OPTIMAL SWITCHING PROBLEMS OF TANDEM TYPE

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

HlROAKI MORIMOTO

(Received April 13, 1982)

1. Introduction. In this article, we consider the stochastic switch ing problem of tandem type, related to optimal stopping. The model is described as follows.

Let X_i , $i = 1, 2, \dots, N$, be a sequence of measurable processes. For each sequence $\hat{T} = (T_1, T_2, \cdots, T_N)$ of N stopping times $T_1 \leq T_2 \leq$ T_{N} , we define the following process $X_{\hat{T}}$:

$$
X_{\hat{r}}(t)=\begin{cases} X_i(t) & \text{if}\quad T_{i-1}\leqq t
$$

where $T_o = 0$. Then the process $X_{\hat{T}}$ starts with $X_{\hat{T}}(t) = X_i(t)$ if $0 \le t \le T_i$ and it switches in tandem from X_i to X_{i+1} at the time T_i for $i = 1, 2, \dots, N$. The object is to maximize the profit:

$$
J(\hat{T}) = E\bigg[\int_0^\infty e^{-\alpha t} f(X_{\hat{T}}(t)) dt\bigg] \cong \sum_i E\bigg[\int_{T_{i-1}}^{T_i} e^{-\alpha t} f(X_i(t)) dt\bigg],
$$

where f is a given bounded measurable function and a strategy is the sequence \hat{T} of stopping times of switches. The problem is reduced to the optimal stopping problem when $N = 1$.

The content is as follows: In $\S 2$ we formulate the general switching problem of tandem type as Problem (I) in precise terms and we recall some results on the optimal stopping problem $[2]$, $[9]$ and $[12]$. In § 3, extending the Snell envelope in optimal stopping, we shall define the generalized Snell envelope. In §4 we show the existence of an optimal strategy by a constructive method. In $\S 5$ we give a necessary and sufficient condition for optimality, which is different from that of [4]. Finally, in $\S 6$ we give a penalty method ([1], [9], [12]) to find the optimal strategy from the computational point of view.

2. Preliminaries and formulation. Let (Ω, F, P) be a complete probability space equipped with an increasing and right-continuous family of $\text{sub-}\sigma\text{-fields } (F_t)_{t\geq 0}$ such that $\mathsf{V}_{t\geq 0} F_t = F$ and F_0 contains all null sets.

Let *W* be the Banach space of all right-continuous (F_t) -adapted processes X with its norm $\|X\| = \|\sup_t |X_t| \|_{L^\infty} < \infty$.

Now we formulate the switching problem of tandem type with finite steps.

PROBLEM (I). For a given positive integer N, let $(f_i(t))$, $i = 1, 2, \dots$, *N*, $N + 1$, be a sequence of processes from W with $f_{N+1}(t) = 0$. Let C be the class of all sequences $\hat{T} = (T_{1}, T_{2}, \cdots, T_{N})$ of N stopping times such $that$ $0 = T_0 \leqq T_1 \leqq T_2 \leqq \cdots \leqq T_N$. We define the profit:

$$
J(\hat{T}) = \sum_{i=1}^N E\bigg[\int_{T_{i-1}}^{T_i} e^{-\alpha t} f_i(t) dt\bigg], \quad \hat{T} \in C, \quad (\alpha > 0).
$$

Find an optimal strategy $\hat{T}^* \in C$, that is, $J(\hat{T}^*) = \sup_{\hat{r} \in C} J(\hat{T})$, and charac*terize its maximum.*

We give some results on optimal stopping problems which will be needed below. Let $X \in W$. A stopping time S is said to be optimal if $E[X_s] = \sup_T E[X_T]$, where the supremum is taken over all stopping times *T* and $X_{\infty} = \limsup_{t \to \infty} X_t$. There exists a right-continuous supermartin gale *Y,* called the Snell envelope, majorizing *X* and satisfying:

$$
\lim_{t \to \infty} Y_t = \limsup_{t \to \infty} Y_t = \limsup_{t \to \infty} X_t,
$$

$$
(2.2) \t Y_t = \operatorname*{ess\,sup}_{T \geq t} E[X_T | F_t],
$$

$$
E[Y_{\mathbf{0}}] = \sup E[X_T].
$$

Moreover, for any stopping time S,

$$
(2.4) \t Y_s = \operatorname*{ess}_{T \geq s} \operatorname*{sup} E[X_T | F_s], \t E[Y_s] = \operatorname*{sup}_{T \geq s} E[X_T].
$$

Suppose that *X* satisfies the additional hypothesis:

(2.5) For any increasing sequence of stopping times
$$
(T_n)
$$
 with limit
T, $E[X_{T_n}] \rightarrow E[X_T]$.

