,,(8). The complement 7'\ 7" is the disjoint
union of its subcomplexes {£€ 5;s' Ug e &, £N s’ =} with { running through
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the elements in =, satisfying s”>{ and s'U{ e 5. But these subcomplexes
coincide with 7;....(Star,(&)) = {¢ e Star (&); (s’ U Us e Star, (&), ens” =
¢} with s’ U, s” eStar,(5). If {+# ¢, then the codimension of { in
Star.(Z) is smaller. Hence by the induction assumption, we see that if
¢ # ¢, then 7., (Star.(Z)) is k-homologically trivial unless s’ U{ = s =
¢, i.e.,, s = ¢ and { = s”. Note that Star,(Z) is k-spherical by (1.8).

Thus if s’ = ¢, the long exact sequences arising from the inclusions
-t yield the isomorphisms H.(%;.,.(8), k) = H(7 4™, k) > ... 5
H (74" k) = H(Z,(E), k), which vanishes by (i).

It remains to consider the case s’ = ¢. We have 774™" =%/ (8) = &.
Even in this case, the long exact sequences arising from the inclusions
it ¢ yield the isomorphisms H.(%;,.(8), k) = H(7 %™ k) > ... 5
H (7Y k) as well as the long exact sequence --- — Hy (79"~ k) —
H,E, k) — H;(Star,.(8), k) — ---, since for s’ =¢ and { =s", we have
V2oe.(Star(8)) = Star,.(5). Since Star,.(Z) is k-spherical, we see that

k j=d=dim5&

.HE,k:HJSt s/IE,k:
#5 ) (Star,(5), k) 0 otherwise .

Moreover, the induced map H,(Z, k) — H,(Star,..(Z, k) is an isomorphism
by a result of Ishida, as we pointed out in (1.8). Hence we are done.

PrOPOSITION 3.8. For a Z-basis {m,, ---, m,} of M, let @ = R.ym, +
«or + Rogm, and let B C I'(w) be a d-dimensional k-spherical subcomplex.
By freely identifying the elements of I'(w) with the subsets of {1, - - -, r}
as in (1.9), let 5'(s', s"") = {ce &;s'Use B, eNs’ = ¢, £Us"\{l} ¢ & for some
les"} for §',s" el'(w). On the other hand, let

OF, 8" ={ceTe>8,6Us"\{l}e&E for all les"}.

Then we have a canonical isomorphism

Hi(SA(E'(s', 8"), k) = H,_{0(s', s"), k) .

ProoF. For simplicity, let ¥ = {{e&; { > s, LUs"\{l} ¢ 5 for some
les"y and ' ={ne&;n>s,nNs" =¢ nUs'\{l}¢Z for some les"}.
Then ¥’ is a subset of 5'(s’, s’) with the order preserving retraction p
sending € &'(s’,s”) to p(¢) =s Ug&>&  Hence by Lemma 3.1 (1),
H (SdT"), k) is isomorphic to H (SA(5'(s', s'")), k). On the other hand, ¥’ is
a subset of ¥ with the order preserving retraction p sending {e¥ to
() = {\s" <. Hence by Lemma 3.1 (2), H(SA(¥"), k) is isomorphic to
H (Sd®), k).

Thus H (SA(E'(s’, s")), k) is isomorphic to H (Sd(¥), k). But obviously,
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@ = @(s, s") is a subcomplex of d-dimensional k-spherical Star,(Z) with
the smallest element s’ and ¥ = Star,(5)\@. Hence by Proposition 3.5,
we are done.

4, The proofs of Theorem 2.1 and Corollary 2.2. Compared with
those of Theorems 2.3 and 2.4, the proofs of Theorem 2.1 and Corollary
2.2 are much simpler.

Le Ecl'(w) be a subcomplex for a convex rational polyhedral cone
w. Let us simply denote Y(&Z) by Y. By Proposition in (1.13), we have
a canonical isomorphism %, ;proj lim,.: &), where, moreover, the
transition homomorphisms on the right hand side are all surjective. On
the other hand, in view of Proposition in (1.12), the restriction map for
& ne”Z with £ > 7 induces a homomorphism

Oy (—log D(&)) — Oy (—log D)) ,
hence we have the projective limit
proﬁjJim Oy (—log D(8)) .

Since an element in this limit gives rise to a compatible system of k-
derivations on the projective system {7 }ccs, We obviously have a
canonical homomorphism

pr?gslim Oy (—log D(g)) — Qf%k(ﬁy) ’

which is easily seen to be injective by the surjectivity of <% — %, for
all ce&.

We now prove that (1) in Theorem 2.1 implies the isomorphy of the
canonical homomorphism above. It suffices to prove the corresponding
assertion on the ring level. Let us denote P =k[M N w], J = J(&) and
S = S(Z). Then q(&) = p(&)/J is the prime ideal defining V(£) in Y, where
pE) = k[MNw\Mn¢g]. Obviously, q(&)’s with ¢ running through the
maximal elements of & are exactly the minimal prime ideals of S. It is
well known that a derivation automatically preserves each minimal prime
ideal. On the other hand by (1), each ne & is the intersection of the
maximal &’s in & with £ > 7. Hence we have q(%) = > q(¢) with the
summation taken over the maximal elements ¢ in £ with ¢ >%. Thus
a k-derivation 6 of S preserves q(%) for each 7€ Z, hence induces a k-
derivation 4, of S/q(®) = k[M N n]. By definition, the ideal defining D(%)
in V(n) is N (q€)/q(n)), where { runs through the elements of & with
7 > and dim»n — dim{ = 1. Hence 4, automatically is a k-derivation
with logarithmic zeros along D(%), and we are done.
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We next show that (2) implies (1). Let 7 be an element of 5. We
prove (1) is satisfied by induction on dim . If » is maximal in &, then
there is nothing to prove. If it is not, then by (2), either (i) there
exists £e€ 5 with £ > 7 and dim¢ — dim» = 2 or (ii) there exist distinet
7, 7" el with 7" >, 7" >7 and with dim%’ —dim» =dim %" — dim» =1.
But in case (i), there certainly exist faces 7’ and 7" of ¢ satisfying the
properties of (ii). Thus we are in case (ii) anyway. Then obviously,
7 =7n"N7". Applying the induction hypothesis to 7’ and 7", we are done.

