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A CONVERGENCE CRITERION
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In the previous paper [14], we introduced zeta functions associated
with prehomogeneous vector spaces and proved their functional equations
with respect to a Q-regular subspace. For application of the results
in [14], it is desirable to find a practical criterion for convergence of
zeta functions. The purpose of the present paper is to give a certain
sufficient condition for absolute convergence of zeta functions, which is
a generalization of the method used by Suzuki [22].

In § 1, we recall the definition of zeta functions associated with pre-
homogeneous vector spaces and formulate the main result (Theorem 1).
The proof of Theorem 1 is given in § 2. Our argument is based upon
the techniques in adele geometry developed by Ono [10], [12] and [13].
We shall give some applications of Theorem 1 in § 3 and the forthcoming
paper [15].

The author would like to thank T. Suzuki for many stimulating
discussions.

In what follows, we denote by Z, Q, R and C the ring of rational
integers, the rational number field, the real number field and the complex
number field, respectively. For a prime v (finite or infinite) of Q, Qv is
the completion of Q with respect to v. For a finite prime p, Zp is the
ring of p-adic integers and Fp is the finite field with p elements. We
use the standard notation in Galois cohomology and adele geometry. In
particular for any affine algebraic set X defined over Q, XQv (resp. XZp)
are the set of (^-rational (resp. Zp-integral) points of X The adeliza-
tion of X over Q is denoted by XA. For a Q-rational gauge form ω on
X and a prime v of Q, |α>|v is the measure on XQu induced by ω. We
denote by ^{VA) the Schwartz-Bruhat space on the adelization VA of a
Q-vector space V. The cardinality of a set X is denoted by #(X). For
a linear algbraic group G, we denote by £^(G) and RU{G) its derived
group and its unipotent radical, respectively.

1. Statement of the main results. 1.1. First we recall the difini-
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tion of zeta functions associated with prehomogeneous vector spaces (for
more detailed treatment, see [14, § 1 and § 4]). Let (G, p, V) be a pre-
homogeneous vector space (briefly a p.v.) defined over Q and S be its
singular set. The singular set S is, by definition, a proper algebraic
subset of V such that V — S is a single G-orbit. The algebraic set S
is defined over Q. Let Slf , Sn be the Q-irreducible components of S
with codimension 1. Let Pu , Pn be Q-irreducible polynomials defining
Su , Sn, respectively. Then Pl9 - , Pn are relative invariants of
(G, p, V) and there exist Q-rational characters Xu ,%n of G such that

PMg)χ) = Ug)Pi(χ) (geG, xeV, l ^ ί ^ n ) .

Let G£ be a subgroup of GR containing the identity component and let
VR — SR = V1 U U Vv be the Gί-orbit decomposition. We fix a basis
of V and a matrix expression of G compatible with the given Q-structure
and such that ρ(Gz) Vz c Vz. Put

Γ = {geGzf]Gi;Xi(g) = 1 (1 ^ i ^ n)) .

For any x e V, denote by Gx the isotropy subgroup of G at x:

Ga = {ge G; /o(ff)a? = x) .

Let G° be the identity component of Gx. Set Gt = Gx Π Gί and Γβ =
Gx Π Γ. Let F^ be the subset of VQ — SQ consisting of all elements x
such that G° has no non-trivial Q-rational character. We assume that
VQ is non-empty.

Let Ω be a right invariant Q-rational gauge form on G. Then there
exists a Q-rational character Δ of G such that L£42 = Δ(h)Ω (h e G), where
L*Ω is the pull back of Ω by the left translation Lh(g) = hg. For some
integer d, the character (det p\Δf corresponds to a relative invariant of
(G, |0, V) and we can find a J = (^, - , δn) in Q" such that

{det p{g)IΔ{g)Y =

Let dg be a right invariant measure on Gί and dx be a Euclidean measure
on VR. Put

For any x in F^, the group Gϊ is a unimodular Lie group. Normalize
a Haar measure dμx on Gί by the following formula:

(1-1) \ F{g)dg = \ ω{p{g)x) \ F(gh)dμx(h) (FeL\Gϊ, dg)) .

The volume
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4
is finite for any x in V'Q.

Let L be a Γ-invariant lattice in VQ and set L' = L Π F^ and L€ =
L' i l7( (1 ^ i ^ v). The subset Lt is also Γ-stable and we denote by
Γ\Li the set of all Γ-orbits in Lt. We put

ML; β) = Σ MaOl TO I"81 IPM r« (seCM^i^v).
xeΓ\Lt

The Dirichlet series ξl9 , £„ are called the zeta functions associated with
«?, ft 7).

1.2. A p.v. (G, p, F) is said to be split over a field K if it is defined
over K and every rational character of G corresponding to a relative
invariant is also defined over K. Now the following lemma is an easy
consequence of [14, Lemma 1.2 (ii) and Lemma 1.3].

LEMMA 1.1. The following assertions are equivalent:
(1) (G, p, V) is split over K.
(2) Every absolutely irreducible component of S with codimension

1 is defined over K.
( 3 ) Any relative invariant coincides with a rational function with

coefficients in K up to a constant multiple.

In the rest of this paper, we are exclusively concerned with p.v.'s
split over Q.

Set G1 = {ge G; Xt(g) = 1 (1 ̂  i ^ n)}. Since we are assuming that
((?, p9 V) is split over Q, the group Gx coincides with the group generated
by ^ ( G ) , RU(G) and a generic isotropy subgroup Gx for an xeV — S
(cf. [16, § 4 Proposition 19]). Denote by H the connected component of
the identity element of Gx. Then H is the group generated by ϋ^(G),
RU(G) and G°x for an xeV - S. Put Hx = HnGx. Obviously Hx con-
tains Gx. We always assume that

( S ) Hx i s a connected s e m i - s i m p l e a l g e b r a i c g r o u p f o r a n y x e V — S .