T

Then $D = \inf \{ t | X_t = Y_t \}$ is an optimal stopping time. Also, for any stopping time *S,* the stopping time *D(S)* defined by

(2.6)
$$
D(S) = \inf \{ t | t \ge S, X_t = Y_t \}
$$

is optimal, that is, $E[X_{D(S)}] = \sup_{x \ge S} E[X_x]$ *].* Furthermore, *Y* satisfies $(2.5).$

Next we give the penalty method, approximating the Snell envelope *Y* of *X* when *X* is of the form:

(2.7)
$$
X_t = e^{-\alpha t} f_t + \int_0^t e^{-\alpha s} g_s ds, \quad f, g \in W, \quad \alpha > 0.
$$

Note that Y can be rewritten as follows:

(2.8)
$$
Y_t = e^{-\alpha t} z(t) + \int_0^t e^{-\alpha s} g_s ds
$$

where $z(t) = \operatorname{ess\,sup}_{T\geq t} E\big|\, e^{-\alpha(T-t)}f_T + \big| \big|\, e^{-\alpha(s-t)}g_sds\, \big|F_t\, \big|. \quad \text{We define the }$ linear operators $(G_{\alpha})_{\alpha>0}$ from W into itself by

(2.9)
$$
G_{\alpha}x(t) = E\left[\int_t^{\infty} e^{-\alpha(s-t)}x_s ds \Big| F_t\right], \quad x \in W.
$$

Ga is one-to-one and satisfies the resolvent equation. Let *A* be the gener ator from $D[A]$ into W , defined by

(2.10)
$$
A = \alpha - G_{\alpha}^{-1}
$$
, $D[A] = G_{\alpha}(W)$,

where G_{α}^{-1} is the inverse of G_{α} . Let us consider the solution z^* of the penalty equation

(2.11)
$$
(\alpha - A)z^{\epsilon} - (f - z^{\epsilon})^{+}/\epsilon = g , \quad \epsilon > 0.
$$

Let V_i be the class of all progressively measurable processes $v = (v_i)$ such that $0 \le v_t \le 1/\varepsilon$. For $v \in V_\varepsilon$, we set

(2.12)
$$
J_i(v) = E\bigg[\int_t^{\infty} \exp\bigg(-\int_t^s a + v_r dr\bigg)(g_s + v_s f_s) ds\bigg|F_t\bigg].
$$

Then the solution z^{ϵ} is given by

$$
(2.13) \t\t\t zi(t) = \operatorname*{ess\,sup}_{v \in V_{\varepsilon}} J_i(v) .
$$

Letting $\varepsilon \downarrow 0$, we obtain that $z^*(t)$ converges to $z(t)$ almost surely for each $t \geq 0$.

3. The generalized Snell envelope. For each stopping time *S,* let $C_i(S)$, $i = 1, 2, \dots, N$, denote the classes of all sequences $\overline{T} = (T_{i-1}, T_{i})$ T_i , \cdots , T_N) of stopping times such that $S = T_{i-1} \leq T_i \leq \cdots \leq T_N$.

THEOREM 1. There exists a sequence $z = (z_1, z_2, \dots, z_N, z_{N+1})$ of right *continuous adapted processes z^t such that for each stopping time S and* $i = 1, 2, \dots, N$,

(3.1)
$$
z_i(S) = \operatorname*{ess\,sup}_{\overline{T} \in C_i(S)} E\left[\sum_{j=i}^N \int_{T_{j-1}}^{T_j} e^{-\alpha(t-S)} f_j(t) dt \middle| F_s\right],
$$

$$
(3.2) \t z_1(t) \ge z_2(t) \ge \cdots \ge z_N(t) \ge z_{N+1}(t) = 0 , \quad t \ge 0 ,
$$

$$
(3.3) \t\t e^{-\alpha} z_i \in W,
$$

122 H. MORIMOTO

$$
\lim_{t\to\infty}e^{-\alpha t}z_i(t)=0,
$$

(3.5)
$$
\left(e^{-\alpha t}z_i(t) + \int_0^t e^{-\alpha s}f_i(s)ds\right) \text{ is a supermartingale,}
$$

$$
(3.6) \qquad e^{-\alpha t} z_i(t) = \operatorname{ess} \sup_{T \geq t} E\bigg[\bigg]_t^T e^{-\alpha s} f_i(s) ds + e^{-\alpha T} z_{i+1}(T) \bigg| F_i\bigg],
$$

$$
E[z_1(0)] = \sup_{\hat{T} \in C} J(\hat{T}) .
$$

Proof. We define inductively $z = (z_{\scriptscriptstyle 1}, z_{\scriptscriptstyle 2}, \, \cdots, \, z_{\scriptscriptstyle N}, \, z_{\scriptscriptstyle N+1})$ as follows: we set $z_{N+1}(t) = 0$, and if $z_{i+1}(t)$ is given, we define \hat{z}_i by

$$
e^{-\alpha t}\widehat{z}_i(t)=\operatorname*{ess\;sup}_{T\geq t}E\bigg[\bigg]_t^Te^{-\alpha s}f_i(s)ds+e^{-\alpha T}z_{i+1}(T)\bigg|F_t\bigg].
$$

