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Introduction. The purpose of this paper is to study polarized
varieties which are double coverings of projective varieties of 4-genus
zero. Such varieties are called hyperelliptic polarized varieties (see (1.1)
for a precise definition), because the 4-genus is a higher-dimensional
analogue of the genus of curves (cf. [F1], [F6] etc.). As examples of
these varieties, we have double coverings of P (cf. [W]), K38-surfaces
polarized by hyperelliptic curves on them (cf. [Sa 2]), Fano-threefolds
whose anti-canonical linear systems are not very ample but have no base
point (cf. [Is]), canonically polarized surfaces with ¢ = 2p, — 4 (cf.
[Ho 1]), ete. The present article is an outcome of the efforts to find a
unified systematic method for the study of them. In particular, the
works of Horikawa and Iskovskih were very stimulating for the author.

Compared with [Ho 1], our theory is still incomplete because of the
ampleness assumption. This is almost equivalent to assuming that the
branch loci are non-singular, which is not the case in many interesting
examples such as Hilbert modular surfaces. Moreover, since the ample-
ness is not preserved under specialization, our result is not powerful
enough to study deformations of hyperelliptic polarized varieties (cf.
(8.33)). The author hopes to improve these points by systematically
developing a theory of semipolarized varieties in future.

In §1 we give a characterization of hyperelliptic polarized varieties.
In §2, assuming char(f) # 2 from that time on, we review a general
theory on the structure of double coverings. Then, according to the
structures of the image varieties of 4-genus zero, we classify hyperelliptic
polarized manifolds into five types (I), (II), (IV), (3) and (x). Their
structures are studied in more detail in §3, §4 and §5, where we classify
them further according to the nature of the branch loci. The results
are summarized in tables in §6 for the convenience in later use. §7 and
§8 are devoted to the study of their deformations. In the Appendix
we give generalized versions of classical results on curves.

This work was completed mainly while the author was a Miller
Fellow at the University of California, Berkeley. He would like to
express his hearty thanks to the Miller Institute and to many mathema-



2 T. FUJITA

ticians at Berkeley, especially to Professors R. Hartshorne, A. Ogus and
Dr. L. Ein, with whom he very much enjoyed interesting and valuable
discussions. He thanks also the referee, who suggested (3.8) and (7.12)
to him.

Notation, convention and terminology. Basically we employ the
notation as in [F1] ~ [F6], which is similar to that of [EGA] and [Ha 2].
We work in the category of R-schemes of finite type, where & is a fixed
algebraically closed field of any characteristic (however, from §2 on), we
assume char(8)+#2). A point means a &-rational point. A variety means
an irreducible reduced R-scheme, which is assumed to be proper over
& unless specifically stated to the contrary. A manifold means a non-
singular variety. Line bundles are identified with the invertible sheaves
of their sections. Tensor products of line bundles are denoted additively,
while the intersection numbers of them are denoted multiplicatively.

Here are some of the symbols we use often.

[4]: The line bundle associated with a linear system 4 of Cartier divisors.
Bs 4: The set-theoretic intersection of all the members of A.

0.: The rational mapping defined by 4.

|L|: The complete linear system associated with a line bundle L.
h(&[L)) := dim H(Z @.,.%) for a coherent sheaf .#, where & is

the invertible sheaf of sections of L.

L, : The pull-back of L to a space T by a given morphism. However,
when there is no danger of confusion, we write very often simply

L instead of L,. Similar convention is used also for Cartier divisors,

vector bundles, ete.
wy : The dualizing sheaf of a locally Macaulay variety V.

K" : The canonical bundle of a manifold M. So w, = &Z,[K*].

¢(M): The i-th Chern class of M.

p,(M) := h"(M, &) = h'(M, K"), the geometric genus of M.

b,(M): The i-th Betti number of M.

T*: The tangent bundle of M.

0, := Z4[T"], the sheaf of vector fields on M.

P(E): The P '-bundle E~ — {zero section}/f* associated with a vector
bundle E of rank », where E~ is the dual bundle.

H?: The tautological line bundle on P(E), corresponding to the invertible
sheaf (1) in the notation of [EGA].