It follows from (S) that V — S = G/Gx is an affine variety (see, e.g.,
[1, p. 579]). Hence the singular set S is a hypersurface defined by the
polynomial Pγ Pn.

For any semi-simple algebraic group A defined over Q, we denote
by A = {A, π) the universal covering group of A defined over Q: π: A —> A.
It is known that H\QP9 A) is trivial for any finite prime p (cf. [21,
Theorem 3.3]). Consider the following property for such a group A:

(H) For every inner Q-form A! of A,
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H\Q, λ')-*JlHι(Q,, Ά) = H\R, A')

is a bijection.

We shall say that (G, p, V) has the property (H) if the group Hx

has the property (H) for any x in VQ — SQ.
We further consider the following condition:

(W) For any x e VQ — SQ, the Tamagawa number τ(Hx) of Hx does
not exceed some positive constant independent of x.

The main theorem of this paper is as follows:

THEOREM 1. If a p.v. (G, p, V) split over Q has the properties (S),
(H) and (W), then the Dirichlet series ξ^L s), •• ,f1/L;s) are absolutely
convergent for Re st > δlf , Re sn > δn.

If the group Hx is trivial for some x e V — S, we may consider that
(G, p, V) satisfies (S), (H) and (W).

COROLLARY. Let (G, p, V) be a p.v. split over Q. If the group Hx

is trivial for some xe V — S, then the Dirichlet series ξ^L; s), , ξv(L; s)
are absolutely convergent for Re sx > δl9 , Re sn > δn.

REMARK 1. If Hx has no simple component of type E8, the condition
(S) implies the condition (H) (cf. [3]). By the classification of irreducible
p.v.'s ([16]), no simple component of type EB appears in Hx (xeV — S)
for any irreducible regular p.v. The so-called Weil conjecture asserts
that the Tamagawa number of any simply connected algebraic group
defined over Q is equal to 1. This conjecture is established for a fairly
wide class of semi-simple algebraic groups (cf. [7], [8], [9] and [24]). For
such groups, we can take 1 as a positive constant in (W). These remarks
show that the most essential condition is (S). Notice that this condi-
tion is concerned only with the structure of (G, p, V) over C.

REMARK 2. Theorem 1 and Corollary are partial affirmative answers
to the conjecture proposed in [14, § 4].

1.3. Let (G, p, V) be a p.v. split over Q with the properties (S),
(H) and (W). Assume that (G, p, V) is decomposed over Q into a direct
sum as (G, p, V) = (G, ftθft, E®F) and F is a Q-regular subspace.
Note that, by the assumption that (G, p, V) is split over Q, any regular
subspace is necessarily a Q-regular subspace. Let F* be the vector space
dual to F and p$ the representation of G on F * contragredient to p2.
Set ^* = ft 0 ft* and V* = J5© F*.



ZETA FUNCTIONS 81

PROPOSITION 1.2. The p.v. (G, ̂ *, F*) is also a p.v. split over Q
with the properties (S), (H) and (W).

PROOF. By [14, Lemma 2.4, (iii)], the group of all characters cor-
responding to relative invariants of (G, p, V) coincides with that of
(G, <o*, F*). Hence (G, p, V) is split over Q if and only if so is (G, p*f V*).
Let P be a relative invariant of (G, p, F) with coefficients in Q such that
the Hessian

flp,, = det ( - £ | L - (a, 7/)) (xeE, yeF)

with respect to .F does not vanish identically. Then the mapping
φP: V — S —> F* — S* introduced in [14, (2-3)] is a G-equivariant biregular
rational mapping defined over Q (cf. [14, Lemma 2.4, (iv)]). Moreover φP

induces a one-to-one correspondence between VQ — SQ and Vg — S$. For
any ξ e VQ — S ,̂ we have Gf = G^p(e, and hence Hξ = JEf#p(e) (cf. [14, Lem-
ma 2.4, (ii)]). Thus the conditions (S), (H) and (W) are satisfied also by
(G, p*, F*).

Let (G, p, V) = (G, ftφft, E@F) be a p.v. split over Q with a
Q-regular subspace JP satisfying the conditions (S), (H) and (W). Then
the condition (S) yields the condition (6-1) of [14]. As is remarked in
the preceding paragraph, (G, p, V) satisfies (5-2) of [14]. The condition
(6-2) follows immediately from Proposition 1.2 and Theorem 1. Hence
the results in [14, § 6] can be applied to such a p.v. and we are able to
obtain functional equations of associated zeta functions.

THEOREM 2. Let (G, p, V) be a p.v. split over Q with a reductive
algebraic group G satisfying the conditions (S), (H) and (W). Then the
Dirichlet series ξλ(L\ s), , ζ£L\ s) have analytic continuations to mero-
morphic functions of s in the whole of Cn.

PROOF. Since G is reductive, the condition (S) implies that F is
regular over Q ([16, §4 Remark 26]). Hence the theorem follows from
Theorem 1 and [14, Corollary 1 to Theorem 2].

1.4. As examples, consider the following two p.v.'s which were
studied in [14, § 7].

(1) G = SL(2) x GL(1)3, V = σ®σ® C\ p(g, tu ί2, «,)(*, y, z) =
(gxtr1, gytϊ\ gztς1),

(2) G = GL(2) x GL(1), F = {x e M(2; C); *x = x) 0 C\ p(g2, Λ)(a?, y) =

In these two cases, we have
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(1) H = SL(2) x {I}3, δ = (1,1,1), Hx = trivial for all x in V - S,
(2) i ϊ = SL(2) x {1}, 8 = (1,1), if* = trivial for all x in V - S.