Since the process $(e^{-\alpha t}\hat{z}_i(t) + \int e^{-\alpha s}f_i(s)ds\hat{)}$ is the Snell envelope of the process $\left(e^{-\alpha t}z_{i+1}(t) + \int e^{-\alpha s}f_i(s)ds\right)$, it has a right continuous modification by (2.2), denoted by $(e^{-\alpha t}z_i(t) + \int e^{-\alpha s}f_i(s)ds)$. It is clear that (3.6) and (3.3) *άτe* verified. (3.2) follows immediately from (3.6), and we obtain (3.5) , combining (3.6) with (2.2) . By (2.1) and (3.6) ,

$$
\lim_{t\to\infty}\left(e^{-\alpha t}z_i(t)\,+\,\int_0^t e^{-\alpha s}f_i(s)ds\right)=\limsup_{t\to\infty}\left(e^{-\alpha t}z_{i+1}(t)\,+\,\int_0^t e^{-\alpha s}f_i(s)ds\right),
$$

$$
\lim_{t\to\infty}e^{-\alpha t}z_i(t)\leq \limsup_{t\to\infty}e^{-\alpha t}z_{N+1}(t)=0.
$$

This implies (3.4) by (3.2) . We show that (3.1) holds. We denote by $y_i(S), i = 1, 2, \cdots, N$, the right hand side of (3.1), and for each stopping time *S,* we set

$$
Y_i(S) = e^{-\alpha S} y_i(S) + \int_0^S e^{-\alpha t} f_i(t) dt = \operatorname*{ess\,sup}_{\bar{T} \in C_i(S)} G(S; T_i, T_{i+1}, \cdots, T_N) ,
$$

where $G(S; T_i, T_{i+1}, \cdots, T_N) = E \Big| \int_0^{\infty} e^{-\alpha t} f_i(t) dt + \sum_{i=1}^N$ $j = i + 1$ $J T_{j-1}$ for $T = (T_{i-1}, T_i, \cdots, T_N) \in C_i(S)$. Then for any stopping times $S \leq T$, we have

(3.8)
$$
E[Y_i(T)|F_s] \leq Y_i(S).
$$

Indeed, let \varGamma be the class of all F_{\varGamma} -measurable functions $G(T;$ $T_{i},$ $T_{i+1},$ \cdots , *T_N*) for each $T = (T_{i-1}, T_i, \cdots, T_N) \in C_i(T)$. For $T(k) \in C_i(T)$ with $\bar{T}(k) =$ $(T_{i-1}(k), T_i(k), \, \cdots, \, T_{\scriptscriptstyle N}(k))\ (k = 1, \, 2), \text{ we define } T = (T_{i-1}, \, T_i, \, \cdots, \, T_{\scriptscriptstyle N}) \in C_i(T)$

 $\text{by} \quad T_j = T_j(1)I_B + T_j(2)I_Bc, \;\;\text{where} \;\;\; B = \{G(T; \, T_i(1), \, \, T_{i+1}(1), \, \cdots, \, \, T_N(1))\geq 0\}$ $G(T; T_i(2), T_{i+1}(2), \cdots, T_N(2))$. Then it is easy to see that

$$
G(T;\,T_{\imath}(1),\,\cdots,\,T_{\,\scriptscriptstyle N}(1))\vee G(T;\,T_{\imath}(2),\,\cdots,\,T_{\,\scriptscriptstyle N}(2))=G(T;\,T_{\,\imath},\,\cdots,\,T_{\,\scriptscriptstyle N})\,\,,
$$

that is, *Γ* is closed under the operation "sup". By Proposition VI-1-1 of [10], there exists a sequence $\bar{T}(n) = (T_{i-1}(n), T_i(n), \dots, T_N(n)) \in C_i(T)$ such that *Yt*

$$
Y_i(T)=\lim_{n\to\infty}\uparrow G(T;\,T_i(n),\,T_{i+1}(n),\,\cdots,\,T_{N}(n))\;.
$$

Hence, for any $\bar{B} \in F_s$,

(3.9)
$$
E[Y_i(T)I_{\overline{B}}] = \sup_{\overline{T} \in C_i(T)} E[G(T; T_i, T_{i+1}, \cdots, T_N)I_{\overline{B}}].
$$

Since $C_i(T) \subset C_i(S)$, the right hand side of (3.9) is less than $\sup_{\overline{x}} \epsilon_{\mathcal{C}_i(S)} E[G(S; \, T_i, \, T_{i+1}, \, \cdots, \, T_{\scriptscriptstyle N})I_{\overline{\scriptscriptstyle B}}] = E[\, Y_i(S)I_{\overline{\scriptscriptstyle B}}]\,$ by (3.9). Therefore we obtain (3.8).

