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1. Introduction. The spherical representation of a curve in the
Euclidean 3-space is a representation on the unit sphere S? obtained with
the use of tangent vectors. We consider a generalization of the notion
of spherical representations to an m-dimensional submanifold in the
Euclidean n-space. We denote a submanifold by (¢, M) where M is an
m-~dimensional manifold and ¢ is an immersion 7: M — R*. If the spherical
representation of (¢, M) is regular, the image is an immersed submanifold
of dimension 2m — 1 in the unit hypersphere of R". Any submanifold
and its infinitesimal deformations we consider are assumed to be C-.

Let p be any point of M and {0}, be the origin of T,(M). To any
half line of T,(M) from {O}, there corresponds a point of the unit
hypersphere S77*(1) of R". Taking all points » of M and all half lines
of T, (M) from {O}, we get the spherical representation of (¢, M).

For our purpose a little more precise description will be preferable.
Any immersion ¢ of M induces a Riemannian metric ¢ on M and this
determines the unit hypersphere S,(M) of T,(M). For any point (7, p)
of (4, M) there exists just one m-dimensional tangent plane of (7, M) and
in this tangent plane we can take a hypersphere of radius 1 and with
center (4, p). Let us denote this hypersphere by (¢’, S,(M)). Then for any
point g€ S,(M) we have just one point (i, q) of R". Let O be the origin
of R* and OX be the oriented segment obtained by a parallel translation
of oriented segment joining (7, ») to (¢/, ¢). Then X is a point of Sz~*(1).
Thus a mapping s: S(M) — St*(1) is obtained such that s(¢) = X and we
call s the spherical representation of (7, M), or the spherical representation
of M induced by the immersion 1.

In the present paper we consider only such cases that s is an immer-
sion. Then s is called a regular spherical representation or a regular
spherical map and its image a spherical image.

We take a compact orientable manifold M and consider the integral
I of the volume element of the spherical image s(S(M)). I is a functional
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of the immersion 7. The purpose of the present paper is to get some
submanifolds (4, M) such that the functional I is stationary at this
immersion ¢ with respect to any infinitesimal deformation of 7. Our
original aim was to find critical points of I in general cases, but the
necessary and sufficient condition for (¢, M) to be a critical point of
I was not obtained in a clear-cut form. Hence only some special cases
are treated in the present paper where (i, M) is an isometric and isotropic
immersion of a space form. But the final result is still a little complicated.
Hence we assume further that the immersion is constant isotropic. The
main results are the following theorems.

THEOREM 1. Let (M, g) be an m-dimensional space form of constant
curvature ¢ > 0 and (i, M) be a submanifold of R" such that the immer-
ston 18 isometric to (M, g) and the mormal curvature vector o,(t,t) has
constant length V' 'h, h # ¢, independent of the tangent vector t and the
point p of M. This submanifold is a critical point of the functional I
if and only if every component of the mean curvature vector is an
eigenfunction of the Laplacian of (M, g) with an eigenvalue N where
A= ((m + 2)h + 2(m — 1)c)/3.

THEOREM 2. Let (M, g) be as in Theorem 1. Furthermore we assume
that the submamnifold lies on the hypersphere S;™(0) of R™ where the
center 18 the origin O and the radius is 0. Let (i) and (ii) be the
following conditions,

(i) @, M) is a minimal submanifold of the hypersphere Sy~'(p),

(ii) (2, M) s a critical point of I and o satisfies

mo~t = ((m + 2)h + 2(m — 1)¢)/3 .
Then (1) and (ii) are equivalent conditions.

This theorem shows that a Veronese manifold considered as a sub-
manifold of a Euclidean space is a critical point of I.

In §2 we introduce a Riemannian metric to the spherical image
s(S(M)). From this Riemannian metric we get the formula for the volume
element of s(S(M)). In §3 the integral I of this volume element and
the derivative of I with respect to an infinitesimal deformation of the
immersion are calculated. In §4 we consider the special case where
(¢, M) is isometric to a space form and the immersion is isotropic, namely,
o,(t, t) has constant length (k(p))"* but h(p) may depend on p. In §5 we
consider the case where h(p) is independent of the point p and prove
the main theorems. In §6 we prove that a Veronese manifold is a
critical point of I. There we also discuss some relation of the present
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result to some of the results obtained by O’Neill [5] and by Itoh and
Ogiue [2], [3].

The author wishes to express his hearty thanks to the referee whose
kind suggestions was helpful very much to the improvement of the paper.

