
Tόhoku Math. Journ.
35 (1983), 119-128.

OPTIMAL SWITCHING PROBLEMS OF TANDEM TYPE

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

HlROAKI MORIMOTO

(Received April 13, 1982)

1. Introduction. In this article, we consider the stochastic switch-
ing problem of tandem type, related to optimal stopping. The model is
described as follows.

Let Xif ί = 1, 2, , N, be a sequence of measurable processes. For
each sequence f = (2\, Γ2, , TN) of N stopping times 2\ ^ T2

TN, we define the following process X$:
1 2 =

_ (Xt(fi) if Tt_, ^ t < Tt

X ί { t ) - \ o if tzT,.

where To = 0. Then the process X? starts with Xϊ(t) = X^t) if 0 ^ t ^ Γx

and it switches in tandem from Xi to Xί+1 at the time Tt for i = 1, 2, , iSΓ.
The object is to maximize the profit:

where / is a given bounded measurable function and a strategy is the
sequence t of stopping times of switches. The problem is reduced to
the optimal stopping problem when N = 1.

The content is as follows: In § 2 we formulate the general switching
problem of tandem type as Problem (I) in precise terms and we recall
some results on the optimal stopping problem [2], [9] and [12]. In § 3,
extending the Snell envelope in optimal stopping, we shall define the
generalized Snell envelope. In §4 we show the existence of an optimal
strategy by a constructive method. In § 5 we give a necessary and
sufficient condition for optimality, which is different from that of [4].
Finally, in § 6 we give a penalty method ([1], [9], [12]) to find the optimal
strategy from the computational point of view.

2. Preliminaries and formulation. Let (42, F, P) be a complete prob-
ability space equipped with an increasing and right-continuous family of
sub-tf-fields (Ft)t>0 such that \ft^Ft = F and JP0 contains all null sets.
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Let W be the Banach space of all right-continuous (i^)-adapted processes
X with its norm | |X| | = ||supt \Xt\ IU- < oo.

Now we formulate the switching problem of tandem type with finite
steps.

PROBLEM (I). For a given positive integer N, let (ft(t))f i = 1, 2, ,
Nf N + 1, be a sequence of processes from W with fN+1(t) = 0. Let C be
the class of all sequences f = (Tlf T2, , TN) of N stopping times such
that 0 = Γo ^ 2\ ^ T2 ^ ^ TN. We define the profit:

feC, (α > 0) .

Find an optimal strategy Γ* e C, that is, J(Γ*) = sup^ec J(f), and charac-
terize its maximum.

We give some results on optimal stopping problems which will be
needed below. Let Xe W. A stopping time S is said to be optimal if
E[XS] = supΓ E[XT], where the supremum is taken over all stopping times
T and Xo = lim s u p ^ Xt. There exists a right-continuous supermartin-
gale Y, called the Snell envelope, majorizing X and satisfying:

(2.1) lim Yt = lim sup Yt = lim sup Xt ,
t—MX> t—*OO f—M5O

(2.2) Yt = ess sup E[XT | Ft] ,
Tit

(2.3) E[Y0] = suvE[XT] .
T

Moreover, for any stopping time S,

(2.4) Ys = ess sup E[XT \ Fs] , E[ Y8] = sup E[XT] .

Suppose that X satisfies the additional hypothesis:

(2.5) For any increasing sequence of stopping times (Γn) with limit
T, E[XTn]-+E[Xτ].

Then D = inf {t\Xt = Yt) is an optimal stopping time. Also, for any
stopping time S, the stopping time D(S) defined by

(2.6) DOS) = inf {t 11 ̂  S, Xt = Yt)

is optimal, that is, E[XD{S)] = supΓ έ S E[XT]. Furthermore, Y satisfies
(2.5).

Next we give the penalty method, approximating the Snell envelope
Y of X when X is of the form:
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(2.7) Xt = e~atft + Γe-«*g8ds , f,geW, a > 0 .
Jo

Note that 3Γ can be rewritten as follows:

(2.8) Yt = e"

where <Q = esssupΓ^^Γe"β ( Γ"'^Γ + Γe" β ( " ' W
(G) f T7 i t i t l f b

β

linear operators (Gα)α>0 from T7 into itself by

(2.9) Gax(t) = JBΓΓe- e (- f )a?.dte f l , x e W .

We define the

Ga is one-to-one and satisfies the resolvent equation. Let A be the gener-
ator from D[A] into W9 defined by

(2.10) A = a-G?, D[A] = Ga(W) ,

where G"1 is the inverse of Ga. Let us consider the solution zε of the
penalty equation

(2.11) (α - A)ze - (/ - ^ε)+/s = g, e > 0 .