Now, let us note that $z_N(S) = y_N(S)$ for any stopping time S by the definition of y_N , applying (2.4) to (3.6). Suppose that $y_j(S') \ge z_j(S')$ for any stopping time S' and $j = i + 1$. Since $y_i(S') \ge y_{i+1}(S')$ by definition, (3.8) yields that

$$
e^{-\alpha s}y_i(S) + \int_0^s e^{-\alpha t}f_i(t)dt \geq E\left[\int_0^T e^{-\alpha t}f_i(t)dt + e^{-\alpha T}y_i(T)\Big|F_s\right]
$$

$$
\geq E\left[\int_0^T e^{-\alpha t}f_i(t)dt + e^{-\alpha T}z_{i+1}(T)\Big|F_s\right].
$$

Thus, by (2.4) and (3.6) ,

$$
y_i(S) \ge \underset{T \ge S}{\text{ess sup }} E\left[\int_S^T e^{-\alpha(t-S)} f_i(t) dt + e^{-\alpha(T-S)} z_{i+1}(T) \Big| F_S \right] = z_i(S) .
$$

Conversely, let us suppose that $y_j(S') \leq z_j(S')$ for any stopping time S' ${\bf P}$ and $j = i + 1$. By the definition of y_{i+1} , for $\bar{T}' = (T'_i, T'_{i+1}, \cdots, T'_N) \in C_{i+1}(S'),$ we have

$$
e^{-\alpha S'}y_{i+1}(S') \geq E\bigg[\sum_{j=i+1}^N\int_{T'_{j-1}}^{T'_j}e^{-\alpha t}f_j(t)dt\bigg|F_{S'}\bigg].
$$

Hence, by (2.4) and (3.6), for any $T = (T_{i-1}, T_i, \dots, T_N) \in C_i(S)$,

$$
E\left[\sum_{j=i}^{N}\int_{T_{j-1}}^{T_j}e^{-\alpha(t-S)}f_i(t)dt\Big|F_s\right]
$$

\n
$$
=E\left[\int_{s}^{T_i}e^{-\alpha(t-S)}f_i(t)dt+e^{\alpha S}E\left[\sum_{j=i+1}^{N}\int_{T_{j-1}}^{T_j}e^{-\alpha t}f_j(t)dt\Big|F_{T_i}\right]\Big|F_s\right]
$$

\n
$$
\leq E\left[\int_{s}^{T_i}e^{-\alpha(t-S)}f_i(t)dt+e^{-\alpha(T_i-S)}y_{i+1}(T_i)\Big|F_s\right]
$$

\n
$$
\leq E\left[\int_{s}^{T_i}e^{-\alpha(t-S)}f_i(t)dt+e^{-\alpha(T_i-S)}z_{i+1}(T_i)\Big|F_s\right] \leq z_i(S).
$$

Consequently, we have (3.1) . (3.7) follows from (3.1) and (3.9) . The theorem is established.

4. Existence of optimal strategies.

THEOREM 2. The strategy $\hat{T}^* = (T_1^*, T_2^*, \cdots, T_N^*) \in C$ given by (4.1) $T^*_i = \inf \{ t \geq T^*_{i-1} | z_i(t) = z_{i+1}(t) \}, \quad T^*_0 = 0,$

is optimal in Problem
$$
(I)
$$
.

PROOF. Let us note that the process z_i satisfies (2.5) for each $i =$ 1, 2, \cdots , *N*, *N* + 1. Indeed, clearly z_{N+1} satisfies (2.5). Suppose that z_{i+1} satisfies (2.5). Then, by (3.6), the process $\left(e^{-\alpha t}z_i(t) + \int_{c}^{t}e^{-\alpha s}f_i(s)ds\right)$ is the \ **J**₀ / $e^{-\alpha t}z_{i+1}(t) + \int_{0}^{\infty}e^{-\alpha s}f_{i}(s)ds$, which satisfies (2.5). Thus, as is described in § 2, the process $(e^{-\alpha t}z_i(t) + \int e^{-\alpha s}f_i(s)ds)$ ** **Jo /** satisfies (2.5), and so does z_i .
Next we show that for