2. The Riemannian metric G of a spherical image. We first give
a local expression for a spherical map. We use indices

abyc, - h i, 4, =1 -, m,

By Ny fly 200y 0,0,Ty =+ :1; e, M
and adopt usual summation convention with respect to Latin indices.
a', ---, 2™ are local coordinates of M so that a point p of M in a coor-

dinate neighborhood is expressed by » = («', -+, 2™), and U*, ..., U" are

the rectangular coordinates of a point in R". Thus ¢ is expressed locally
by

2.1) Ur =U @, «+-, 2™ .
We put
(2.2) B; = oU*/ox* = 0,U*, g, = B:Bf

where the summation symbol 3, is omitted for short. g, are the
components of the Riemannian metric induced on the submanifold (¢, M)
from the natural metric of R*. Thus we can consider (i, M) as a
Riemannian manifold (M, g).

The Christoffel symbols of g; are denoted by {jhi} and the com-
ponents of the second fundamental form of (i, M) are

2.3) H,* =V;Bf = 0;Bf — { .h } By
j1
where 7 is the Riemannian connection of (M, g).

If ¢ is a unit tangent vector of (M, g) at a point p € M, then t = t%3,
where (9, * -, 0,,) is the natural frame of T,(M) and the components ¢*
satisfy g;tt* =1. A point ¢ of S,(M) is nothing but a unit tangent
vector of (M, g) at p. If the spherical map s carries ¢ to s(g) = X, then
the rectangular coordinates X* of X are given by

(2.4) X =1tBf, gittt=1.
Since S,(M) is an (m — 1)-dimensional sphere, we need m — 1 numbers
y', -+, y™ ' to determine a point of S,(M) in some open subset. Thus

a point X of the spherical image s(S(M)), such that Xes(U) where U
is some open subset of S(M), is determined by 2m — 1 numbers
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at -ee, 2™y, oo, y™' and we have n functions X* = X*(2', ---, 2™; %',

el y"‘_l).
Now we introduce new indices

u,v,w,x,Yyz=m+1---,2m—1,
A BCD,---=1,.-..,2m — 1
and put z* = y* ™. A covering of S(M) by suitable neighborhoods U,
(L e 4) is considered and the spherical image is expressed by
X = X&@a, <o, &l Y, * 0 Y0 )

for the part s(U,). The spherical map s is regular if and only if the
rank of the (n, 2m — 1)-matrix [0X5/0xd] is 2m — 1 for all ne 4. This
is assumed throughout the paper.

We define G, by
(2.5) GCB = achaBXK

where 0, = d/0x°. That s is regular is equivalent to that G.; are the
coefficients of a positive quadratic form and our assumption assures that
the spherical image becomes a Riemannian manifold with the Riemannian
metric G whose components are G,z. As we have
(2.6) 0; X =tH;*+ Vi'Bf, 0,X*=d,t'Bf,
we get
G = H;/* Wt + gl vt
.7 Gju = gV itoo.t",
Gvu = gcbavtcautb .
DEFINITION. We define D;, 7,., u;* by
(2.8) Dj; = H Hy t 1, Vo = 0a0u10,8 ,
(2.9) Vith = uivavth .
We prove that u,* are uniquely determined by (2.9). As the vector
field ¢ satisfies g,t't' =1, we get
where ¢, = g,;#/. As the rank of the (m, m — 1)-matrix [0,t'] is m — 1,
there exists one and only one (m — 1, m)-matrix [u*] satisfying (2.9).
As s is regular, rank[D;] =m and (2.8) shows that D; are the

coefficients of a positive quadratic form. We get from (2.7), (2.8) and
(2.9)
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(2.10) Gji = Dji + ,\/vuujv,u’iu N Gju = ’Y,,uu,-” y G.,m = Yoy -
This implies
GozP°P® = D;P‘P* + 7, (u;P? + P*)(u;*P* + P*).

REMARK. We denote the normal curvature vector of (i, M) at (4, p)
by o,(t,t) where t is a unit tangent vector. The components of o,(%, t)
are H;t’t'. The normal curvature vector at (i, p) associated with a pair
of unit tangent vectors » and v is denoted by o,(u, v). Its components
are H, u’v’. Suppose that o,(u, v) =0 for some p, u and v. As we can
choose (%!, -+, y™ ™) in such a way that t(x', ---, 2™ %', -+, y™") = v, we
get H,u’t’ = 0 and consequently D;u'u* = 0 for this (3, ---, y™™"). This
proves that || o,(u, v)|| > 0 for every p, u and v.