It remains to show that the isomorphy of the canonical homomorphism
implies (2). Suppose there exists 7€ Z such that Star,(Z) consists of 7
and £=7. Then we necessarily have dimé — dim7n = 1, and U =
Vie)NU.V (), with { running through the faces of ¢ different from & and
7, is an affine open set of Y (ef. [MO, (5.5)]). Under the bijection
Star, (I'(w)) =5 I'(w +R) in (1.7), however, Star,(Z) is sent to {R7, £+ R7n}.
Hence U is easily seen to be isomorphic to the product of the affine line
and an algebraic torus. Obviously, the restriction to U of the canonical
homomorphism is not surjective.

We now prove Corollary 2.2. The second isomorphism follows easily
from Lemma in (1.13). Thus it suffices to show that (2) of Theorem 2.1
is satisfied if Z is d-dimensional k-Cohen-Macaulay and if H,(Star,(Z), k) +
0 for any B8€&;_,. Let 7 be an element of Z. If dim# = d, then there
is nothing to prove. If dimzn < d — 2, then there exists a €&, with
a > 7 by the equidimensionality. Then there exists at least one ge &, ,
with @ > 8 > 7. It remains to consider the case dimn =d —1. If the
cardinality of Star,(5) were two, then it would consist exactly of » and
ac X, with a« > 7. Thus H,(Star,(5), k) = 0, a contradiction to the as-

sumption.

5. Homogeneous components of the hyperextension modules. As a
preparation for the proofs of Theorems 2.3 and 2.4 in the next section,
we reduce the computation, reviewed in (1.14), of the hyperextension
sheaves in question to that of certain combinatorial cohomology groups
with coefficients in k.

Throughout, we fix a Z-basis {m,, ---, m,} of M and the nonsingular
convex rational polyhedral cone w = R.m, + --- + R.;m,, which thus
satisfies w N (—®) = {0}. As in (1.9), we freely identify ¢eI'(w) with
the subset {1; 1 =< ¢ < r, m;€&}. Thus, in particular, ¢ = {0} is identified
with the empty set. The advantage in the nonsingular case lies in the
fact that for & 7 e I'(w), there exists a unique 7' € I'(w) satisfying ¢ =
Enm U and N Ny ={0}, i.e.,, 7 is the set-theoretical difference
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&\ 7 in the above identification. Henceforth, we always denote 7’ by &\ 7.
The advantage also lies in the fact that P =Ek[M N w] = k[t, -, t,] is
a polynomial k-algebra, where t, = ¢(m,). Thus we can apply the compu-
tation process described in (1.14) to this P.

We also fix a subcomplex & c I'(w) and simply denote J = J(&) and
S = S(8) = P/J.

DEFINITION. For nel'(w), we denote by || the cardinality of \
and let m(\) = 3;c;m,. For meMnN w, let supp(m) ={1;1<i< 7,
{m, n;y # 0}, where {n,, ---, n,} is the Z-basis of N dual to {m,, ---, m,}.
The canonical decomposition for m € M is the unique expression m=m'—m"
with m’, m"” € M N w such that supp(m’) and supp(m’’) are disjoint.

In particular, we have supp(m(\)) = .

DEFINITION. For simplicity, we denote by 4 = I'(w)\&Z the com-
plement of & in I'(w). We denote G = M N w and G' = U..-(M N &).

Hence {m(\)},. - generates the semigroup ideal G\ G’ of G, i.e., G\ G'=
{meMn w; supp(m) ¢ B} = Ui« (m(\) + G). Thus {e(m(\))}:., generates
J as an ideal of P.

PROPOSITION 5.1. For ¢ =0, let F, be the M-graded free P-module
with the basis Sd,(4) and with (\ = --- = \,;) €Sd,(4) regarded as M-
homogeneous of degree m(\,) for © =1, while ( ) eSd,(4) is regarded as
M-homogeneous of degree 0. For ¢ = 1, u,_: F;,— F,_, is the homomorphism
of M-graded P-'m,odulels of degree 0 defined by wu, (M= -+ =\)) =
Dusisia (DO = Vs 20+ (D e(m N\ Ns)) (v F s = M) for
M=o =0 tn Sd,(4). The augmentation homomorphism u_;: Fy— S
18 defined by w_,(( )) = 1. The homomorphism v: F,— 2% is defined by
(V) = DieemON\{t})de(m,) for (\) in Sd,(4), where d is the exterior
differentiation for P. The homomorphism w': A\*F,— F, 1s defined
by w'((W) A (1) = e(m\)) () — e(m(p)(\), for (N), (#) €S8d,(4). Finally
w: N°F,— F, is defined by w(() A ) =emOhnw){d<xUp —
(e < MU}, for (), (1) €Sd,(4), with the convention that (L < AUp) =0
(resp. (< AU L) =0)tf N=1U g (resp. if p=nU ). Then u_, v, w, w'
are M-homogeneous of degree zero by letting deg de(m,) = m, and deg () A
(1) = m(\) + m(y), and we have the following:

(i) (F,u)={F;, u; t =0} is an acyclic complex of P-modules with
u_, tnducing the isomorphism H,(F', w) 58, ie.,

-—>F,->F, ,—-+-.- > F, -F,—-S—0
18 exact.
(ii) SRrv:SQRprF, > SRp 0% factors through the canownical S-
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homomorphism J[J* = SQpJ — S Rp 2%.

(iii) u,ow = w'.

Proor. (ii) and (iii) are trivial. Let us show (i). The fact u,_ou;, =
0 for ¢ = 1 results from a straightforward computation. It suffices to
check the acyeclicity for the homogeneous part of degree m for each
meM. If m¢G, then the homogenous parts (F,), and S, vanish.
If meG’, then we have (F)), = ke(m)( ), S, = ke(m) and (F,),, =0
for 7 =1, and w_, induces an isomorphism. Finally if meG\G,
then S, =0, while for +=0, (F)), is the k-vector space with
the basis consisting of {e(m —m(A)M = - TN); (= - S N)€E
Sd,(4), n,csupp(m)}. Itisobviously k-isomorphic to C,(Sd(A N I'(supp(m))), k)
by sending e(m — m(\)(n = - S a) to(h = -0 £ 0). Checking (%,),,,
we see easily that (F', u.), is isomorphic to the complex C.(Sd(4N
I'(supp(m))), k). Since m € G\G’, we see that supp(m) is in 4, hence AN
I'(supp(m)) has the largest element supp(m). Thus by Lemma 3.2, we
are done.

Since P is a polynomial k-algebra, F,=P and F, - F,—S—0 is
exact, we can apply (1), (2) of (1.14).