Next, we show that for T_i or (4.1) , $i = 1, 2, \dots, N$, we have

(4.2)
$$
\sup_{\hat{T}\in C} J(\hat{T}) = E\bigg[\int_0^{T_1^*} e^{-\alpha s} f_1(s) ds + e^{-\alpha T_1^*} z_2(T_1^*)\bigg],
$$

$$
(4.3) \t E[e^{-\alpha T_{i-1}^*}z_i(T_{i-1}^*)] = E\left[\int_{T_{i-1}^*}^{T_i^*} e^{-\alpha s}f_i(s)ds + e^{-\alpha T_{i}^*}z_{i+1}(T_i^*)\right].
$$

By (3.7) and (3.6) , we have

$$
\sup_{\hat{T}\in C} J(\hat{T}) = E[z_1(0)] = E\bigg[\underset{T\geq 0}{\mathrm{ess}\sup} E\bigg[\int_0^T e^{-\alpha t} f_1(t)\,dt + e^{-\alpha T} z_2(T) \Big| F_0\bigg]\bigg] \\ = \sup_{T} E\bigg[\int_0^T e^{-\alpha t} f_1(t)\,dt + e^{-\alpha T} z_2(T)\bigg] \,,
$$

which follows from (2.3). Since the process $(e^{-\alpha t}z_1(t) + \int_0^t e^{-\alpha s}f_1(s)ds)$ is the Snell envelope of the process $(e^{-at}z_2(t) + \int e^{-as}f_1(s)ds)$, we have (4.2) by (2.6) . On the other hand, by (3.6) and (2.4) , we have

$$
e^{-\alpha T_{i-1}^*}z_i(T_{i-1}^*)=\operatorname*{ess\,sup}_{T\geq T_{i-1}^*}E\bigg[\bigg]_{T_{i-1}^*}^re^{-\alpha s}f_i(s)ds\,+\,e^{-\alpha T}z_{i+1}(T)\,\bigg|\,F_{T_{i-1}^*}\bigg]\,.
$$

Hence, by (2.4) ,

$$
(4.4) \qquad E[e^{-\alpha T_{i-1}^{*}}z_{i}(T_{i-1}^{*})] = \sup_{T \geq T_{i-1}^{*}} E\left[\int_{T_{i-1}^{*}}^{T} e^{-\alpha s}f_{i}(s)ds + e^{-\alpha T}z_{i+1}(T)\right].
$$

Also, by (2.6) and the above arguments,

(4.5)
$$
E\bigg[\int_0^{T_t^*} e^{-\alpha s} f_i(s) ds + e^{-\alpha T_t^*} z_{i+1}(T_t^*)\bigg] = \sup_{T \ge T_{t-1}^*} E\bigg[\int_0^T e^{-\alpha s} f_i(s) ds + e^{-\alpha T} z_{i+1}(T)\bigg].
$$

Thus (4.3) follows from (4.4) and (4.5) . Combining (4.2) with (4.3) , we establish the theorem by induction.

5. Conditions for optimality. Let us consider the following problem.

PROBLEM (II). *Let U be the class of all processes u* e *W defined by*

$$
u(t) = u_{\hat{T}}(t) = \sum_{n=0}^N I_{(T_n \leq t)} , \qquad \hat{T} = (T_1, T_2, \, \cdots, \, T_N) \, \in C \;, \qquad T_0 = 0 \; .
$$

We define the profit:

$$
I(u) = E\bigg[\bigg]_0^{\infty} e^{-\alpha s} f(s, u(s)) ds\bigg], \quad u \in U, \quad \alpha > 0,
$$

where $f(s, i) = f_i(s)$ *is as in Problem* (I). *Find an optimal strategy* $u^* \in U$, *i.e.*, $I(u^*) = \sup_{u \in U} I(u)$, and characterize its maximum.

Problems (I) and (III) are identical in the following sense:

(5.1)
$$
\sup_{\hat{T}\in C} J(\hat{T}) = \sup_{u \in U} I(u) .
$$

Indeed, taking into account $f(s, N + 1) = 0$, we have

$$
I(u_{\hat{r}}) = E\bigg[\int_0^{\infty} e^{-\alpha s} f(s, u_{\hat{r}}(s)) ds\bigg] = E\bigg[\sum_{i=1}^N \int_{T_{i-1}}^{T_i} e^{-\alpha s} f(s, u_{\hat{r}}(s)) ds\bigg]
$$

=
$$
E\bigg[\sum_{i=1}^N \int_{T_{i-1}}^{T_i} e^{-\alpha s} f(s, i) ds\bigg] = J(\hat{T}),
$$

which implies (5.1). Thus, Problem (I) is a kind of stochastic control problem with the profit $I(u)$. We would like to obtain dynamic programming conditions for optimality. But *U* is not closed under concatenation, i.e., if $u, v \in U$, then (u, v, t) does not necessarily belong to U where $(u, v, t)(s) = u(s)$ for $s \leq t$, $v(s)$ for $s > t$. Therefore we cannot apply the technique of $[3]$ and $[4]$ to $I(u)$. Here we show that Theorem 1 enables us to give an optimality condition.