DEFINITION. We define D?¢ and 7™ by
(2.11) Dy;D¥ = 6}, 7,7 =0r.

Then the contravariant components of the Riemannian metric G of
s(S(M)) are

(2.12) G* = D", G"= —u,'D*, G™ =D, u*+ 7".
From (2.10) we get
(2.13) det [Gpa] = (det[Dy])(det[7,.]) ,

or, in short, det G = (det D)(det ).

3. The functional I ard its derivative. As the regular spherical
image s(S(M)) is endowed with the Riemannian metric G, we can consider
its volume element. Dividing S(M) into a number of parts S(M), N € 4,
so that each part is contained in some coordinate neighborhood of S(M),
we can express the volume element in the form

((det D)(det 7)) *dat - - - dx™dy* - - - dy™*,
or in the form ((det D)(det 7))"*dxdy, for short. We define I by

=S5, I= SSS ((det D)(det v))"dudy
(M)
which we write, for convenience, as

3.1) I= “S , ((det D)det 7)) dady .

I is a functional of immersion 7.
Let us consider an infinitesimal deformation of i.
If the immersion 7 of M into R" depends on a parameter «, the
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position vector of (i, p), p € M, is written locally as

U =U, -+, 2™ ) .
We consider only the case where U* are C* functions of #, ---, 2™ and
a. As the tangent vector ¢ = t*9, also depends on a we have in general

th = th(xl’ Tty xm’ yly tT Ty ym_l; a)
in each suitable coordinate neighborhood. But we can consider without
loss of generality that, at each point pe M, the ratio ¢:¢: -.-:¢t™ does

not depend on «. Thus there exists a function ¢ satisfying ot*/oa = pt".
As t is a unit tangent vector, we get

3.2) @ = —274dg;/oa)tt" .

DEFINITION. We define the vector field V of deformation as the
vector field whose components are given by V* = oU*/oa.

Then we have 0(0,U")/oac = 0, V* and

(3.3) 0g;/0a = 6;V*Bf + Bfo,V*.
From (3.2) we get

(3.4) @ = —tio;Vt'B;,
(3.5) ot'loa = —ti0; V*t'Bt" .

As we have the general formula
o 1} 00 = 0127 00lo0) + 7. 0a o) = 7. GGosow]
we get, by substituting (8.8) into the second member,
(3.6) a{jh Z_} / da = g7 7 VBt + 0, V<H,/) .

For the second fundamental form we have
3.7 oH; loa =V, VF — gV ¥, V*B: + 0, V*H,;")B; .

As V* and U* are independent of %', ---, y™!, we get from (3.5)
(8.8)  9(9,t"/oa = 3,(0t" /o) = — (90, V*t'B)a,t" — (0;V*Bf)d.(tt)t" ,

3.9) 07,./00c = (0, V*Bf + 0, V*BF)o,t°0,t" — 27,,0, V°Bitt® .
From (3.5) and (3.7) we get
(3.10) oD /oo = 29D, + WV, V-Hy + V.V, VEH )ttt .

From (2.13) we get
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o(det @)*/oa = (1/2)(D?*0D;/oec + Y*07,,/0c)(det G)'* .
Now we have
(1/2)(D#*0Dj /o + Y™ 37 ,,[0a) = DIV 7 V- H, t°t" + mep
+ 7"0,690,87 ; V-Bf — (m — 1)F; V*Bitit’

in view of (3.9), (8.10) and D?*D;; = m, v**¥,, = m — 1. On the other hand
we have

TR0, = git — 1t

from
(V" 0, t0,t° — g7t + tit)g.t® =0,
(Y0, t70,t° — g7 + tit)g,.0,t° =0 .
Thus we get
(3.11) (1/2)(D*0D /o0 4 V07 . [00r)

= Dy, V*H, t't" + g7V ;V*Bf — 2mV ; V*Bftit' .
J J

Substituting this result into

gc% - S Ss (M)a (d%t;lG)l/zdxdy - SM‘:SSP (M)a(deatIaG)l/2 dy:ldx

we get

@12 9L _ S B (D7 7 V- Hytt + g7, V*BE
da L Jspan

— 2mP, V*Betit')(det )" dy |det D)"da .