Hence, by Corollary to Theorem 1, we see that the associated zeta func-
tions are absolutely convergent for Re slf Re s2, Re s3 > 1 in the former
case and for Re su Re s2 > 1 in the latter case. The explicit formulas
(7-4) and (7-5) of [14] of the zeta functions for the standard lattices Vz

show that our result is the best possible.
We shall present another application of Theorem 1 in § 3 (see also

[15]).

2. Proof of Theorem 1. We devide the proof into several steps.
2.1. Let φ:V-+Cn be the polynomial mapping defined by φ(x) =

(P^x), , Pn(x)). For any t e (Cx)% we put V{t) = φ~\t). Since V -S =
Φ~\(Cx)n) is a G-orbit, Gι acts on V(t) (te(Cx)n) transitively. Take a
point x in V(t). Then Gx = &(G)RV(G)GX and hence V(t) is a &(G)RU(G)-
orbit. In particular V{t) is a homogeneous space of H and is irreducible.
It is clear that φ is submersive at any point in V — S. Hence we have
a Q-rational gauge form θt(x) = dx/dP, Λ Λ dPn on F(ί) for any t e (Qx)n

(cf. [25, 1.5.]). It is clear that the gauge form θt is iϊ-invariant. For
a Q-rational point ς in V{t), we define a morphism 7Γe: JΪ-» V(ί) by
πξ(h) = /t>(Λ)f. Let cίfc be a Q-rational invariant gauge form on H and
dvξ be the Q-rational invariant gauge form on Hξ given by dvξ —
dhl(πξ)*(θt). It is easy to check that we can normalize a Haar measure
dg on Gt such that

(2-1) dμξ = Π 11,1""1! dvf U (ί e 7(t)β)
i = l

on Hξ)R Π G?, where cί^ is the Haar measure on Gt normalized by the
formula (1-1).

Let

(2-2) »(ξ)

Obviously the indices [Hξy. Hξ}R Π Gt] and [Gt: Gt Π ίί f,Λ] are finite and
depend only upon the GJ-orbit of ξ. Hence we can find two positive
constants A and B such that

(2-3) A Π Ittr*~Mί) < μ(ξ) <Bfί\U\δ^v(ξ) (ξ e V{t)Q) .
i=l i=l

It is sufficient to prove Theorem 1 for L = Vz. Moreover we may
assume that Pl9 , Pn have coefficients in Z. Then we have
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where t = (tlf •••,*„) runs through all ^-tuples of non-zero integers and
the summation with respect to ξ is taken over a complete set of represen-
tatives of Γ\V(t)z. Now we consider the sum A(t) = ΣeβHZ\F(*>ẑ (5) The
group Γ and Hz are commensurable. Hence, by (2-3), the domain of
absolute convergence of Σϊ=i &(L; s) coincides with that of the Dirichlet
series

(2-4) ΣAφΠlίJ-'-"'-1.
t i=i

So we concentrate our attention to the estimation of A(t).
2.2. Let A be an algebraic group defined over Q or a Galois module

over Q. We use the following two symbols:

i\A) = #(Ker {H\Q, A) -> Π # m , A)}) , h\A) =

LEMMA 2.1. Lei A be a connected semi-simple algebraic group de-
fined over Q with the property (H). Let (A, π) be the universal covering
group of A defined over Q. Denote by M the kernel of π and put

M = Horn (AT, GL(1)) .

The group M is a Galois module over Q in a natural manner. Then
we have

i\A) ^ i\M)h\A) .

REMARK. By the condition (H) and [2, Theorems 6.1 and 7.1], the
right hand side of the inequality is finite.

PROOF OF LEMMA 2.1. Consider the following commutative diagram:

H\Q,Ά) -^-> H\Q,A) ~ -̂> H\Q,M)

Π H\Qy, Ά)-^Tί H\Qvy A) — Π H2(Q,, M) .
1/ V V

Both of the horizontal sequences are exact. Let 7 e H\Q, A) be a
cohomology class in Ker %>x. Then we have %(Δ-\Δ(Ί))) ^ (̂r-A) where rA
is the inner Q-form of A corresponding to 7 (cf. [18, Chap. 1, § 5, Prop.
44, Cor.]). Since 7 is in Ker p19 ΊΆ is isomorphic to A over R. Hence,
by (H), #(z/-1(z/(7))) ̂  feXA). Therefore, by the duality theorem of Tate
([23, Th. 3.1 (a)]), we obtain

i\A) ^ ^(A)#(Ker p2) = i\M)h\A) .

2.3. We return to the situation in § 1 and § 2.1. Let HA (resp. VA,
V(t)A) be the adelization of H (resp. V, V(t)) over Q. The representation
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p induces an action of HA on VA and hence on V(t)A. We denote them
also by p. Two elements x and y in VQ are said to be globally (resp.
locally) equivalent if they are in the same HQ- (resp. HA-) orbit. Denote
by Θx the set of all elements in VQ locally equivalent to x e VQ: Θx —
VQ Π p(HA)x. We write ~\ΘX for the set of all global equivalence classes
in Θx. Put τ{Θx) = Σfe-\βxτ(He) where r(fl"e) is the Tamagawa number
of the semi-simple algebraic group Hς.

LEMMA 2.2. TΛe numbers τ(θx) (xe VQ — Sρ) are bounded.

PROOF. Let (2Ϊe, π) be the universal covering group of Hξ defined
over Q and put Mξ = Ker π and Mf = Horn (Mζ, GL(1)). By [10, Theorem
2.3.1],

τ{Hζ) = %{&t)τ{Bt)H\&d

where Mf is the set of all fixed elements in Mξ under the cannonical
action of © = Gal (Q/Q). Set

The condition (W) asserts that τ is finite. Hence τ(Hξ)t^τmliι{Mξ) where
m = #(Me) = IK-Mf). By the prehomogeneity, the constant m does not
depend on ξ. Let y be an element in θx such that ^(MJ ^ iι(Mζ) for
any f e©,,.. Then, by [12, Lemma 6.2] and Lemma 2.1,

τ(βx) ^ τm ίι(Hy)/ϊ(My) ^ τm h\Hy) .