LEMMA 5.2. Let B = (0B S B 5 B % B 0) be the cochain
complex of M-graded S-modules defined as follows: E°= Homp(2%, S),
E' = Hom,(F,, S), E*=Hom(F,, S) and E*=Hom,(F,P A*F,, S). More-
over, 0: B' — K™ for 1 =0,1, 2 are the homomorphisms induced respec-
tively by v, w, and (U, w): FsP N* F, > F,. Then we have

Exti(LS, S) = H(E) for i=0,1,2.

Proor. Ext{(L®, S) = Der,(S) = Homy(2%, S) is well-known to be the
kernel of Homp(2%, S) — Homp(J, S), while Exti(L5, S) is its cokernel by
(1.14) (1"). By Proposition 5.1 (i), (ii), #, induces an isomorphism from
Hom,(J, S) to the kernel of u}: Hom,(F}, S) — Hom(F,, S).

Finally, let Kosz be the Koszul complex built out of u,: F, > J( )C
F,= P. Then by (1.14) (2), we see that Ext%(L5, S) is the cokernel of
Hom,(F',, S) —» Hom,(H,(Kosz), S). By Proposition 5.1 (i), H,(Kosz) =
ker(u,)/Image(w’) = Image(u,)/Image(w’). Since Image(u,) is isomorphic
to coker(u,) again by Proposition 5.1 (i) and Image(w’) is a quotient of
A*F,, we are done in view of Proposition 5.1 (iii).

DEFINITION. Let I'(w), 5, 4 be as at the beginning of this section.
For disjoint s, s € I'(w), we define the cochain complex A" = A'(5, §', s”)
of k-vector spaces as follows: A* =0 for7 =+ 0,1,2. A°consists of such
k-valued functions @ on {1, ---, »} that a(j) #+ 0 only if {5} > s” and s’ U
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({s1\s")e 5. A’ consists of such k-valued functions b on Sd,(4) = 4 that
b(\) # 0 only if A > s” and sU(W\Ss")e 5. A? consists of such k-valued
functions ¢ on Sd,(4) that ¢(\, = X,) %0 only if », > s” and sU(N\,\8") e
5, that c(v = M) = (M = N) for (M = M), (M = N) €8dy(4) if A, # s and
M F 8", and that the cocycle condition ¢(h, = Ny) — ¢y = Ng) + 6N S Ny) =
0 is satisfied for all (A, = Ny = N\,) € Sdy(4) with A, > 5" and s"U(\,\s") e
H. 0:A— A' sends ac€ A° to da e A' defined by

2ia(g) if x>s" and SSUONNS")eE
a0 = |

0 otherwise .

0: A' > A* sends be A' to 6be A* defined by

b(x,) — b(N,) if N >8" and sUMN\S§")eZ

o)\ =Ny =
(0D) (N = N) {0 otherwise .

With these definitions, we have:

PROPOSITION 5.3. For m € M with the canonical decomposition m =
m' — m', let s’ = supp(m’) and s = supp(m’’). Then for i =0,1, 2, the
homogenenous part of Exti(LS, S) of degree m is of the form

0 if m' #= m(s")
Hi(A(&, s, s")) if m' =m(s").

ProOOF. By Lemma 5.2. it is enough to study the homogeneous part
of H(E"). As usual, for M-graded P-modules F, F’ of finite type, let
us regard Hom,(F, F’) as an M-graded P-module by letting f: F — F’
to be homogeneous of degree m if f(F,) c F,,, for all e M. Since
S, = ke(m) if meG and S, = 0 otherwise, we see that E: consists of
the homomorphisms a sending de(m;) to a(i)e(m + m;) for 1 < 7 < r with
a(t) €k, where a(i) #0 only if m + m,eG’. E. consists of the homo-
morphisms b sending (\) € Sd,(4) to db(\)e(m + m(\)) with d(\) €k, where
b(\)#0 only if m+m(\) € G'. E2 consists of the homomorphisms ¢ sending
N = N €8dy(4) to ey = Ny)e(m + m(n,) with e(h, = \,) €k, where c(\, =
\,) #= 0 only if m + m(\,) €e G’. Finally, E; consists of the homomorphisms
h sending (A, = M = Ny) €Sd,(4) to AN, = Ny = N)e(m + m(\,) with A\, =
N2 = Ng) €k, where A(A = N, = Ny) # 0 only if m + m(\;) € G’ and sending
M)A () to h(OW) A ())e(m + m(\) + m(p)) with h((M) A () €k where
h(N) A (1) # 0 only if m + m(\) + m(¢) € G’. Thus obviously Ej =0,
hence H/(E"), =0 for 5 =0,1, 2, if m" # m(s"”). Henceforth, we thus
assume that m” = m(s”). Then by the definition of the canonical decom-
position, we see the following: (i) m + m,e€ G if and only if {i} > s”

Exty(L?, S)n = {
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and s’U {i}\s")e&. (i) m + m(\)eG if and only if > s"” and s'U
W\s")eH. (iii) m+m\)+m(p)e G if and only if AUg>s"and s UMD ) U
WUpuN\s")eE. Hence we see easily that E) — A° and E. — A' sending
a and b to their respective coefficients @ and b are isomorphisms com-
muting with §: E} — E. and §: A’ — A'. Moreover, Z*E"), consists of
¢ sending (A, £ \) €8dy,(4) to ce(h = M)e(m + m(\,) such that (iv)
(M = N\) = 0 only if A, > 8" and ' U (\,\8")eZ, that (v) ¢\ = \y) —
=) F e EN) =0 if (A = N = \;) €8Sdy(4) satisfies a, > s and
s" U\ s8"”)e & and that (vi) e(v < MUY = ¢e(t < AU ) if xUp > s"” and
sSUMNUNUENS)eF. We claim that (iv), (v), (vi) are satisfied if
and only if ¢ belongs to A*>. Then we would be done, since d: E, —
Z*KE"), is easily seen to correspond to 0: A'— A% If ¢ belongs to A%
then ¢ belongs to Z*E"),. Indeed, (iv) and (v) are obviously satisfied.
Let us show (vi). For (W) A () with xUpg>s"and s UAN L UNU
pN\s'"')e B, we automatically have )\ % s” and g% s”, since 4 is the com-
plement of Z. Hence )\, =, A = ¢ and A, = A U ¢ will do. Conversely,
if ¢ belongs to Z*E"),, then ¢ belongs to A% Indeed, in view of (iv)
and (v), it suffices to show c(A, = \;) = ¢\l = \y) if N, > 87, S"UN,\8") €
E, N Fs” and A F 8. If M, UN F 8", then e(h = 0) = (M UM EN) =
c(M =\,) by (v) applied to (A = M UM S A) and (M =M UM S M) in
view of (iv). Suppose M, Un; > s". If S UMNAMUMUMNST) =A"€F,
then we are done by (vi) with » =X, and g =2. It remains to
consider the case N, UM > s and \eA. We then obviously have s' U
N =AM UN F 87 and N F 87, since A, F 8" and \, > s”. Hence again by
(iv) and (v) applied to (A, < M UM S8 UN) and O < A UM = 8" UN),
we have ¢cOu, = UN) =M UM =8 UN) = ¢\ =8 UNy. Similarly,
we have e¢c(M =8 UN) =cM UNMZSUN) =c(M =8 UN). Hence
e 28 UN) =M =8 UN). We are done, since c¢(h, = \) = ¢\, =
s'U >‘42) - 0(7\12 <s'uU )\’2) and C()\,; é 7\12) = C()\,; § s"U )\'2) - C()\,g <s'u )\'2) by
(v) applied to (v =X < 8" UN) and (A = A, < 8" U Ny).