Let F ε be the class of all progressively measurable processes v = (vt)
such that 0 ^ ^ ^ 1/ε. For v e Vtt we set

(2.12) Jt(v) =

Then the solution zε is given by

(2.13) zε(t) = ess sup Jt(v) .
veVε

Letting ε [ 0, we obtain that zs(t) converges to z(t) almost surely for
each t ^ 0.

3. The generalized Snell envelope. For each stopping time S, let
d(S), ί = 1, 2, , N, denote the classes of all sequences T = {Tt_u

Ti9 , IV) of stopping times such that S = I 7 ^ ^ Tt ^ ^ T^.

THEOREM 1. Tfeere exists a sequence z = fo, ^2, , 2;̂ , ̂ ;̂ +1) of right
continuous adapted processes zt such that for each stopping time S and
i = l,2 f • - . , # ,

(3.1) zt(S) = ess sup #[~Σ Γ' e-a{t-s)fj(t)dt
T L i < J ^

Σ

(3.2) 2l(ί) ^ «,(«) ^ £ «w(ί) ^ z,+1(ί) = 0 , ί ^ 0 ,

(3.3) β—«, e W,
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(3.4) lim e-"%(t) = 0 ,
t->oo

/ Ct \

(3.5) le~atZi(t) + I e~a8fi(s)ds) is a super martingale ,
\ Jo /

(3.6) e-%(t) = ess sup # Γ Γ e—fMds + e~aTzi+1(T) Ft~] ,

(3.7) E[zM] = sup J(f).

PROOF. We define inductively z — (zlf z2, , zN, zN+ι) as follows: we
set zN+1(t) = 0, and if zί+1(t) is given, we define zt by

e~aTzi+1(T)

Since the process (e'^z^t) + \ e~a*ft(p)ds\ is the Snell envelope of the

process (e~atzi+1(t) + \ e~a*fi(s)ds\ it has a right continuous modification

by (2.2), denoted by (e"α ί^(ί) + Γ e"a7;(s)cZs\ It is clear that (3.6) and

(3.3) άτe verified. (3.2) follows immediately from (3.6), and we obtain
(3.5), combining (3.6) with (2.2). By (2.1) and (3.6),

lim (e-atzlt) + \ e'as fls)ds\ = lim sup (e~atzi+1(t) + (Vβ f/<(«)ώ) ,

t-*co \ JO / ί—oo \ JO /

from which

lim e~atZi(t) ^ lim sup e~atzN+1(t) = 0 .

This implies (3.4) by (3.2). We show that (3.1) holds. We denote by
y^S), i = 1, 2, , N, the right hand side of (3.1), and for each stopping
time S, we set

Y^S) = e-«s

yi(S) + Γ e-atUt)dt = ess sup G(S; Ti9 Ti+1, , TN) ,
Jθ feCfiS)

where G(S; Tif Γ4+1, , Γw) = # Γ P e-αί/t(ί)<ίί + Σ
LJθ J=i + 1 y !

for T = (Γ^i, Γ o , Γ^) e C^S). Then for any stopping times S ^ Γ,
we have
(3.8)

Indeed, let /* be the class of all i^-measurable functions G(T; Tu Ti+1, •-,
TN) for each T = (Γ,.,, Tt, , Γ,) s C/Γ). For T(k) e C((Γ) with f (Λ) =
(TUk), Tt(k), ••', TM) (fc = 1, 2), we define T = (Γ,.,, T(, , Γ,) e Ct{T)
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by Ts = TJX)IB + Ts{2)IBc, where B = {G(T; Tt(l), Γί+1(l), , TN(1)) ^
G(T; Γ,(2), Γ1+1(2), , 2^(2))}. Then it is easy to see that

G(T; Γ,(l), , Γ,(1))V6(Γ; Γ,(2), , 2V(2)) = G(Γ; Γ,, , 2V) ,

that is, Γ is closed under the operation "sup". By Proposition VI-1-1
of [10], there exists a sequence T{n) = (T^n), T{(n), •••, TN(ri))eCt(T)
such that

Yt(T) = l i m I G(T; Tt(n), Ti+ι(n), ••-, TN(n)) .
n—*<χ>

Hence, for any BeFs,

(3.9) E[Yt(T)h] = sup E[G(T; Tt, Ti+1, , TN)h] .
TeCtiT)

Since Ct{T) c C^S), the right hand side of (3.9) is less than
sup ? 6^ ( 5 ) E[G(S; Ti9 Ti+1, , TN)h] = E[Yt(S)h] by (3.9). Therefore we
obtain (3.8).