The condition (H) implies that h\Hy) depends only on the isomorphism
class of Hy over R. Since the number of GJ-orbits in VR — SR is finite,

h1 = Sup {h\Hy); y e VQ - SQ} < + oo.

Thus we have the inequality τ(θx) <: τm h1 (xeVQ — SQ). The right hand
side of this inequality is independent of x.

2.4. By the condition (S), the group H has no non-trivial rational
character. Hence, for any 16 (Qx)n, V(t) is a special homogeneous space
defined over Q in the sence of Ono [12]. The formal product ILI^tl*
well-defines a measure on V(t)A (cf. [12, § 4]). The Tamagawa measure
on HA (resp. HξtA, ζeVQ- SQ) is given by

\dh\A = Π \dh\y (resp. \dvζ\Λ = Π I ^ L )

LEMMA 2.3. Let f be an everywhere non-negative function in
L\V{t)Λ;\θt\Λ). Then

Kf, t) = \ Σ f{p(h)ξ)\dh\A<cλ f(x)\θt(x)\A
JHA/HQ ξeV{t)Q JV(t)A
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for some positive constant c1 independent of t and f

PROOF. It is easy to see that

, *) = Σ'τ(ffe) \

where the summation is taken over all the global equivalence classes ξ
in V(t)Q. Since the integral on the right hand side depends only on the
local equivalence class of £, we have

ξ

where the summation is taken over all the local equivalence classes ς in
V(t)Q. By Lemma 2.2,

f, t)<cΛ f(x)\θt(x) \Λ£CA f(x)\θt(x) U
JP(HA)VU)Q JV{t)A

for some positive constant c1 independent of t and /.

LEMMA 2.4. We have the inequality

A(t)<c2ll\ \θt(x)\
p JvwZp

for some positive constant c2 independent of t, where the product with
respect to p is taken over all finite primes of Q.

PROOF. Set Φ = ® v Φu where Φp is the characteristic function of Vz

for any finite prime p and ΦM is an everywhere non-negative smooth
function on VR with the compact support contained in VR — SR. Then
the restriction of Φ to V(t)A is an ^-function with respect to the measure
\θt\Λ and

I(Φ, t ) = I(Φ\y{tUf t)^n\ \dh\9 x \
P JHZp J

\ Σ
p JHR/HZ ς e K ( ί ) z

Since H is special in the sense of Ono [12], the product

\dh\,

is finite. Let V(t)R= V(t)1>RΌ U V(t)m>R be the iϊΛ-orbit decomposition.
For any GΛ-orbit έ? in VR - SR and for t e (Rx)n such that V(t)R Π & Φ 0 ,
the number of £ΓΛ-orbits in V(t)R Π & depends only on έ?y since HR is a
normal subgroup of GR. This shows that the number m of £ΓR-orbits in
V(t)R does not exceed some positive constant M. Put V(t)ifZ = V(t)ifR Π
V(t)z. Assuming that (Supp ΦJ Γi V(t)R c V(t)i>R9 we obtain
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I(Φ, t) ^ Ait),• JΠ ( \dh\,\ \ Φ»(*)|θt{x)U .

Here we put A(£)* = Σe ^(f) where f runs through a complete set of
representatives of Hz\V{t)iiZ. Hence, by Lemma 2.3,

A(jt)t<eAu\ \dh\yu\ \θt{x)\P
\ P jHZp ) V JVU)Zp

for any i. Therefore the inequality in the lemma is valid for

2.5. For any algebraic object X defined over Q or Qp, we denote
by X{p) the reduction of X modulo a finite prime p. The following lemma
is easily proved by the theory of reduction of constant fields (cf. [19,
Chap. III]).

LEMMA 2.5. There exists a finite set Px of primes of Q such that,
for any finite prime p g Plf

(1) G(2>) is a connected linear algebraic group defined over Fp,
( 2 ) the reduction p{p) of p is a representation ofG{p) on V{p) defined

over Fp and p{p)(Gip)) acts on V{p) — S{p) transitively,
( 3 ) all the coefficients of Pl9 , Pn are in Zp and S{p) is given by

S{p) = (){xeV{p);P}p)(x) = 0}.
ΐ = l

Take a Q-subgroup H8 of H such that H8 is semi-simple and H is a
semi-direct product of H8 and RU(H). Since H has no non-trivial charac-
ter, such an H8 exists (cf. [12, Theorem 2.1]).

LEMMA 2.6. There exists a finite set P2 of primes of Q such that
(1) P,=>P l f

(2) if p£P2, then H{p) is a connected linear algebraic group defined
over Fp and is a semi-direct product of Ru(H)(p) and H{p\

(3) for any t e Zn, if (p, tL - - tn) = 1 and p $ P2, then H}P acts
transitively on V(t){/\

PROOF. Fix a ξ e (V - S) Π Vz and put τ = (τu - , τn) = (P^f), ,
Pn(f)). Let P2 be a finite set of primes which, in addition to (1) and (2),
satisfies the conditions

(4) if p <2 P2, then (p, τx τJ = 1 and ίZ"(p) acts transitively on
F(r) ( p ), and

( 5) if p £ P2, then (HξY
p) is a connected semi-simple algebraic group

and coincides with the group



ZETA FUNCTIONS 87

where ξ = ζ (modp). Let us prove that these four conditions imply the
condition (3). Let p be a prime which is not contained in P2 and let
tit m"9tn be rational integers such that (p, tλ tJ = 1. Since p £ P19

the group G{p) acts transitively on V{p) — S{p). Hence, for an i}GV(ty/},
there exists a geG{p) such that p{p)(g)ζ = η. By (4), gH^g"1 = H{p) acts
transitively on V(t){p). By (5), the group H$p) = gH^g"1 is also con-
nected. Therefore, by [5, Theorem 2], the principal homogeneous spaces

over H}p) defined over Fp have non-empty sets of Fp-rational points.
This shows that P2 satisfies the condition (3).