We now study H(A'(Z, ¢, s")) for j = 0, 1, 2 more closely. Note that
E(s’, s"”) in a more general context and &'(s, s”") below were already
defined in Propositions 3.6 and 3.8.

PROPOSITION 5.4. Let 5 C I'(w) be as at the beginning of this section.
For disjoint s, 8" € I'(w), we define local subcomplexes 5'(s', s'") c B(s', s")
of & by

B, 8" ={geH; s Ucer, enNs’' =¢,£6Us" ¢ 5}
', s ={eer;sfUeeB, ens’ =¢,6Us"'~{l}¢5 for some les"}.

Then we have the following, where we simply denote A" = A(5, §', s").

g
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(1) Ifs’¢5, then HI(A) =0 for j=0,1,2.

(2) If e & and s" = ¢, then HY(A) = A’ can be identified with
the k-vector space of k-valued functions on {i; 1 < i < r, s’ U {1} € 5}, while
Hi(A) =0 for =1, 2.

(8) If se€B and |s"| =1, then we have canonical isomorphisms

Hi(A) 5 Hi(SA(E(s', 8"), k) for j=0,12.
(4) Ifs'eZ and |s"| = 2, then H'(A') = 0, H(A") = ker[Z*Sd(=Z(s',

s")), k)ing‘(Sd(E’(s’, s"), k)] canonically, and the following sequence
rest

is exact: H'(SA(Z(s', s')), k) — HSA(E'(s', s")), k) — H*(A") — H*SA(&Z(s',
s"), k), where rest are the restriction maps induced by the inclusion
B'(s’, 8" C B(s, s").

Proor. (1) and (2) are obvious, since there exists, for instance, no
rMeAd with v > ¢ and sU(A\s")e Z in these cases. Here, as before, 4
is the complement of 7 in I'(w). Let us now prove (3) and (4). We
first observe that there is a homomorphism of cochain complexes

e: A — C'S8d(&(S, "), k)

defined as follows: If s” consists of one element ¢, then a € A° is deter-
mined by its value a(7). In this case, we let (°a)(( )) = a(¢), hence &°
is an isomorphism. If |s”| = 2, then obviously A° = 0 and we let & = 0.
For be A! and ce 42, we let

(e'0)(&) = b(& 1L s") for (£)eSd,(&(s', s"))
()& = &) = ¢(&, 1L s = & 18" for (¢, =¢)€ Sd.(&(s’, ")) .
It is easy to check that ¢ commute with the coboundary maps. We see
that ¢' is an isomorphism, since the map from Sd,(Z(s’, s”)) to {(\) € Sd,(4);
A > 8", " U(W\s") € &} sending (¢) to (\) = (¢ 1L s”) is bijective. We also
see that the image of ¢* is contained in Z*Sd(E(s’, ")), k).
Thus, using the snake lemma, we easily get an exact sequence
0— ZY(A") — Z*(Sd(5(s', s")), k) — ker (¢*) —» H*A")
— H*Sd(E(s, ")), k) .
We now show that the third and the fourth arrows can be identified
with
Z'(Sd(&(s', 8")), k) — Z'(SA(&'(s', ")), k) — H*(A") ,
where the arrow on the left hand side is the restriction map induced by

the inclusion. Indeed, by definition, ker(¢*) consists of such k-valued
functions ¢ on Sd,(4) that
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c E=N)#0 only if N F8", N >s8" and s'U(\,N\s8")eZF,
M EN) =M SNy if N F8” and A Fs”, and
M SEN) == N) 0 N F S, N >8" and N <,

Then we obviously have the required isomorphism ker(e?) — Z'(Sd (Z'(s’,
s"), k) by sending such ¢ to ¢ defined by

@ =cELE"\{IPY=eLs) for ce&(s,s"),

where [ is any one of the elements of s” satisfying & 1l (s”"\{l}) ¢ Z on
which the value of ¢ does not depend by the second defining condition
for ¢. We thus get (3) and (4). Indeed, the restriction map B(Sd(Z(s’,
s"), k) — B'(Sd(&5'(s', s")), k) is surjective. When |s"”| = 1, we see, more-
over, that Z'(s, s'') is empty, hence Z'Sd(Z'(s’,s”)), k) =0. On the
other hand, ¢ maps B'(A") onto B'Sd(Z(s’, s")), k) when |s"| = 1, while
BY(A") = 0 when |s"]| = 2.

COROLLARY 5.5. Let & C I'(w) be as at the beginning of this section.
For disjoint s, 8" € I'(w), the following are equivalent:

(1) H'(A(&,s,s")+0 only if €5 and s = 4.

(2) HSA(E(s, s"), k) = 0 whenever '€ & and |s"| = 1.

(8) Any s'€5 is the intersection of all the maximal elements £ € 5
satisfying & > s'.

PrROOF. By Proposition 5.4, (1) and (2) are equivalent. As we saw
at the beginning of Section 3, H°Sd(Z(s, s"”)), k) =0 if and only if
E(s’, ") is nonempty. Now by the definition of Z(s’, s”), the equivalence
of (2) and (3) is clear.

REMARK. We see easily that Corollary 5.5 is nothing but Theorem
2.1 in the special case when Y(Z) has the nonsingular normalization.

6. The proofs of Theorems 2.3 and 2.4 and Corollary 2.5. For the
proofs we may assume, by (1.9), that w = R.ym, + --- + R.;m, for a
Z-basis {m,, ---,m,} of M and that Zcl'(w) is a d-dimensional k-
spherical subcomplex (cf. (1.8)). In particular, ¢ = {0} is the smallest
element of 5. We again fix these notations throughout this section and
adopt the convention at the beginning of Section 5, e.g., we freely
identify &€ I'(w) with the subset {i; 1 <7< r, m;e&. We also use the
notations in (1.11) for simplicity.