H,, H,, ---: The line bundle defined by hyperplane sections on projective
spaces P, Py, --- indicated by the same Greek letters.

Ry(W): The double covering of W with branch locus B (cf. (2.1)).

d(M, L) := L, where (M, L) is a polarized variety and n = dim M.
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g(M, L): The sectional genus of (M, L).

X; (M, L): The j-th sectional Euler-Poincaré characteristic of (M, L) (see
(8.4; 1) for a precise definition).

AM, L) := n + d(M, L) — h°(M, L), the 4-genus of (M, L).

1. Characterizations of hyperelliptic polarized varieties.

DEFINITION (1.1). A polarized variety (V, L) is said to by hyperel-
liptic if Bs|L| = @, the morphism p;;: V— P¥(N = dim | L|) is of degree
two onto its image W and if 4(W, H) = 0 for the hyperplane section H
on W.

REMARK. The morphism p: V— W is finite since L = p*H is ample

on V. If dim V =1, then V is a hyperelliptic curve, because W is a
Veronese curve =P,

LEMMA (1.2). Let L be a line bundle om a wvariety V such that
Bs|L| = @. Let W be the image of the rational mapping 0,,: V— P¥
(N =dim |L|) and let H be the hyperplane section bundle. Then the
natural mapping p*: H(W, H) — H(V, L) is bijective.

Proor. H(PY, (1)) —» H(V, L) is bijective by the definition of p,,.
This factors through H°(W, H). So p* is surjective. On the other
‘hand, po* is injective since p is surjective. Hence p* is bijective.

PROPOSITION (1.3). d(V, L) = 24(V, L) for any hyperelliptic polarized
variety (V, L).

PrROOF. Let Wand H be as in (1.1) and set n = dim V, w = deg W.
Then d(V, L) = 2w. 4(W, H) = 0 means h'(W, H) = n + w. So A(V, L) =
n+ d(V, L) — h"(W, H) = w by (1.2). Thus we obtain d(V, L) = 24(V, L).

(1.4) In the rest of this section we will consider the converse of
the above fact. In particular, we will prove the following:

THEOREM. Let (V, L) be a polarized variety such that Bs|L| = @,
d=d(V,L)=24V,L) =24 and g =g(V,L) > 4. Then (V,L) is hy-
perelliptic unless L is simply generated and (V, L) is a Fano-K3
variety.

The meaning of “Fano-K8 variety” is defined below.

DEFINITION (1.5). A polarized variety (V, L) is said to be globally
Macaulay if H(V,tL) = 0 for any integers ¢, t with0 < ¢ < n = dim V.
In this case V is locally Macaulay. (For a proof, see, e.g., [F6; (5.8)].)

(V, L) is said to be globally Gorenstein if it is globally Macaulay
and if the dualizing sheaf w, is isomorphic to &7 [rL] for some integer



4 T. FUJITA

r. 7 is called the index and » + n — 1 is called the sectional index of
(V, L). Of course, V is locally Gorenstein if (V, L) is globally Gorenstein.

(V, L) is called a Fano-K3 variety if it is globally Gorenstein and
if the sectional index is one.

REMARK (1.6). Let V be a projectively normal subvariety of P¥
with hyperplane section H. Then the local ring at the vertex of the
affine cone of V is Macaulay (resp. Gorenstein) if and only if (V, H) is
globally Macaulay (resp. Gorenstein). But we do not need this fact in
this paper and proof is omitted.

Exampres (1.7). (1) (P, H) is globally Gorenstein with index
—n — 1. Conversely, any globally Gorenstein polarized variety with
sectional index < —2 is isomorphic to (P", H). For a proof, use the
arguments in [F1]. Compare also (1.11) below.

(2) Any globally Gorenstein polarized variety with sectional index
—1 is isomorphic to a hyperquadric. This is proved similarly as (1).

(8) Globally Gorenstein polarized varieties with sectional index 0
were called Del Pezzo varieties in [F6]. We have 4(V, L) =1 in this
case and a classification theorem of Del Pezzo manifolds (=non-singular
varieties) are obtained.

(4) Any polarized K3-surface is globally Gorenstein with sectional
index one, and hence a Fano-K3 Vai'iety. Any canonical curve of genus
>2 is a Fano-K3 variety. If M is a complex threefold with L = —K,,
being ample, then (M, L) is a Fano-K3 variety.