LEMMA 2.7. If pίP2 and tlf , tn e Zp

x,

for an ηe V(t){

F

p)

p.

PROOF. If pίP2 and tlf , tneZ*, we have, by Lemma 2.6 (3),

(2-5)

for an ηe V(t){

F

p\ Since H{p) acts on V(t){p) transitively, every point in
F(ί)fp) is a simple point. Hence, by the same argument as in the proof
of [24, Theorem 2.2.5], we obtain

ί
Combining this equality with (2-5), we get the lemma.

LEMMA 2.8. Let t be an n-tuple of non-zero integers. Then, for
some positive constant c3 independent of t,

irί
P JΓpa)

where Γp(l) = {xe VZp; Pi(x)eZp (1 ^ i ^ n)} and the product is taken
over all finite primes such that (p, tλ) = = (p, tn) = 1 and p & P2

PROOF. Since H{

8

P) and H^ (η 6 V{t){φ are semi-simple for p £ P2,
it is known that

ΐ = l
ξ p) ^ Π (1 + P'alί))

ΐ = l P P i = l

and

π (i - ?>-δ(i)) ^ p-ilmH7> *mP) ^ π (i + 2>-6(i))
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where r = rank Hi9), r' = r a n k i ϊ ^ and a(i), b(ϊ) Ξ> 2 (cf. [11] and [10,
Appendix II]). The constants 6(1), •••, δ(r') and r' are independent of η
and p. By Lemma 2.7, we have

(2-6) Jπ α - p'β ( 0)}/{π α + p-δ(i))}

\θv\,ύ{ίιa + p-a(i))\l\ή a - p-*(

τ)Zp U=l )/ U=l

for any p 6 P 2 and any τ e (Zp

x)w. Hence

F ( Γ ) Z J )

for any p$P2 such that (p, ί j = = (p, tn) = 1 and for any τ e {Z})n

Put

i i ( i -
where the product is over all the finite primes. Then

Λ \θT\,Π'ί
v 3

2.6. Let Γ be the torus part of the radical of G. Since (G, p, V)
is split over Q and has the property (S), T is a Q-split torus of dimen-
sion n. Let ψu , ψn be a system of generators of the group of rational
characters of T. Then there exists an n by n integral matrix D = (dtj)
of rank n such that lt = Π?=i ̂  (1 ^ i ^ ^) on Γ. We identify Γ with
GL(l)n via the isomorphism ψ: T -+ GL(l)n defined by ψ(g) = (^(g), ,
ψn(flr)). For any prime number p, we put TZp = ψ~\(Zp)n). Let ip be
the index of p(TZp) Π GL(V)Zp in /θ(ΓZj>). The index ip is finite for all p
and is equal to 1 for almost all p. Set

Vt)Zp = {7^; α; e F(ί)Z p, 7 e p(TZp) n j

Denote by c ,̂ , dn the elementary divisors of D and set

vP = fl \ \dτ\p9
ί=l JUp(di)

where t/pίd,) = {r = u d ί; u 6 Z*}. For a ^ e (Z*)n and a ί e (Qx)n, we write

^̂  = au-\u))9 , z.cψ-w)) = (π up, - -, π
VJ=I i=i

and
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uDt = {Uf-\u))tu . . , Uψ-\u))tn) .

LEMMA 2.9. For any finite prime p and any te(Z — {0})n,

\ \θt\, ύdMi^ tJϊΛ \dχ\p.
ivwzp Svt,zp

)vt,zp

PROOF. For a we(Z*)n such that ρ°ψ-χu)eGL(V)Zp, poψ-\u) in-
duces a homeomorphism of V(t)Zp onto V{τ)Zp and we have

where τ = uDt. Further we obtain

dτX ••• \dτn\p ^ \t, ••• tn\pvp/ip

where the integral is taken over the set

{τ = uDt; u e (Z*)», p o a^-1^) G GL(F)Z J >} .

Hence

I u r \p
Zp

p p n )vttZp

 P

COROLLARY. If (p, dλ) = = (p, dJ = 1,

j I ί t |p ^ i p Π (dt, p - l) |ί! ί» I?1 J F (1 - p-1)-"! dx \p.

PROOF. If (p, di) = l, then

JC7'p(«ij)

This proves the assertion.

2.6. The following lemma is a generalization of a part of [13,
Theorem 1].

LEMMA 2.10. (1) Put

((1 — p~ι)n for v = α jfouίe prime p ,

(l /or v = oo .

{λj is α convergence factor for V — S, namely,

\dx\p < oo .
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(2) For any fe<9*(VA)f the integral

J(V-S)Ai=l

is absolutely convergent for Re sx, , Re sn > 0, where

PROOF. Since we are assuming that (G, p, V) is split over Q, the
polynomials Pu , Pn are absolutely irreducible and algebraically inde-
pendent. We take a finite set P of primes of Q satisfying the following
three conditions:

(1) Paoo.

(2) If p & P, then Pl9 , Pn have coefficients in Zp. Moreover their
reductions Pip), , Pip) modulo p remain to be absolutely irreducible and
algebraically independent.

( 3) If p $ P, then

\

Let p be a prime such that pi P. In the following, we denote by
Ci, C2> * *' positive constants independent of p. For any subset I of
{1, 2, ••-, n}, we put

Nip) = #{aj e F,d i m F; PJ*}(a0 = 0 for all i 6 7} .