For the proof of Theorem 2.3, we first need to analyze the conse-
quences of Section 5, when & is k-spherical. In this case, H'(A'(Z, ', s”)) #
0 only if se & and |s"’| = 2, by Propositions 3.6 and 5.4.
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LEMMA 6.1. Let EcCl'(w) be as above. For s’'e€’5 and s"el'(w)
with |8"| =2 and s'Ns" = ¢, we have H'(A'(E,s,s") =k if s and s”
satisfy the following equivalent conditions (i), ("), (ii), (iii) and (@{v).
Otherwise, we have H'(A'(Z, s', s'")) = 0.

(i) E&'(¢,s") is empty, i.e., for any l€s” and any €5 with s’ U
g€l and £¢Ns" = ¢, we have £ U (8"'\{l}) € 5.

(i) For any ne& with 7 > s and for any les”, we have nUs"\
{l}ek&.

(ii) For any acE; with a > s', we have [s”"\a| = 1. Moreover, if
|s"\Na| =1, then a Us"\{j}€e& for any jeans".

(iii) We have dims’' < d — 1. Moreover for any B € E,_, with B > §,
we have |s"\NRB| 2. If the equality 1is satisfied and s”"\B={j, 7'}, then
a=pRU{j} and o’ = BU{j'} are exactly the d-dimensional cones in E
containing B as a face. Moreover, in this case we have BN s" < {l€p;
v(8\ (1)) = 8}.

(iv) FEither (1) we have dims' =d — 1 and s = {j, j'} with a = s'U
{3}, &' = 8" U {4’} being exactly the d-dimensional cones in E containing
s’ as a face, or (2) dims' < d — 2 and we have the following: For any
Y€ By, with v>s', we have |s" \7v|<83. If |s"\v|=3 and s"\v={7, 7', 7"},
then mecessarily v(y) =38 and B=~vU{j}, 8 =~ U{'}, B =vU{j"} are
exactly the (d — 1)-dimensional cones in 5 containing v as a face. If
|s"\v| =2 and s"\7v =17, j'}, then either v(y) =38, or v(y) =4 with
B=7U{i}, 8 =vU{j}e& and BUB ¢E.

COROLLARY 6.2. If 5 and §',s” satisfy the equivalent conditions
(i) through (iv) im Lemma 6.1, then we have the following: dims' < d—
1. For geE&,, with 8 > s and |s"\B| = 2, let a, &’ be the d-dimensional
cones in 5 containing B as a face. Then for d = 2, we have {l€p;
v(BN\{l}) =25} <" and (aUa’'\B) <s" < (aUa’\R)U{lepg; v(B\{l}) = 38}.
Furthermore if dims' < d — 2, then for any two B, 8’ satisfying these
conditions, there exist a sequence B = By, B, *-+, B, =B in Es, with
B: > 8, [8"\B;| =2 and a sequence v,, ---,v, in H,, with v;>s and
Bio1 > 7 < B; such that either v(v,) = 8 and |s"\v;| = 3, or v(v,) = 4 with
Bi-tUB:EE.

Proor or LEMMA 6.1. By Proposition 5.4, we see that H'(A'(Z, s,
rest

s")) = ker[Z'(SA(E(s', s")), k) — Z*(SA(5'(s’, ")), k)]. Since Z is assumed
to be k-spherical, we see by Proposition 3.6 that Z'(Sd(=Z(s, s"), k) =
B(Sd(5(s', §"), k) = k. By definition, rest is not the zero map if 5'(s’, s”)
is nonempty. Thus we have H'(A'(H, s, s”)) = k (resp. = 0) if 5'(s’, s”)
is empty (resp. nonempty).
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The equivalence of (i) and (i’) is clear, while (i’) = (ii) is obvious.
On the other hand, (ii) implies (i’). Indeed, for any neZ& with 7 > s’
and 7 Us"” ¢ 5, there certainly exists a € 5, with a > 7, since Z is equi-
dimensional. We then necessarily have a > s’ and a Us” ¢ 5. Hence by
(ii), we have s”"\a = {;j'} for some j'. Let jes”. If 7 =4, then pU
s'\{j}<aUs"\{j} =ac&. If j+#4, then jeans”’. Hence by (ii) we
have n Us"\{j} <a Us"\{jlesz.

Let us show (ii) = (iii). First of all, we have dims’ < d — 1. Indeed,
since |8”| = 2 and s'Ns” = ¢, we would otherwise have dims’ = d and
|s”\s'| = |s"| =2, a contradiction to (ii). For any ge &, , with 8> ¢,
let @ # a’ be the d-dimensional cones in & containing B as a face. If
a>s" or o >s", then |$"\B]<1. We may thus assume aUs”"¢5
and a’Us” ¢ 5. Hence by (ii) there exist j, j/es” with s”\a = {5’} and
s"\a’' = {j}. Since ana’ =B, we have s"\g ={j,5}. If j =75, then
there is nothing further to prove. If j =+ 5/, then jea and j ed'.
Consequently, &« = B3U{j} and &’ = gU{j’}. Furthermore for le gNs", let
v=B\{l} be v-valent. If v =4, then there certainly exists d-dimensional
a' > v different from «, @’ with a” 35 but a” 35/, 1. Hence s”"\a” =
{5/, I}, a contradiction to (ii).

Let us now show (iii)= (iv). If dim s’=d—1, then since [s”|=2 and
s'Ns"’ = ¢, we have |s""\s'| = |s"| = 2 by (iii). Thus we obviously have
(iv) (1). Now suppose dims’'<d—2. LetyeZ&, , with v>s" be v-valent.
If |s”\v| =4, then for any one of the (d — 1)-dimensional B > v, we
have |s”\ G| = 3, a contradiction to (iii). Now suppose |s”\v| =3. Then
for any one of the (d — 1)-dimensional cones B > v, we necessarily have
|s”\B|=2. Hence v should be 3-valent. Finally, suppose |s""\7|=2 with
s”"~\v=1{j, 7). If v=38, then there is nothing more to prove. If v =4,
then v U {j, 5} € &, since otherwise there would exist @ > v with 33 7, 5/
and U {j}e&, BU(j'} ¢ 5, a contradiction to (iii). If » =5, then again
there exists 8 > v with B34, 5, 8U{jle&, BU{j'} ¢ &, a contradiction.