THEOREM 3. For each
$$
\hat{T} = (T_1, T_2, \dots, T_N) \in C
$$
 and $i = 1, 2, \dots, N$,
(5.2)
$$
E[e^{-\alpha T_i - 1}z_i(T_{i-1})] \geq E\left[\int_{T_{i-1}}^{T_i} e^{-\alpha s}f_i(s)ds + e^{-\alpha T_i}z_{i+1}(T_i)\right].
$$

 $Furthermore, \ \ \hat{T}^*=(T_1^*,\ T_2^*,\ \cdots,\ T_N^*)\in C \ \ \ is \ \ optimal \ \ \ if \ \ and \ \ only \ \ \ if \ \ for$ *each* $i = 1, 2, \cdots, N$,

$$
(5.3) \t E[e^{-\alpha T_{\boldsymbol{i}-1}^* \mathcal{Z}_{\boldsymbol{i}}(T_{\boldsymbol{i}-1}^*)}] = E\bigg[\int_{T_{\boldsymbol{i}-1}^*}^{T_{\boldsymbol{i}}^*} e^{-\alpha s} f_{\boldsymbol{i}}(s) ds + e^{-\alpha T_{\boldsymbol{i}}^* \mathcal{Z}_{\boldsymbol{i}+1}(T_{\boldsymbol{i}}^*)}\bigg].
$$

PROOF. (5.2) is immediate from (3.6) and (2.4) . Suppose that (5.3) holds. Then, by induction, we have

$$
E[z_i(0)] = E\left[\sum_{j=1}^N\int_{T^*_{j-1}}^{T^*_{j}}e^{-as}f_j(s)ds\right].
$$

Thus \hat{T}^* is optimal by (3.7). Conversely, let $\hat{T}^* \in C$ be optimal. To prove (5.3), it suffices to show that for $i = 1, 2, \dots, N$,

(5.4)
$$
E[e^{-\alpha T_{i-1}^*}z_i(T_{i-1}^*)] = E\left[\sum_{j=i}^N\int_{T_{j-1}^*}^{T_j^*}e^{-\alpha s}f_j(s)ds\right].
$$

By the optimality of \hat{T}^* , (5.4) holds for $i = 1$. Suppose that (5.4) holds for $i = k$. By (3.1),

$$
(5.5) \qquad E[e^{-\alpha T^{*}_{k-1}}z_{k}(T^{*}_{k-1})] = E\left[\sum_{j=k}^{N}\int_{T^{*}_{j-1}}^{T^{*}_{j}}e^{-\alpha s}f_{j}(s)ds\right]
$$

\n
$$
= E\left[\int_{T^{*}_{k-1}}^{T^{*}_{k}}e^{-\alpha s}f_{k}(s)ds + \sum_{j=k+1}^{N}\int_{T^{*}_{j-1}}^{T^{*}_{j}}e^{-\alpha s}f_{j}(s)ds\right]
$$

\n
$$
\leq E\left[\int_{T^{*}_{k-1}}^{T^{*}_{k}}e^{-\alpha s}f_{k}(s)ds + \underset{\overline{T}^{*}\in C_{k+1}(T^{*}_{k})}{\text{ess sup }}E\left[\sum_{j=k+1}^{N}\int_{T^{*}_{j-1}}^{T^{*}_{j}}e^{-\alpha s}f_{j}(s)ds\right|F_{T^{*}_{k}}\right]
$$

\n
$$
= E\left[\int_{T^{*}_{k-1}}^{T^{*}_{k}}e^{-\alpha s}f_{k}(s)ds + e^{-\alpha T^{*}_{k}}z_{k+1}(T^{*}_{k})\right].
$$

On the other hand, by (3.6) and (2.4) , we obtain the converse inequality of (5.5). Thus, (5.4) holds for $i = k + 1$.