In particular, for I = 0 , Np = p d i m F . Then #[(F - S)^] = Σ / (-lJ ^iSΓ^.
Since P[p\ •• ,P7ί

3>) are algebraically independent, by [6, Lemma 1],

(2-7) Nίp) ^ Clί>
dimF-*(7) .

If #(I) = 1, by [6, Theorem 1] and the fact that P,(3>)'s are absolutely
irreducible, we have

(2-8) \Nιjp) - p * 1 * ^ - 1 ! ^ c 2 ί> d i m F ~ 3 / 2

By (3), we get

( = (1 - p-Tn Σ (-
i

Hence, by (2-7) and (2-8),

(2-9) - λp1 \ \dx\%

MV-S)Zn

<
1-3/2

This implies the first assertion. It is enough to prove the second asser-
tion under the additional assumption that / is of the form / = ® v fu

where fveS^(VQ) and fp is the characteristic function of VZj> for almost
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all p. So we may assume that, if p$P, fp is the characteristic function
of VZp. For a pgP, put

p

Also put
^ = {x e FZ p; P,(aO * 0 (mod p) for all i}

and JEΊ = VZp - Eo. Since |Pi(α;)|p = 1 (1 <: i £ n) on 2£0, we have by the
assumption (3)

(2-10) ί Π

Assume that Re sl9 , Re sn ^ ε. Then | Π?=i I Pt(x) I?
Hence

Ex.

I ( Π IP*(ίc)ΓPVIdx\p\S λ r p - ^ ^ P , : mod p] .

It is obvious that ^[E,: moάp] = Σ/^a ( - l ) 1 " ' " 1 ^ ' . By (2-7), we get

(2-11) <

Since the integral over VZp is the sum of those over Eι and #„, it follows
from (2-9), (2-10) and (2-11) that

< c5 Max (p~v\ p~ι-ζ)

(p ? P , Resx, , Re sn ^ ε). This shows that the integral

S n

I I Jj (/γί\ * -p (*y* i "\ tl Ύ
I J_ ϊ \ / 1/4 •/ V*̂ / *^ W A/ L4

(F--S)^ i = l

converges absolutely for Re slf , Re sn > 0 and is equal to the product

2.7. Now we are ready to prove Theorem 1. Set

p 3 = p 2 u {p; p\di for some i} U {p; ip ^ 2} ,

where P2 is a finite set of primes given by Lemma 2.7. By Lemma 2.8,
Lemma 2.9 and its corollary, we obtain

(2-12) Π ί \θt\P<c3{U i,(l - P-Ύ/VP}\ Π Π (dt, p - 1)'
P JV{t)Z/n peP3 Kp\tV"tn i=l

X
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where Γp(t) = {xe VZp\ \Pi(x)\p = \U\P (1 <; i ^ n)} and c3 is t h e constant

given by Lemma 2.8.

LEMMA 2.11. Let d be a non-zero integer. Then, for any ε > 0,
there exists a constant ce such that

π(d,p-l)<cε\t\*
P\t

for all teZ- {0}.

PROOF. Take a prime number p0 such that log d < ε log pQ. Let m0

be the number of primes smaller than p0. Let m be the number of
primes which divide t. If m <; m0, then HP\t (d, p — 1) ^ dm <* dm°. As-
sume that m > mQ. Let

\t\ = pi1 • p; w (Pi < p2 < < P , n ^ 1)

be the decomposition of | ΐ | into the product of primes. Then we have

log 111 = Σ rt log Pi > m0 log 2 + (m - m0) log p 0 .

Hence

Π (d, P - 1) ^ ώm < exp {(log d/log p0) log | ί | + m0 log d} < rfw°| t \ε .
P i t

Thus we get ]χ>ι* W, p - 1)< dm°\t\ε for any t e Z - {0}.

For an arbitrary ε > 0, by (2-12) and Lemma 2.11, there exists a
constant c\ independent of t, such that

πί
Therefore, by Lemma 2.4, the Dirichlet series (2-4) is majorized by

^ 2nc2c[ Π Π
P )vZpi=l

Lemma 2.10 implies that the Dirichlet series (2-4) converges absolutely
for Re 8χ > δί9 , Re sn > δn. Thus Theorem 1 is proved.

REMARK. If we remove the assumption that (G, p, V) is split over
Q in Theorem 1, then we are able to obtain a less precise result that
&CL; s), , ξ£L\ s) are absolutely convergent for Re sx > δx + r + 1, ,
Re sn > δn + r + 1 where r is the dimension of the torus part of the
radical of H. Moreover, Theorem 2 is valid without the assumption of
of splitness of (G, p, V).
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3. Application. In this section, we give an application of Theorem
1 to the castling transform. The notion of castling transform was
introduced by M. Sato and plays an essential role in the classification of
irreducible p.v.'s (see [16]).

3.1. Let Go be a connected linear algebraic group, F o a finite dimen-
sional C-vector space and p0 a rational representation of Go on Fo. For
any positive integer k, we denote by Λι the standard representation of
GL(k) (or SL(k)) on the Λ -dimensional vector space V(k) = Ck. Put m =
dim Fo. For a k (1 <* k <. m — 1), consider the triples

(G, p, V) = (Go x GL(k), p0 (x) Λί9 F o <g) F(&))

and

(G', p', V) = (Go x GL(m - k), pϊ <g> Λu Fo* (x) F(m - fc))

where Fo* is the vector space dual to Vo and p£ is the representation
of Go contragredient to p0.