Now, let us note that zN(S) = ^(S) for any stopping time S by the
definition of yN9 applying (2.4) to (3.6). Suppose that y^S') ^ zs(S') for
any stopping time S' and j = i + 1. Since i/£(S') ^ yi+1(S') by definition,
(3.8) yields that

Thus, by (2.4) and (3.6),

τs,s
F

s~\ = zt(S) .
J

Conversely, let us suppose that y^S') ^ Zy(S') for any stopping time S'
a n d j = i + 1. B y t h e de f in i t ion of yt+1, f o r T = (Tit T'i+U •• ,T'N)eCi+ι(S'),

we have

Hence, by (2.4) and (3.6), for any T = (T,^, Γ o

)flt)dt
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Consequently, we have (3.1). (3.7) follows from (3.1) and (3.9). The
theorem is established.

4. Existence of optimal strategies.

THEOREM 2. The strategy Γ* = (2Ϊ, T2*, , T%) e C given by

(4.1) Tΐ = inf {ί ^ TUI zt(t) = zi+1(t)} , To* = 0 ,

is optimal in Problem (I).

PROOF. Let us note that the process zt satisfies (2.5) for each i =
1, 2, , iV, iSΓ + 1. Indeed, clearly zN+1 satisfies (2.5). Suppose that zi+ι

satisfies (2.5). Then, by (3.6), the process (e"a%(t) + [ e'^f^ds) is the
\ Jo /

e~atzί+1(t) + I e~asfi(s)ds)f which satisfies
Jo /

(2.5). Thus, as is described in §2, the process (e~atzi(t) + \ e~a8fi(s)ds)
\ Jo /

satisfies (2.5), and so does zt.
Next, we show that for Tf of (4.1), i = 1, 2, , N, we have

(4.2) sup J(f) = ^ΓΓ1^ e—f^ds + 6 - ^ ( 2
LJ

(4.3) l ] [ j ^

By (3.7) and (3.6), we have

sup J(T) = ί7[^(0)] = #Γesssup E\\T e^f^dt + e"α^2(T) F0T\
feC L rso LJo JJ

which follows from (2.3). Since the process (e~atz£t) + 1 e'^f^dsj is

the Snell envelope of the process (e~atz2(t) + 1 e^'f^ds), we have (4.2)

by (2.6). On the other hand, by (3.6) and (2.4), we have

e~aTzi+1(T)

Hence, by (2.4),

(4.4) Ele-^-izATίJ] = sup j d T e^f^ds + e~aTzi+ι{T)\ .

Also, by (2.6) and the above arguments,
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(4.5) E ^ e-«*fls)ds + e-β

- sup

Thus (4.3) follows from (4.4) and (4.5). Combining (4.2) with (4.3), we
establish the theorem by induction.

5. Conditions for optimality. Let us consider the following problem.

PROBLEM (II). Let U be the class of all processes u e W defined by

u(t) = uf(t) = Σ W * > , T = (Γ l f T2, , Γ , ) e C , Γo = 0 .
π=0

We define the profit:

I(u) = JsΓΓ e-asf(s, u(s))ds\ , u e U , a > 0 ,

where f(s, i) = fi{s) is as in Problem (I). Find an optimal strategy
u* e U, i.e., I(u*) = suj)ueu I(u), and characterize its maximum.

Problems (I) and (III) are identical in the following sense:

(5.1) sup/(f) = supl(tt) .
TeC ueU

Indeed, taking into account /(s, N + 1) = 0, we have

which implies (5.1). Thus, Problem (I) is a kind of stochastic control
problem with the profit I(u). We would like to obtain dynamic program-
ming conditions for optimality. But U is not closed under concatenation,
i.e., if u,veU, then (u,v,t) does not necessarily belong to U where
(u, v, t)(s) = u(s) for s <* t, = v(s) for s > t. Therefore we cannot apply
the technique of [3] and [4] to I(u). Here we show that Theorem 1
enables us to give an optimality condition.

THEOREM 3. For each f = (ϊ\, T2, , TN) e C and i = 1, 2, , JV,

(5.2) Ele-^-vAT^)] ^ E^ e~asUs)ds +

Furthermore, Γ* = (I7*, Tfy •••, T*)ξC is optimal if and only if for
each i = 1,2, , N,

(5.3) E[e-aTi-^{TU)] =
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PROOF. (5.2) is immediate from (3.6) and (2.4). Suppose that (5.3)
holds. Then, by induction, we have

Thus f* is optimal by (3.7). Conversely, let f* e C be optimal. To prove
(5.3), it suffices to show that for i = 1, 2, , N9

(5.4) filβ-^

By the optimality of t*, (5.4) holds for i = 1. Suppose that (5.4) holds
for i = fc. By (3.1),

(5.5) E[e-«τ%-,zk{TU)} =

e-«afk(s)ds+ Σ

e~αsfk(s)ds+ ess sup ^Γ Σ Γ'' e^f^ds FT*T\

On the other hand, by (3.6) and (2.4), we obtain the converse inequality
of (5.5). Thus, (5.4) holds for ί = k + 1.