It remains to show (iv) = (ii). Let ae &, satisfya >s'. If a > s",
then there is nothing to prove. Thus we may assume aUs” ¢ Z. If dims'=
d — 1, thens” = {j, j} and a = s’"U{j}, say. Hence s"\a = {5’} and a U
s"\{j} = s’'U{j'}e&. Suppose dims'<d —2. Then there exists ve&,_,
with a>v>s’. Hence |s”"\7v|=|s"\a|]=1. Consequently if s”\v={j"},
then s\ a = {j'}. Since |s”| =2 and s’ N s" = ¢, there exists jeans”
with a\{j}>s’. Thus there certainly exists (d — 2)-dimensional v’ satisfy-
ing a\{j}>~">s, hence |s”\7'| = 2. Thus replacing v by v, we may
from the outset assume the existence of vye &, , with a > v > s’ and
|s”\v|=2. Then by (iv), either v is 3-valent, or is 4-valent with v U



TORUS EMBEDDINGS 373

s”¢X&. Since aUs”"¢Z by our assumption, we can easily check that
aUs'’'\{j}eZ& for any jeans".

PrROOF OF COROLLARY 6.2. The first part can be seen as follows:
For e &, , with g8 > s and |s” \RB| = 2, let a, &’ be the distinct d-dimen-
sional cones in 5 containing B as a face. Then by Lemma 6.1 (iii), we
have s > aUa’\gB. Let les with v = g\ {l} being v-valent. If les”,
then [ ¢ s’, hence v > s’ and [s”\v| =38. Thus v = 3 by Lemma 6.1 (iv).
Suppose v = 5. Then again by Lemma 6.1 (iv), we cannot have v > s’
Hence le5s’.

Let us now prove the latter half of Corollary 6.2. Let us call 8, 5’
with 3> s, 8" > s and |s"\B| = |s"\B'| = 2 equivalent, if there exist
a sequence 83 =0, --+, B3, =B in 5,;_, and a sequence v,, ---, 7, Iin H,;_,
satisfying the following conditions: B, > ¢, [$"\B:| =2, By > 7 < Bay
v > 8" and either v(v,) = 3 and |s"”"\v,| = 8, or v(v,) = 4 with B8,_,UB:; ¢ 5.
E. We need to show that any two g’s satisfying g8 > s’ and |s"\ B3| = 2
are equivalent in this sense.

Replacing & by Star,(&Z), we may assume s’ = ¢, hence d =2 by
assumption. We have £ = (pe &Z;9Us" ¢ 5} = E\@, with & = {ye 5; U
s"eE&}. If ¢5&, then @ is empty. If s” e &, then @ is k-semispherical
with respect to s”’. Since s"” # ¢, @ is k-homologically trivial (cf. (1.8)).
On the other hand, 5 is k-spherical, hence H,(Z, k) = k. Moreover, for
any ge 5, ,, there exist exactly two a, o’ €5, with a > g < o', since
£ is star closed in the k-spherical Z. Thus for any g, B'ng_l, there
exist a sequence B =4, -+, 3, =R in Z, . and a sequence «,, - -, @, in
Z, such that B, , < a, > B,. Note that d > 2 by assumption and that
v(B"\{l}) = 8 or 4 for any 8" ¢ 5, , and any | € 8" satisfying |s""\3"| = 2.
We are thus reduced to showing the following (1) and (2):

(1) If 8,8, a in & satisfy g<a>p and |s"\3|=|s"\8'|=2, then
B and B’ are equivalent. Indeed, if 8+ B, then v = BN B’ is 3-valent by
Lemma 6.1 (iv), since |s""\v| = 3. Hence |s""\\v| = 3, and B is equivalent
to B’

(2) If a,a', 8" in 5 satisfy a = a’,a > 8" < o' and |s"\g"| # 2,
then there exist 3 < a and B’ < &’ with [s”"\ 8| = |s”\ 3’| = 2 such that
B and B’ are equivalent. Indeed, since |s”\a| = |s”"\a’| = 1 by Lemma
6.1 (ii) and |8\ B3"| # 2, we necessarily have s"\a = s"\a’ = s"\B" by
Lemma 6.1 (iii). Since |s”| = 2, there thus exists jes”" N B". Let v=
B'\{j}. Then vUs”" = g"Us" ¢ 5 and |s""\v| = 2. Hence by Lemma 6.1
(iv), we easily see that v(vy)=4. Then certainly, 3=a\{j} and g’'=a’'\{j}
satisfy |s”"\B| =1]s"\G8'| =2 and g U B ¢ &, hence they are equivalent.

PrROOF OF THEOREM 2.3. By (1.9), we may assume 5 c I'(w) to be
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as at the beginning of this section. Let us work on the ring level for
S = S(&). By Lemma 5.2, we have Ext}(LS, S) = H(E"). Let {(\)*; ve 4}
be the P-basis of (F,)* = Hom,(F,, P) dual to the P-basis Sd,(4) of F.,.

For e &, ,, let a, a’ € 5; be the distinct cones satisfying « > 8 and
o' > B. Then e(m(a U ') is an element of J = J(Z). Thus we have a
degree zero homomorphism of M-graded P-modules Pe(m(a U a')) —J,
which has the lifting Pe(m(a U a')) — F, sending e(m(a U ') to (o U a').
Consider the induced homomorphisms P/p(8) ®s Z(E") = Homp(J, P/p(B)) —
PIp(8) ®p B* = Homy(F,, P/p(8)) — Homy(Pe(m(a U &')), P/p(B)), the term
on the extreme right hand side of which is a free (P/p(8))-module of
rank one with the basis h(8) defined by A(B)(e(m(a U«'))) = 1. Thus
deg h(B) = —m(a U ') (cf. the beginning of the proof of Proposition 5.3).
Obviously, the homomorphism P/p(3) Qs E° = Homp(2%, P/p(G)) — Homp(J,
P/p(B)) composed with the above homomorphisms gives the zero map.
Thus we have homomorphisms P/p(8) ®s H'(E") — P/p(R) Xs E*/B'(E") —
(P/p(B)h(B). The image of the composite homomorphism is contained in
(PIp(B))g(B), where g(8) = e(m({l € 8; v(8\{1) = 4)) + m({l € 8; v(B\{1)) =
5}))h(B). Indeed, by Propositions 5.3, 5.4 and 3.6, the image of the first
homomorphism consists of the k-linear combinations of elements of the
form