6. Penalization. Let Φ be the class of all sequences $x = (x_1, x_2, \dots, x_n)$ (x_N) of right continuous adapted processes x_i , $i = 1, 2, \cdots, N$, such that

(6.1)
$$
e^{-\alpha \cdot} x_i \in W \quad \text{and} \quad \lim_{t \to \infty} e^{-\alpha t} x_i(t) = 0 ,
$$

(6.2)
$$
x_1(t) \ge x_2(t) \ge \cdots \ge x_N(t) \ge 0, \quad t \ge 0,
$$

(6.3)
$$
\left(e^{-\alpha t}x_i(t) + \int_0^t e^{-\alpha s}f_i(s)ds\right)
$$
 is a supermartingale.

alta constin Let us consider the penalty equation:

 $(6.4) \qquad (\alpha - A)z_i^{\epsilon} - (z_{i+1}^{\epsilon} - z_i^{\epsilon})^+/\varepsilon = f_i \; , \qquad z_{N+1}^{\epsilon} = 0 \; , \quad i=1, \, 2, \, \, \cdots, \, N \; .$

By (2.11) and induction, the equation (6.4) has a solution $z^* = (z_1^*, z_2^*, \dots, z_n^*)$ z^*_{N} , and then we can obtain the following theorem.

THEOREM 4. Let $z = (z_{\scriptscriptstyle 1}, z_{\scriptscriptstyle 2}, \, \cdots, z_{\scriptscriptstyle N})$ be a sequence of the processes $z_{\scriptscriptstyle i}$ $i = 1, 2, \dots, N$, given in Theorem 1. Then $z_i(t)$ converges to $z_i(t)$ almost *surely for each* $t \ge 0$ *and* $i = 1, 2, \cdots, N$, as $\epsilon \downarrow 0$.

LEMMA 5. For each $i = 1, 2, \cdots, N$, we have

$$
(6.5) \t\t\t z_i^*(t) \leq z_i(t) ,
$$

(6.6) $z_i^*(t) \leq z_i^{*'}(t)$ for $\varepsilon \geq \varepsilon'$.

PROOF. By definition, (6.5) holds for $i = N + 1$. Suppose that (6.5) $\text{holds for } i = k + 1.$ Then we have $z_{k+1}^{\varepsilon} \leq z_{k+1} \leq z_k$ by (3.2). Thus, by (2.13),

$$
z_{k}^{\epsilon}(t) = \operatorname*{ess\,sup}_{v \in V_{\epsilon}} E\left[\int_{t}^{\infty} \exp\left(-\int_{t}^{s} \alpha + v_{r} dr\right) (f_{k}(s) + v_{s} z_{K+1}^{\epsilon}(s)) ds \Big| F_{t}\right] \le \operatorname*{ess\,sup}_{v \in V_{\epsilon}} E\left[\int_{t}^{\infty} \exp\left(-\int_{t}^{s} \alpha + v_{r} dr\right) (f_{k}(s) + v_{s} z_{k}(s)) ds \Big| F_{t}\right],
$$

which is less than $z_k(t)$ by virtue of Lemma 5 in [9]. This implies (6.5). Next, taking into account $z_{N+1}^{\epsilon}(t) = z_{N+1}^{\epsilon'}(t) = 0$, we assume that $z_{i+1}^{\epsilon} \leq z_{i+1}^{\epsilon'}$ for $\varepsilon \geq \varepsilon'$. Then, by (2.13),

$$
z_i^{\epsilon}(t) = \operatorname*{ess\,sup}_{v \in V_{\epsilon}} E\left[\int_t^{\infty} \exp\left(-\int_t^s \alpha + v_r dr\right) (f_i(s) + v_s z_{i+1}^{\epsilon}(s)) ds \Big| F_t\right] \newline \leq \operatorname*{ess\,sup}_{v \in V_{\epsilon'}} E\left[\int_t^{\infty} \exp\left(-\int_t^s \alpha + v_r dr\right) (f_i(s) + v_s z_{i+1}^{\epsilon}(s)) ds \Big| F_t\right] = z_i^{\epsilon'}(t) ,
$$

which implies (6.6).

Proof of Theorem 4. First we note that $z = (z_{_1}, z_{_2}, \, \cdots, z_{_N})$ of Theo rem 1 belongs to *Φ.* Moreover, it is a minimal element of *Φ.* Indeed, $\mathrm{let}\ x=(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2},\,\cdots,\,x_{\scriptscriptstyle N})\in\varPhi,\ T=(T_{\,\scriptscriptstyle i-1},\,T_{\,\scriptscriptstyle i},\,\cdots,\,T_{\,\scriptscriptstyle N})\in C_i(t)\ \mathrm{and}\ i=1,\,2,\,\cdots,\,N.$ By (6.3) and (6.2),

$$
e^{-\alpha T_{j-1}}x_j(T_{j-1}) \geq E\bigg[e^{-\alpha T_j}x_j(T_j) + \int_{T_{j-1}}^{T_j} e^{-\alpha s}f_j(s)ds\bigg|F_{T_{j-1}}\bigg] \newline \geq E\bigg[e^{-\alpha T_j}x_{j+1}(T_j) + \int_{T_{j-1}}^{T_j} e^{-\alpha s}f_j(s)ds\bigg|F_{T_{j-1}}\bigg], \quad j \geq i.
$$

Hence, by induction,

$$
e^{-\alpha t}x_i(t) \geq E\bigg[\int_t^{T_i} e^{-\alpha s}f_i(s)ds + \sum_{j=i+1}^N\int_{T_{j-1}}^{T_j} e^{-\alpha s}f_j(s)ds\bigg|F_t\bigg].
$$

By (3.1), we obtain $x_i \ge z_i$ for $i = 1, 2, \dots, N$.