(5) If the canonical bundle K of a non-singular surface S is ample
and if HY(S, &) = 0, then (S, K) is a globally Gorenstein manifold with
sectional index two.

(6) For any complete intersection V of type (, ---,d,) in P,
(V, H) is globally Gorenstein with index d, + --- +d, —n» — 7 — 1.

PROPOSITION (1.8). Let (V, L) be a polarized variety and let D be
an irreducible reduced member of |L| such that H(V, tL) — H°(D, tL,)
18 surjective for every t. Then

(1) (V, L) is globally Macaulay if so is (D, Lp).

(2) If (D, L) is globally Gorenstein, then (V, L) is also globally
Gorenstein and the sectional indices are the same.

Proor. For (1), apply [F3; (2.1)]. To prove (2), set w, = &p[rL,].
V is locally Macaulay by (1) and we have w, = wy[L], by the adjunc-
tion formula. Applying [F3; (2.2)], we infer HYV, w,[tL]) =0 for
any ¢t < —r. So, from the exact sequence 0= H(V, w,[—rL]) —
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H(V, wy[(1 — r)L]) » H'(D, w,[—rL]) — H(V, w,[—rL]) =0, we infer
that there is a homomorphism @: &, — w,[(1 — r)L] such that @, is an
isomorphism. Then the supports of both . = Ker () and & = Coker (@)
are at most finite sets, because they do not meet the ample divisor D.
Hence .27 =0, since it is a subsheaf of the torsion free sheaf &.
Using the exact sequence 0— & — wy[(1 —7)L]>% —0 and
HY(V, &) = 0, we obtain h(¥) = (V, w,[1 — r)L]) —1=0. So¥ =0
and @ is an isomorphism. Thus we prove (2).

(1.9) PrOOF OF THE THEOREM (1.4). Let (W, H) be as in (1.2) and
set w =deg W, n=dim V. Let ¢ be the mapping degree of o = o,
V—-W. Then24d =d =owand 0 4(W,H)=n+w —h(V,L)=w — 4
by (1.2). Hence, if 6 = 2, the equality must hold and 6 = 2. This
means that (V, L) is hyperelliptic. So we consider the case ¢ = 1.

Suppose first that » =1. We claim g = 4 + 1. Indeed, otherwise,
we would have hwy,[—L —p))=h(V,L)—1=9g—4—1>0 for a
general point p on V. Moreover Bs|L — p| = @ since o is birational.
So (A4) in the Appendix would imply h°(L) + h%(w[—L]) < h'(p) +
B (@w[—p]) = g. But the left hand side equals 1 + g. This contradiction
proves our claim g = 4 + 1. Therefore W(w[—L]) =h'(L)=9g —4=1
and we have a non-zero homomorphism @: Z[L] — ®w. By [F2; Lemma
1.4], @ is an isomorphism since deg L =d = 24 = 29 — 2 = deg (w).
Applying (A1) we further see that L is simply generated. Thus the
assertion is true in case n = 1.

For the case » = 2, we use the induction on n. A general member
D of |L| is a regular rung of (V, L) by [F6; 8.71)]. So d(D, L) = d,
9(D, L) = g and 4(D, L) = 4. Hence L, is simply generated and (D, L)
is globally Gorenstein with sectional index one by the induction
hypothesis. Then, by [F2; Cor. 2.8] (or [F3; (3.1)], [F1; Prop. 1.7]), we
infer that L is simply generated on V and that H(V, tL) — H°(D, tL)
is surjective for every t. Applying (1.8) we complete the proof.

COROLLARY (1.10). Let (V,L) be a polarized variety such that
Bs|L| =@, d(V,L) =24V, L) and g(V, L) > A(V,L) + 1. Then (V, L)
18 hyperelliptic.

ProproSITION (1.11). Let (V, L) be a Fano-K3 wvariety with n =
dim V=38. Then XV,tL)=@Qt+n—2)¢t+1)---(+ n — 3)2'dt(t +
n—2) + n(n —1))/n! where d =d(V,L). Moreover d = 24(V,L) and
9(V,L) = 4(V, L) + 1.