4. The differential coefficient of I in some special cases. Assume
M is compact orientable. That the submanifold (7, M) is a critical point
of I means that for any infinitesimal deformation from (¢, M) the second
member of (3.12) vanishes. The vector field V of deformation is defined
on M but the domain of integration in (3.12) is S(M). In order to get
a clear-cut formula for a critical point we must first compute the integral
over each S,(M), but as D/ are not polynomials in ¢, ---, t™ in general,
the computation is practically difficult. Thus we consider only some
special cases satisfying the following:

ASSUMPTION. (4, M) is an isometric and tisotropic tmmersion of a
space form of comstant curvature ¢ > 0.
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Then we have
(4.1) H,* it Hjh’chix = c(gkhgji - gjhgkt) ’
4.2) H,;H,* + H,*H;," + Hy"Hj" = h(9y;9: + 9ribin + 9uns0)

where & is a function on M.
From (4.1) and (4.2) we get

4.3) H,;Hy" = 1/3)(h + 20)9x59:5 + (b — ¢)(91:85n + 911945)
and from (2.8) '
(4.4) D;, = A/3)(h — ¢)9; + (2h + ©)tjt,) ,

ii— 8 qi_ 2ht e
(4.5) D P cg A = c)t t,
(4.6) det D = ((h — ¢)/3)'h det g .

As we have assumed that the spherical map s is regular, h —¢ >0
everywhere on M.

Now dw = (det 7v)"*dy"' - -- dy™* is the volume element of the sphere
S,(M) which is isometric to the standard (m — 1)-sphere S™~'(1). Hence
we have at »

@ S titde = Lo, g
Sp ) m

where ¢,_, is the volume of S™(1).

Let us consider S™'(1) as the unit hypersphere of R™ given by
w2+ +++ + (u™)? =1 where u', ---, u™ are the rectangular coordinates
of R™. Then we get

Su"ufuiu”da) = (Cnor/(mm + 2)))(8495% + 555 4 5¥53%)

where the domain of integration is S™'(1). Applying this result to
S,(M) we get

(4.8) gthtitithdw = (Cus/(m(m + 2)))(g"g™ + g¥g? + g*g7) .
From (4.5), (4.7) and (4.8) we get
SD”#t”(det Yy rdy
_ 3 7% yeb 2h + ¢ 74 b je yib ib ic:]
— e ? — J + J 1
[m(h_c)gg m(m+2)h(h_c)(gg + 99" + 97°9%) |ens

Then, as V7, V*, H,", V,;V*, Bf are independent of the unit tangent vector
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t, we get from (3.12)

aI _ 3 _ 22k + ¢) 7 Ve
4.9 da c’””u( mh —e¢)  mim + 2hh — c)>V‘V‘VH

- 2htec  ppiyepic— ffV.VfBF}
mm + Dhh — o) ° oS

X ((h — ¢)[3)™ %k det g)"*dx .

5. Some critical points of the functional I. Hereafter we assume
h is constant. This means that the normal curvature vector o,(¢, t) of
(i, M) has constant length 1”7 independent of p and ¢. In this case
dI/da vanishes for every infinitesimal deformation if and only if the
following equation is satisfied,

3 _ 4h + 2¢ . jix
G- <m(h —¢)  m(m + 2)h(h — c))V’ViH

2h + (4] 74 1 iK ik
_ y ViH, H*=0.
mim + 2Dhh —¢) ~ +

This is a direct consequence of Green’s theorem. On the other hand we
have

vy Hi* =FViH> + V(K*Bf) =VFViH»* + (m — 1)ecH*,
where K’ are the contravariant components of the Ricei tensor. Hence
(5.1) becomes
(5.2) (mh — ¢)[34H* — ((m + 2)h + 2(m — 1)¢)H*] = 0

where 4 is the Laplacian, 4 = —F./?, and H* are the components of the
mean curvature vector defined by mH* = H,**. As we have h —¢ > 0,
the case mh — ¢ = 0 is excluded. Hence we get from (5.2)

(5.3) AH® = \H*
where
(5.4) A= ((m + 2)h + 2(m — 1)¢)/3 .

Thus we have proved Theorem 1.

Now suppose that (7, M) lies on the hypersphere S;7'(0), namely the
hypersphere of radius o and with center at the origin of R". Then we
have U*U* = p* U*Bf =0, g;; + U°H;,* = 0, hence
(5.5) UH = —1.