Next, by (6.6), we can define the process $z_i^*(t) = \lim_{\varepsilon \downarrow 0} \uparrow z_i^*(t)$. Then, by (6.5), we have $z_i^* \leq z_i$. To prove the theorem, it suffices to show that $z^* = (z_1^*, z_2^*, \, \cdots, z_N^*)$ belongs to \varPhi . By (6.4) and Lemma 2 of [9],

$$
A(e^{-\alpha t}z_i^{\epsilon}(t) + \int_0^t e^{-\alpha s}f_i(s)ds) = -e^{-\alpha t}(\alpha - A)z_i^{\epsilon}(t) + e^{-\alpha t}f_i(t) = -e^{-\alpha t}(z_{i+1}^{\epsilon} - z_i^{\epsilon})^+(t)/\epsilon \leq 0.
$$

By virtue of the corollary to Theorem 5 in [9], $(e^{-at}z_i^{\epsilon}(t) + \int e^{-as}f_i(s)ds)$ is a right continuous supermartingale. By the monotone convergence theo- $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ right continuous supermartingale. By the monotone convergence theorem. rem and Theorem 16 of [8, Chap. VI], *(e~atzt{t)* + Γ*e^'f^ds)* is a right continuous supermartingale. Thus z_i^* is a right continuous adapted process and z^* satisfies (6.3). Since $e^{-x}z_i \in W$ and $\lim_{t\to\infty}e^{-xt}z_i(t)=0$ by $z_i \in W$, z_i^* satisfies (6.1). By (6.4) and (6.5),

$$
G_{\alpha}(z_{i+1}^{\epsilon}-z_{i}^{\epsilon})^{+}(t)=\varepsilon(z_{i}^{\epsilon}-G_{\alpha}f_{i})(t)\leqq\varepsilon(z_{i}-G_{\alpha}f_{i})(t)~,
$$

which goes to zero as $\varepsilon \downarrow 0$. By the bounded convergence theorem, we have $G_a(z_{i+1}^* - z_i^*)^+ = 0$. This implies (6.2). The proof is complete.

REFERENCES

- [1] A. BENSOUSSAN AND J. L. LIONS, Applications des inequations variationelles en control stochastique, Dunod, Paris, 1978.
- [2] J. M. BISMUT AND B. SKALLI, Temps d'arrêt optimal, théorie générale de processus et processus de Markov, Z. Wahr. Verw. Geb. 39 (1977), 301-313.
- [3] R. BOEL AND P. VARAIYA, Optimal control of jump processes, SIAM J. Control 15 (1977), 92-119.
- [4] M. H. A. DAVIS AND P. VARAIYA, Dynamic programming conditions for partially observ able stochastic systems, SIAM J. Control 11 (1973), 226-261.
- [5] L. C. EVANS AND A. FRIEDMAN, Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Amer. Math. Soc. 253 (1979), 365-389.
- [6] A. G. FAKEEV, Optimal stopping rules for stochastic processes with continuous parame ter, Theory of Prob. and Appl. 15 (1970), 324-331.
- [7] A. FRIEDMAN, Interaction between stochastic differential equations and partial differential equations, Lecture Notes in Control and Information Sciences, 16 (1979), Springer Verlag, New York and Berlin, 156-171.
- [8] P. A. MEYER, Probability and Potentials, Blaisdell, Waltham, Mass., 1966.
- [9] H. MORIMOTO, Optimal stopping and a martingale approach to the penalty method, Tόhoku Math. J. 34 (1982), 407-416.
- [10] J. NEVEU, Discrete Parameter Martingales, North-Holland, Amsterdam, 1975.
- [11] A. N. SHIRYAYEV, Optimal stopping rules, Springer-Verlag, New York and Berlin, 1978. [12] L. STETTNER AND J. ZABCZYK, Strong envelopes of stochastic processes and a penalty
- method, Stochastics 4 (1981), 267-280.
- [13] J. ZABCZYK, Introduction to the theory of optimal stopping, Lecture Notes in Control and Information Sciences, 16 (1979), Springer-Verlag, New York and Berlin, 227-250.
- [14] J. ZABCZYK, Optimal control by means of switchings, Studia Math. XLV (1973), 161-171.
- TÔHOKU INSTITUTE OF TECHNOLOGY SENDAI, 982

JAPAN