PrROOF. We use the same argument as in [F6; (5.9)]. We have
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H*(V,tL) =0 for t > 2 — u since w, = &[2 —n)L]. So A(V,tL) =10
for 2 — n < t < 0 and hence we may set X(V,tL)=(t + 1) --- (¢t + » — 3)
(dt® + at®> + bt + ¢)/n! for some constants a, b and e¢. Moreover
¢ =n(n — 1)(n — 2) because X(V, ) =1. We infer d =29(V, L) —2
from w, = (2 — n)L. Hence a = 3d(n — 2)/2. Using AV, @2 — n)L) =
(=1)"n(V, wy) = (—1)" in addition, we obtain b = d(n — 2)*/2 + 2n(n — 1).
These calculations give the above formula for X(V, tL). Now we have
(V,L)=X(V,L) =n + 27'd. This implies d = 24(V, L) and ¢g(V, L) =
4V, L) + 1.

REMARK. If n =2, we have X(V,tL)=27"'dt*+2 and d =24,
g=4+1.

COROLLARY (1.12). Let (V,L) be a Fano-K3 wvariety such that
Bs|L| = @. Then L is simply gemerated unless (V, L) is hyperelliptic.

2. Structure of double coverings. From now on, throughout this
paper, we assume char (&) = 2.

(2.1) Let W be a variety and let F' be a line bundle on W. Suppose
that we have a member B of |2F|. Then, as is well known, there is
a natural way to construct a divisor D on the A'-bundle F over W, in
such a way that the restriction = to D of the projection F'— W makes
D a branched double covering of W with branch locus B (cf., e.g., [F4;
(2.3)]). D is denoted by R, (W) since it is determined uniquely by the
triple (W, F, B). If there is no other line bundle F’ with Be|2F"'|, we
write Ryz(W) too. Note that:

(1) Ry (W) is irreducible unless B = 2B’ for some B’'e|F|.

(2) Rz (W) is non-singular if so are both W and B.

THEOREM (2.2). Let W, F and B be as in (2.1), let V = Ry (W)
and let w: V— W be the natural morphism. Suppose that W and B are
non-singular. Then

(1) there is a natural exact sequence 0 —> &y — T, — Tw|—F1— 0
and this sequence splits.

(2) 7*B = 2R for some Re|n*F|.

(3) K" =a*K" + R, where K* denotes the camonical bundle of a
manifold X.

These are easy consequences of the construction of V. We will call
B (resp. R) the bramch locus (resp. ramification locus) of m. Equipped
with the reduced structure, they are isomorphic to each other by =.

(2.3) Now we consider general double coverings. First we prove
the following:
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LEMMA. Let f: V— W be a proper finite separable morphism between
normal varieties V, W which may not be complete. Suppose that f'(x)
consists of two points for any gemeral point € on W. Then there is a
non-trivial involution 1 of V such that f = foi. Moreover, W is iso-
morphic to the quotient V/i.

ProOOF. Let S, and S, be the singular loci of V and W respectively
and let W, = W — (S, U f(Sy)). Note that codim (W — W,) = 2 since V
and W are normal. f,:V,=f(W,)—W, is a finite flat morphism.
Therefore & = f,7 is locally free of rank two on W,. Since & is
an y-algebra, we have the trace mapping 7: & — & on W, Let
g1 & = P — Z be the natural homomorphism and let & be the cokernel
of it. Then 7 gives a splitting & = & @ & on W, because char (&) = 2.
Furthermore, on W,, we have & = Ker (z) and this is an invertible
sheaf. Let @ be a local base of & on some open set U in W,.
Calculating the trace with respect to the basis (1, ) of &, we infer
@*e Im (j) since e Ker (zr). Now, for any «€ H'(U, &), we can write
& = a + bp for some a,be H'(U, ), and define ¢,(y) = a — bp. Then
¢ty is an *-algebra involution of &, since @*cIm (j). Moreover, we
can easily verify that this definition is independent of the choice of the
local base @ of &. Hence we can patch them together to obtain a
global involution ¢ of &% which is defined on W,. Let ¢g: V,— V and
h: W,— W be the open embeddings respectively. Since codim(V -V, = 2
and V is normal, we have g,2 = &. Hence h,(F,) = . So the
above involution ¢ of %, can be extended to an involution of . defined
on the whole W. Since V = .%-(&) by the finiteness of f, this
induces an involution 7 of V with the desired property. The natural
morphism V/i — W is an isomorphism by Zariski’s main theorem.