Let A\V0) (resp. Am"fc(V0*)) be the fc- (resp. (m - &)-) fold exterior
power of F o (resp. V*). The representation jθ0 (resp. p*) canonically
induces a representation pk (resp. p*_fc) of Go on Ak(VQ) (resp. Am~fc(^ro*)).
We may identify Λfc(^o) and Am~fc(^o*) via the canonical pairing Afc(^o) x
AmΛV0)-* Am(V0) = C. Fix an identification c: A\V0) -> Am" f c(F0*).
Then

(3-1) *(ft(flOy) = det ft(flr) ρ*-k(g)c(y) (g zGQ, y e A\V0)) .

We also identify F (resp. F') with the direct sum of k (resp. m — k)
copies of Vo (resp. Fo*). Let λ :F->A f c (^o) and λ': V -> Am"fc(^o*) be
the mappings defined by λ(xx, , xk) = ^ Λ Λ % and λ'(a?*, , a?ϊ_fc) =
a?? Λ Λ α£_*. We get

fλ(/o(ff, fc)aj) = (det hy

W ( Λ W ) = (det
(ireGo, heGL(k), h'eGL{m- k), xeV, x'eV).

Set TΓ = F - λ-^O) and TΓ = F ' - \'-\0).

LEMMA 3.1. For an xeW and an x'e W such that c(x(x)) = X'(x')9

the isotropy subgroup Gx of G at x is isomorphic to the isotropy subgroup
G'x, of G' at x'.

PROOF. Let p (resp. pτ) be the projection of G (resp. G') onto Go.
Since the fibre λ-1(λ(ίc)) (resp. X'~\x'(x'))) is a principal homogeneous
space of SL(k) (resp. SL(m — &)), we obtain

p(G.) - {0eGo; pk(g)X(x) = ίλ(a?) for some ί eC x }
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and

p\G'm.) = {geG0;pt_k(g)X'(x') = tx'(x') for some teCx} .

Hence, by (3-1), p(Gx) = p'(G'x>). It can be easily seen that Gx = p(Gx)
a n d G'x, = p'(Gf

x,).

The next lemma is an immediate consequence of Lemma 3.1.

LEMMA 3.2. The triple (G, p, V) is a p.v. if and only if the triple
(G', ρ\ V) is a p.v. In this case, we have cX(V — S) = X'(V — S'), where
S and S' is the singular sets of (G, p, V) and (G', pr, V), respectively.

We call the triples (G, p, V) and (G', p\ V) the castling transforms
of each other.

It is well-known that any invariant of SL(k) (resp. SL(m — k)) on
V (resp. V) is a composite of a rational function on Afc(^o) (resp.
Am~k(Vo*)) and λ (resp. λ') Hence we obtain the following lemma:

LEMMA 3.3. Any relative invariant of (G, p, V) {resp. (G', p', V')) is
of the form Q(X(x)) (resp. Q(λ'(αj')))» where Q is a homogeneous relative
invariant of the triple (Go, pk, Ak(V0)) (resp. (Go, <o*_fc, A

m~fc(^o*))).

Note that there exists a natural one-to-one correspondence between
the set of homogeneous relative invariants of (Go, pk, Λfe(^o)) and that
of (G0,p*_k, Am~k(Vo*)).

Suppose that (Go, ρ0, Vo) is defined over a field K. Then (G, p, V)
and (G', ρ\ V) have natural iΓ-structures. In Lemma 3.1, if x and xf

are Z-rational points, Gx and G'x, are iΓ-isomorphic. Moreover, we have
cX(Vκ - Sκ) = X'(V'K - S'κ). By Lemmas 1.1 and 3.3, (G, p, V) is a p.v.
split over K if and only if so is (G', |θ', V).

THEOREM 3. Suppose that (Go, p0, Vo) is defined over Q. Then the
following two assertions are equivalent:

(1) (G, p, V) is a p.v. split over Q with the properties (S), (H) and
(W).

(2) (G', p\ V) is a p.v. split over Q with the properties (S), (H)
and (W).

PROOF. We prove (1) implies (2). By the observation preceding the
theorem, (G', p', V) is also a p.v. split over Q. Let H (resp. H') be the
connected component of Gx = GX&(G)RU(G) (resp. G[ = G'x,&(G')Ru(G'))f

where x (resp. x') is a generic point of (G, ̂ o, F) (resp. (G', ̂ ', F')) Since
cX(VQ - Sρ) = λ'(F^ - S'Q), for any a?' e V'Q - S ,̂ we can find an x e VQ - SQ

such that c(x(x)) = λ'(#'). Put Go%, = p(G°x) = p'(G'x?). By the condition
(S) for (G, p, F), the group GoV is a connected semi-simple algebraic
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group and has no non-trivial character. Hence, for any g e Go)X,, we have
Pk(g)M%) = λ(#) and pl-h{g)X\x') = λ'(a?'). This implies that ffJcGoV x
SLQc) and (Gv)° <=(%.' x S£(m - k). Therefore H = HQ x SL(k) and
H' = Hox SL(m - k), where we put Ho = GQ°,X>&(GQ)RU(GO). Thus we
obtain H. = {g e Ho; ft(ff)λ(a?) = λ(s)} = {</ e iϊ0; pZ_k(g)X\x') = λ'(a')} = # . -
Since the isomorphisms are all defined over Q, the conditions (S), (H)
and (W) hold also for (G', p'f V9).

3.2. As is noted in [16, § 2], the castling transform gives us a
method to construct a new p.v. from a given p.v. Thanks to Theorems
1 and 3, we are able to make use of the castling transform in order to
find new Dirichlet series satisfying certain functional equations. Here
is an example:

Let Y be an m by m rational non-degenerate symmetric matrix of
signature (p, q) (p + q = m, p,q*zl). We assume that m ^ 4. Set
Go = SO(Y). Denote by p0 the natural representation of Go on Vo —
V(m) = Cm. Also set G(1) = SO(Γ) x GL(1) and F ( 1 ) = VQ. Let !O(1) be
the representation of G(1) on V{1) defined by the formula

p«\g9 t)x = po(g)xt~1 (g e SO(Y), t e GL(1), x e Vω) .