S, em)emE@)L® ¢ 15",

§eb(s’ys

with |s”| = 2 and supp(m’) = s’, where 1 is the unit element of P/p(R).
Moreover, s’ < 3 and & < B should be satisfied. The element e(m’)e
(mE)A ® (& 1L s")*) is mapped to a nonzero element of (P/p(B))h(G) only
if ells"<aUa and aUa’\(¢ 1L 8") < 3. Then we have B3¢ 15" <
BUs" < aUa’, hence BUs" = aUa’ and |s”"\B| = 2. Thus by Corollary
6.2, we necessarily have {{eg; v(B\{[}=5})) <s'<B and aUa’'\B<s" <
aUa'\{leB; v(B\{l})=4}. The element e(m’)e(m(&))(1 ® (¢1.s")*) is then
mapped to e(m)e(m(g))e(m(a U a’'\¢ 1L s")h(B) = e(m )e(m(a U a'\s")h(B),
which is thus a multiple of ¢(B).
Consequently, we have a homomorphism
HYE)— @ G@),
Besg_y

where G(B) = (P/p(B))g(B). Obviously, the <-module associated to G(g)
is £(B). On the other hand, the <*,-module & (v) for v € 5,_, is associated
to the S-module G(v) described as follows: If v(v) =4 and if B, B,, Bs
B> are distinet with B, Ug;, 8. UB, ¢ 5, then < (v, B,) is associated to the
free (P/p(v))-module G(v, B;) of rank one with the base g(v, B;) satisfying
deg g(v, B) = deg 9(7, 8;) = —m(B, U B,) and deg g(v, B.) = deg g(7, B,) =
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—m(B3, U B;). Similarly, if v(y) = 8 and if 8, B3, B; > 7 are distinct, then
< (v, B;) is associated to the free (P/p(v))-module G(v, B;) of rank one
with the base g(v, 8,) satisfying degg(v,8) = —m(B, U B, UBy). Then
the S-module G(v) is defined exactly as in the case of Z(v). G(v) =0
for v(v) = 5.

For v(v) = 4 and 8 > v, we easily see that the (B8, v)-component of
the homomorphism ¢ in Theorem 2.8 is induced by the map sending
9(B) to e(m({l € B; v(B\{}) = 5}) + m({l e v; v(B\Al}) = 4}))9(7, B), since {L €
B8; v(B\A{l}) # 4} is obviously contained in . Similarly for v(y) = 3 and
B > v, we see that the (8, v)-component of the homomorphism ¢ is induced
by the map sending g(B) to e(m({l € B; v(B\{l}) = 5}) + m({l e B; v(B\A{I}) =
4N)g(v, B), since {l € B; v(B\{l}) = 4} is contained in 7.

For each meM, let m = m’ — m"” be the canonical decomposition
with s’ = supp(m’) and s” = supp(m’). Then by Proposition 5.3 and
Lemma 5.2, we have Exti(L? S), = H(E"), = H(A(&,s',s")) if m" =
m(s”), and is zero otherwise. By Propositions 3.6 and 5.4 and by Lemma
6.1, we have H'(A'(H,s',s")) =k if and only if s'eZ, |s"| = 2 and the
equivalent conditions (iii) and (iv) of Lemma 6.1 are satisfied. Otherwise
it is zero. Thus by Corollary 6.2, we see that the homogeneous com-
ponent of degree m of

0— H'(E") - ® G — @ G

€8q-1 Tefg—
is exact and we are done.

PrROOF OF THEOREM 2.4. Let us work on the ring level S = S(&).
For meM, let m = m' — m” be the canonical decomposition with
supp(m’)=s" and supp(m')=s". By Proposition 5.3, we have Ext%(L5, S),,=
H*A'(E, s, ")) if m"” = m(s") and is zero otherwise. Since Z is k-spherical,
we have HYSdA(Z(s’,s”)), k) =0 for 7 = 1,2 by Proposition 3.6. Hence
by Proposition 5.4, we have H*A'(Z, s, s"") = HSA(&'(s', s'")), k) if '€ &
and |s”|=2 and is zero otherwise. We are done, since H'(SA(Z'(s", s"")), k)=
H, (®(s', s"), k) by Proposition 3.8.

PROOF OF COROLLARY 2.5. By Theorem 2.4, we need to compute
H, (&(s',s"), k) for s’€ 5 and s"” € ['(w) satisfying s'Ns” = ¢ and [s”]|=
2. The result (1) for d < 1 is obvious.

(2) If d =2, then 4 is a decomposition of the circle into » ares by
the vertices 1,2, ---, » arranged in this order. H,(®(s',s”), k) vanishes
if s" #= ¢, by the result (1) applied to Star,.(Z) in view of (1.7). Moreover
@(p, s"”) is empty if |s”"| = 3. Thus we need to look at H,(D(g,s”), k)
when |s”| = 2, which, by an easy computation, is seen to be nonzero if
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and only if s” = {7, j} with j —7¢%#0, =1, £2 (mod ). Such s” exists
only when » = 6.

(3) If d=3, then 4 is a triangulation of the 2-sphere. H,(®(s’, s'"), k)
vanishes if |s’| = 2 again by (1) applied to Star,(&). If |s'| = 1, we see
that H,(@(s, s")), k) vanishes for all s” if and only if v(s’) <5 by (2)
applied to Star,.(%).

Thus we first show the following:

PROPOSITION 6.3. There are exactly eleven combinatorially different
triangulations 4 of the 2-sphere with only five or less edges being incident
to each vertex. Their stereographic projection onto the plame from omne
of the wvertices look like the diagrams in Figure 1 immediately after
Corollary 2.5.

ProOOF. Here is a sketech of the proof. Let 4, be the set of the
vertices of 4. Let us call v € 4, v-valent and write v(y) = v if there are
exactly v edges incident to the vertex . Depending on the cases, let
us choose an appropriate v,€ 4, and let v, ---, v,€ 4, be the vertices
adjacent to <, in this ecircular order. Then the triangles in 4 not
containing v, and their faces, give rise to a triangulation 4’, not sub-
dividing the circumference, of the v-gon ~v,v,---7v,7.. At each vertex
v,, there are exactly v(v,) — 1< 4 edges of 4. Each interior vertex
ve 4 has v(y) £ 5 edges. Drawing the picture in each of the following
three cases, we can easily classify such 4.