If (4, M) is a minimal submanifold of S;™*(0), then we get
(5.6) mH* = —4U* = —mp2U*
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as in [6]. On the other hand we have from (4.3)

6.7 HH* = ((m + 2)h + 2(m — 1)c)/(3m) .
Hence we get
(5.8) mp~* = ((m + 2)h + 2(m — 1)¢)/3

which proves that 4H* = AH* holds with \ satisfying (5.4). Thus (¢, M)
is a critical point of I.

Conversely, suppose (4, M) is a critical point of I and p satisfies (5.8).
Then we get, in view of (5.5),

UsmH* + AU = —m + \0*

which vanishes because of (5.4) and (5.8). On the other hand we have

XM(A U — \U)(AU* — W U)o = S U 44U — 2AU* + MU"dw

- xg UsmH* + \U")dw ,
hence 4U* — NU* = 0. Thus we have proved Theorem 2.

6. A space form immersed isometrically as an isotropic submanifold
in a hypersphere of R".

REMARK. In §6 an immersed submanifold is denoted by M. The
notation (¢, M) is not used.

In a paper of O’Neill [5] it is stated that, if M is an m-dimensional
space form of constant curvature ¢ and at the same time M is an isotropic
submanifold of an (m + m(m + 1)/2 — 1)-dimensional space form M of
constant curvature ¢, with ¢ < &, then M is a minimal submanifold of
M and ||o(t, t)|]* = 2(m — 1)/(m + 2))(@ — ¢). On the other hand we find
in a paper [2] by Itoh and Ogiue the following theorems.

THEOREM A. Let M be an m-dimensional space form of constant
curvature ¢, and M be an (m + m(m + 1)/2 — 1)-dimensional space form
of constant curvature €. If ¢ <&, and M is an isotropic submanifold
of M with parallel second fundamental form, them ¢ = (m/2(m + 1))E,
and the immersion is 1rigid.

THEOREM B. Let M be an m-dimensional space form of constant cur-
vature ¢, and M be an (m+m(m+1)/2—1)-dimensional space form of con-
stant curvature ¢. If ¢ <&, and M is an isotropic submanifold of M,
then ¢ = (m/2(m + 1)), and the immersion is rigid provided that m < 4.

It seems that such results have some relation to some of the results
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of the present paper. In the present paper the dimension n of the
ambient space is undecided since the immersion may not be full.

As we are considering the case where the immersed submanifold M
lies on S;~'(0), we express the latter locally by

U =U', -+, u"™)
where ', ---, "™ are the local coordinates of S¢~*(p). We use indices
o, B,%0=1 -, m—1
and the immersion of M into S;~*(o) is given locally by
u* = u* (@, .-, ™).
We also use the notations,
B: = oU*lou*, Bf = ou*/ox’,
and get
o0U*/ox* = Bf = BiBfF .

Then the natural Riemannian metric on Sy'(0) has components g;. such
that

9 = BfBf = gﬁaBg'Bia y Gpa = BEBS

and the components H,,* of the second fundamental form of S;~i(p) in
R" and the components H,* of the second fundamental form of M in
Sz (o) satisfy [1]

HﬂaK = '—(o_zgﬂaUE ’

KbTﬁa = H&aKHTﬁx - HTaKHéﬁK = E(gbagTﬂ - gTagdﬂ) ’

H,* = H;"B: + B!B{H,;,” = H;*B: — p~*g,;,U*
where K,;;, are the covariant components of the curvature tensor of
S;(p) and ¢ = p%. Thus we get
(6.1) H,;/H,;" = H,H;;*9sx + €010 -
This shows that M is isotropic in R" if and only if M is isotropic in
S;~Yp). If we denote by og(t, t) the normal curvature vector of M in

R™ and by o4(t, t) the normal curvature vector of M in S;'(p), then we
get from (6.1)

(6.2) lost, O = lloxt, O° —¢ =h —¢ .
On the other hand we get from (5.7), where we now put o> = ¢,
(6.3) h = @meé — 2(m — 1)¢)/(m + 2) .
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Hence we have the formula
(6.4) lost, O)°F = (2(m — 1)/(m + 2))(€ — ¢)

which has been obtained by O’Neill [5].
As we can see in [2],[3] and [4], a Veronese manifold satisfies the
equations

c=1, ec=m2m+ 1), ¢=p"=2m+1)/m, v=x=2m+1).

Since a Veronese manifold is an isotropic submanifold (see [2]), we get
h = 4 from (6.2) and (6.4), which is valid as a result of O’Neill’s paper
[6]. Hence (5.8) is satisfied and a Veronese manifold is a critical point
of I.
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