The triple (G(1), pω, Va)) is a regular p.v. split over Q and has a unique
(up to a constant factor) irreducible relative invariant P(x) = *xYx. The
zeta functions associated with this p.v. are the Siegel zeta functions (see
[20] and [17, §2, n°4]).

It is easy to check that the p.v. (G(1), pω, Va)) satisfies (S), (H) and
(W). By the repeated use of Theorem 3, the triples

(G(2), p{2\ F(2)) = (G(1) x SL(m - 1), ρa) (x) Λ19 V
ω ® V(m - 1)) ,

(G(3), p{*\ F(3)) = (G(2) x SL(m2 - m - 1), ^ ® Λ, V{2) (x) F(m2 - m - 1)) ,

are p.v.'s split over Q with the same properties. Since G(ί) is reductive
and the generic isotropy subgroup is semi-simple, all these p.v.'s are
regular (over Q) ([16, § 4, Remark 26]). By Theorems 1 and 2, their
associated zeta functions are absolutely convergent in some half plane
and are continued meromorphically to the whole complex plane. Applying
the result in [17] or [14] to these p.v.'s, we are able to obtain infinitely
many new Dirichlet series which have analytic continuations to mero-
morphic functions in C and satisfy certain functional equations.

Here we give the explicit form of the functional equations of the
zeta functions only for (G(2), p{2\ V{2)). In the following we omit the
superscript (2).
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Identify the vector space V with M(m, m — 1). The representation
p is given by

p(g91, h)x = gx{th)~ι (g e SO(Y), t e GL(Ϊ), h e SL{m - 1),

x e M{m, m — 1)) .

We also identify F* with V = ifcf(m, m — 1) via the symmetric bilinear
form

(x, x*} = tr *##* (a?, #* 6 M(m, m — 1)) .

The representation p* contragradient to p is given by p*(g91, h)x* =
*flr-V(ί *λ). The polynomial P(a) = det(*a?Γaj) (resp. Q(a;*) = detCaί*^1^*))
is an irreducible relative invariant of (G, p, V) (resp. (G, p*, V*)).

Set GJ = SO(Y)R x R+ x SL(m - 1)Λ where R+ is the multiplicative
group of positive real numbers. We put

V+ = {xeVR; P(x) > 0} , V_ = {xe VR; P{x) < 0} ,

V* = {α* e Vi) Q(x*) > 0} , VI = {x* e VZ; Q(x*) < 0}

where VR = VR = M{m, m — 1; R). The orbit decompositions of VR — SR

and VR — S£ are as follows:

VR-SR=V+[JV_, Vk* - SΛ* - Vΐ U F * .

For an fe^(VR) = ̂ (F Λ *), set

Φ±(/J s) - ( \P(x) \sf(x)dx and Φ*(/; β) = \ \Q(x*) \*f{x*)dx* ,

where cίίc and dx* are the standard Euclidean measures on VR and V£,
respectively. We define the Fourier transform / of / by putting

f(x) = \ f(x*) exp (2πι/^ϊ(xf x*})dx* .

The explicit form of the functional equation in [17, Theorem 1] (or [14,
Theorem 1]) is as follows:

LEMMA 3.4. The functions Φ±(f, s) and Φ±(f; s) have analytic con-
tinuations to meromorphic functions of s in C and satisfy the following
functional equations:

j __ , •

x Π Γ(β + (i + l)/2)2 Π sin (2s + i)π/2

' -s in (2s + q)π/2 sin pπ/2 \ IΦ%(f\ - s - m/2)'

sin qπ/2 -sin (2s + p)π/2) \ΦΪ(f; - s - m/2),
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Let L be a p(SO(Y)z x SL(m — l)z)-invariant lattice in M(m, m — 1; Q)
and L* be the lattice dual to L. Let ξ±(L; s) and ξi(L*;s) be the zeta
functions introduced in § 1 (or [14, § 4], [17]). Set

v(L) = j dx .

By Lemma 3.4 and [14, Theorem 2] (or [17, Theorem 2 and Additional
Remark 2]), we have the following theorem:

THEOREM 4.

£+(L*; m/2 —

fί(L*; m/2 —

= (- i) m

m-2

x Π

xί"X

J
det Y ""-"^(L)-^-2

Γ(s-ί/2)2lϊ2sin(2s

sin (2s — m + <jOτr/2

sin pτr/2

(—i).+t—Dt—a/ί

- i - l)τr/2

sin qπ/2

— sin (2s — m + p)π

s)

s)

REMARK 1. In his lecture at RIMS, Kyoto University in the autumn
of 1974, T. Shintani gave a general formula relating the functional equa-
tion satisfied by complex powers of relative imvariants of a p.v. to that
of its casting transform under the assumptions that Go is reductive and
the singular set is an irreducible hypersurface.

REMARK 2. In [17], the following condition, which assures the con-
vergence of zeta functions and is checked by the Weil-Igusa criterion
([25, p. 20], [4, §2]), is imposed on p.v.'s ([17, p. 146]):

(3-3) For every fe<9?(VR), the integral

= ( x l Σ
JGβ/Gz xeVZ

converges absolutely and the mapping f \-+!(/) defines a tern-
pered distribution on VR (where G1 = GX[G, G] for a generic point
x and dιg is a Haar measure on GR).

This condition is however much stronger than what is needed to
ensure the convergence of zeta functions (cf. [17, p. 169, Additional
Remark 2]). For example, if i ^ 2, the p.v. (G(ί), ρ{i), V{i)) does not satisfy
(3-3). Though our assumptions (S), (H) and (W) are fairly restrictive,
the class of p.v.'s treated in this paper contains several interesting
examples which do not satisfy the condition (3-3).
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