6. Penalization. Let Φ be the class of all sequences x = (xl9 x2, ,
xN) of right continuous adapted processes xi9 i = 1, 2, , N9 such that

(6.1) e-α χte W and lim e-αίa?t(ί) = 0 ,
t->oo

(6.2) aj^ί) ^ «2(ί) ^ ^ ^ ( ί ) ^ 0 , t ^ 0 ,

( ί ί \

e~αtXi(t) + \ e~αafi(8)d8) is a supermartingale .
Jo /

Let us consider the penalty equation:

(6.4) (α - A)z{ - («5+1 - zl)+/ε = ft , ^ + 1 = 0 , i = 1, 2, - - •, N.

By (2.11) and induction, the equation (6.4) has a solution ze = (z;, z'2f ,
^ ) , and then we can obtain the following theorem.

THEOREM 4. Let z = (zlf z2, , 2^) δe α sequence of the processes zif

i = 1, 2, - -, N, given in Theorem 1. 27^w s{(*) converges to z^t) almost
surely for each t ^ 0 cmd i = 1, 2, , N, as e | 0.
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LEMMA 5. For each i = 1,2, , N, we have

(6.5) zl(t) ^ zt(t) ,

(6.6) z\(t) ^ zΐ(t) for ε ^ ε' .

PROOF. By definition, (6.5) holds for i = N + 1. Suppose that (6.5)
holds for i = k + 1. Then we have z%+ι ^ zk+1 ^ zk by (3.2). Thus, by
(2.13),

z\(t) = ess sup £Ί \ e x p ( - \ α + vrdr)(fk(s) + v8z^+1(s)) cίs JF*
t>eFE Lit \ Jί / J

Γf°°

\_Jt

Γf°° / f8 \
^ ess sup J5 \ exp - \ a + vrdr)(fk(s) + v8zk(s))ds

\J \ J /

Ft

Ί
t ,
J

which is less than zk(t) by virtue of Lemma 5 in [9]. This implies (6.5).
Next, taking into account z'N+1(t) = zεN+1(t) = 0, we assume that z\+1 ^ z\'+ι

for ε ^ ε'. Then, by (2.13),

Ft

Ft = 2{'(ί) ,
J

z\(t) = ess sup E\ \ expί —\ a + ^

^ ess sup ί/ \ exp( — \ a + tfr

which implies (6.6).

PROOF OF THEOREM 4. First we note that z = (zu z2, , zN) of Theo-
rem 1 belongs to Φ. Moreover, it is a minimal element of Φ. Indeed,
let x = (χl9 x2, -., xN) e Φ, f = (T^l9 Ti9 ' , TN) e C,(t) and i = 1, 2, - , N.

By (6.3) and (6.2),

+ e-asf3{s)ds

Hence, by induction,

By (3.1), we obtain xt ^ zt for i = 1, 2, , iSΓ.
Next, by (6.6), we can define the process zf (t) = limβ i 0 ?#(*)• Then,

by (6.5), we have zf <; z{. To prove the theorem, it suffices to show
that z* = (z*, z2*, - , z%) belongs to Φ. By (6.4) and Lemma 2 of [9],

- e " α ί ( α - A)z\(t) + β

-e- α < (^ + 1 - zϊ)+(ΐ)/ε ^ 0
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By virtue of the corollary to Theorem 5 in [9], (e~atz\{t) + [ e~asMs)ds
\ Jo

is a right continuous supermartingale. By the monotone convergence theo-

rem and Theorem 16 of [8, Chap. VI], (e~atzt{t) + Γe^ ' f^ds) is a right
V Jo /

continuous supermartingale. Thus zf is a right continuous adapted process
and z* satisfies (6.3). Since era'z\z W and lim^e~a tz\(t) = 0 by z*e W,
zf satisfies (6.1). By (6.4) and (6.5),

Ga(zl+ί - *l)+(t) = ε(zl - GJXt) ^ εfe - Gaft)(t) ,
which goes to zero as ε | 0. By the bounded convergence theorem, we
have Ga(z*+1 — zf)+ = 0. This implies (6.2). The proof is complete.
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