Case (1). There exists a 3-valent v, in 4,. We thus have 3 < v(v,) =
o(v7,) < v(v,) 5. Then 4 is combinatorially equivalent to the following.

v(7,) =3 = [4-1]
v(r) =v(r) =4  =[5-1]
o(7) = 4,0(7) =5 =[6-2]
v(7) =5 = [7-5] or [8-14].
Case (2). There exists no 3-valent vertex but there exists a 5-valent
Y. Since v(y;)) =4 or 5 for =1, -..,5, we need to consider only the
following cases, by renumbering the vertices, if necessary.
v(7,) = v('\/z) =v(y,) = 4 = [7—1]
v(7,) = v(v,) = 4, v(v,) = v(v,) =5 = [8-13]
v(r) = v(7) =4, v(7,) = v(v,) =v(v) =5=[9]
v(7) = 4, (1) = v(7s) = v(v,) = v(7s) = 5= [10]
v(iy) =5 for all 1 =[12].
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Case (3). Every ved4, is 4-valent. Then [6-1] is the only possi-
bility.

PrROOF OF COROLLARY 2.5 CONTINUED. By Theorem 2.4, Proposition
6.3 and what we have seen so far, we have
et (LY, 7)) =0
if and only if 4 is among the diagrams in Figure 1 and satisfies
H,(9(¢,5"), k) =0 for |s"|=2.
For simplicity, we denote
O =0(,s)=1{ecHcUs"\{l}e&Z for all les"}

in the rest of the proof.
We may assume s”"\{l} € & for all [ €s”, since otherwise @ is empty.
Thus in particular we have 2 < |s”| < 4. We consider the following five
cases separately and prove the following:
H,(®, k) =0 if we are in
case (1) |s"| =4,
case (2) |s”| =3 and
case (3) |s”| =3 and
case (4) |s"| =2 and

~
~

fl)%\@l:
™ H D

oy Iy Iy
o
]

~
-

There exists some s with H,(®, k) # 0 in
case (5) |s”| =2 and s"¢ZX

if and only if 4 is [8-14].

Case (1). |s"| =4. Since s”"\{l} € Z for all l €s”, we see easily that 4
is [4-1] and @ = 5. Thus by the k-sphericity of Z, we have H,(®, k) = 0
(cf. (1.8)).

Case (2). |s""| =38 and s” € 5. Suppose there exists ve€ @, with v «
s”. Then 4 is [4-1], since s” €5 and vUs"\{l}€ & for all les”. Hence
® = 5 and we are done again. On the contrary, suppose every v e @, is
a face of s”. Then @ consists of all the faces of s”, since @ is a sub-
complex of Z. Thus @ is homologically trivial (cf. Ishida [I,, the comment
immediately after Corollary 2.3]).

Case (8). |s"| =8 and s"¢5. Let s" =~v, U, U~ with v, v, 75 €
Z,. Because of the conditions v, U, v.UYs, Y:UY, €5 and v,Uv, U7, ¢ &,
we see that there are only four possibilities [5-1], [6-2], [7-5] and [8-14]

for 4 (cf. Figure 2).
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% Ve " 72 " Ve
[5-1] [6-2] [7-5] [8-14]

FI1GURE 2

In case [5-1], we have & =27, hence we are done. In the other three cases,
let v, correspond to the vertex of 4 at infinity. Then @ coincides with
{eeE; £Uv,€ &}, which is k-semispherical with respect to v, hence is
k-homologically trivial (ef. (1.8)).

Case (4). |s"| =2 and s”"e&. Let s =~ U7, with v, v, in 5.
Clearly, @ contains ¥ = {¢€ &; s U&€ &Z}. Since obviously @, C %, there
are the following three possibilities.

(i) @ = %. Since this is k-semispherical with respect to s”, we
are done.

(ii) There exists v,€ @, not contained in %" Since we have v, U
Yoy Y2 U Y3y Ys Uv, €5 and v, U, U7, € &, we have the five possibilities in
Figure 3.

N
AN

" ’yz

[7-5]

FIGURE 3

Pl

In the cases [5-1] and [6-2]', we again have ® = 5 and we are done.
In the other cases [6-2]", [7-5] and [8-14], @ corresponds to a triangulation
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of a simply connected closed subset of the 2-sphere (the shaded part of
each of the diagrams). Hence @ is homologically trivial.

(iii) @, is contained in % and there exists B3€®, not in %. Let
B="U~v with v, v,eZ. We have v, U7 U7, 7.U7 U7, €E, since
B€®, On the other hand, we have v, U7, U7 7. U U7, €8, since v,
v, €0, Z. Furthermore, sUs" =v, Uv,U~v, U, €E, hence v, 7, Vs, Vs
are mutually distinct and 4 is [4-1]. Thus @ = Z and we are done again.

Case (5). |s""| =2 and s”¢ 5. Let ¥ be the subcomplex of @ defined
by¥ ={ce®; £Ns" = ¢}). Then we claim that there exists an isomorphism
H.(®, k) > H, (¥, k) for all i. Indeed, let @' ={¢e®;cU~v,e &} and 9" =
{eed;cUv,€E}. Since s"” ¢ 5, we see easily that @ =0'U@" and ¥ =@'N
@". In view of the Mayer-Vietoris exact sequence, it suffices to show
the k-homological triviality of @’ and @”. But, for instance, the map
U — @'\ 7 sending & in ¥ to £Uv, is bijective, hence so are the connecting
homomorphisms H,(@'\7, k)— H,_,(¥, k) in the long exact sequence arising
from the inclusion ¥ c @’. Hence @' is k-homologically trivial.

Thus it remains to pick up those 4’s in Proposition 6.3 for which
UV={eqens" =¢,&eUs"\{l} €& for all les"} satisfies the condition
H,(¥, k) = 0 whenever v, ,€ 5 and v, Uv,¢ Z. The vanishing of H,(¥, k)
means that either ¥ consists of ¢ only or corresponds to a triangulation
of a closed connected subset of 4.

We claim that each ve¥, is a face of some g3e¥, Indeed, since
YUY, YUYEE, wU7.¢5 and v(y) =<5, we have v(y) # 3 and there

i

%

i, ;

FIGURE 4
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exists v, 5, withvy U, Uv;, vyUv. Uv,€5,. Hence 8=vU~v,e¥, will do.
Thus if v(v,) = 3, then either ¥ = {g} or ¥ corresponds to a trian-
gulation of a closed connected subset. Hence H,(¥, k) = 0.
Furthermore, if H,(¥, k) + 0, then 4 is obtained by a triangulation
of the nonshaded part of one of the three possibilities, i.e., the first three
diagrams in Figure 4, where v, corresponds to the vertex at infinity.
In view of the condition v(v,) <5, the only possible triangulation for
which H,(¥, k) + 0 is the fourth diagram in Figure 4, which is easily

seen to be equivalent to [8-14].
Thus we have completed the proof of Corollary 2.5.
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