(2.4) Let f, V, W and 4 be as above. Suppose in addition that V
is non-singular. We will study the local structure of ¢ around the fixed
point set X of <.

For each point xz€ X, the action of ¢ on the tangent space of V at
x is semisimple, and its eigenvalues are 1 and —1. Choose an (étale)
local coordinate system (y,, - - %, Yiss, - -, ¥.) Of V at « such that i*dy, =
dy, at « for each a =k and i*dy, = —dy, at « for each 8 > k. Put
2, =Y, +1*y,)/2 for a <k and 2, = (y, — i*y,)/2 for B> k. Then,

thanks to the Jacobian criterion, (z, ---, z,) is a local coordinate system
of V at x. Since i*z, =2, and i*2;, = —2, for a <k and 8>k, X is
the submanifold defined by 2., = -+ =2, = 0 in a neighborhood of .

Thus we conclude that X is a disjoint union |2} X,, where each X, is
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a non-singular subspace (which is not necessarily connected) of V of
pure dimension k.

(2.5) Now we can describe the possible singularities of W =V/i as
follows.

Let y be a singular point of W. Then y must be the image of a
point z on X. If xe X, ,, then y is a simple point. If 2 € X, then y looks
like the vertex of the affine cone of the Veronese manifold (P, 2H).
In general, if x¢ X,, then y looks like a vertex of a generalized cone
over the Veronese manifold (P~ %!, 2H) whose set of vertices is a linear
submanifold of dimension % in some P?.

THEOREM (2.6). Let f: VoW be a finite morphism of mapping
degree two between manifolds V and W. Then V = Ry (W) for some
FePic(W) and Be|2F|.

ProOOF. By (2.3), we have an involution ¢ of V such that W = V/i.
By (2.5), the fixed point set R of ¢ is a non-singular divisor on V. R
is mapped isomorphically onto B = f(R), which is a non-singular divisor
on W. Moreover, as we saw in (2.3), f.& = & P & for some inverti-
ble sheaf & on W. Take F so that &[—F]= %. For any section @
of & on some open set U of W, we have ¢*c HY(U, &) c H (U, f.%)
as in (2.3). This process gives rise to a homomorphism &% — .
Letting B be the corresponding element of H°(W, 2F'), we easily see that
B={3=0}and V= R; (W).

(2.7) We return to the situation (2.4) where V is non-singular but
W may be singular. Let X be as in (2.4) and let V' be the blowing-up
of V with center X. Then ¢ induces an involution 4’ on V’, whose fixed
point set R is the exceptional divisor lying over X. R is non-singular
since so is X. Hence W’— V’/i’ is non-singular. We have a natural
morphism W' — W, which makes W’ the blowing-up of W with center
Y = f(X). Applying (2.6) to V' — W’, we can relate the structures of
V and W via V'’ and W'.

(2.8) We will apply the preceding theory to hyperelliptic polarized
manifolds. First we classify them roughly.

Let (M, L) be a hyperelliptic polarized manifold and let W and H be
as in (2.1). Since 4(W, H) = 0, the polarized variety (W, H) is of one
of the following types (cf. [F1] and [F6; §4]).

(a) (W, H)= (P, o).

(b) W is a non-singular hyperquadric in P*** and H = Z(1).

(¢) (W, H)= (P(H), H®) for an ample vector bundle E on P

d) (W, H) = (P, 2(2)).
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(e) W is a generalized cone over a base manifold of one of the
above types (a), (b), (¢) and (d).

REMARK. In any case Pic (W) is free of 2-torsion.

DEFINITION (2.9). A hyperelliptic polarized manifold (M, L) is said
to be of type (I) (resp. (II), (%), (IV) or (x)) if (W, H) is of the above
type (a) (resp. (b), (c), (d) or (e)).

REMARK. When (W, H) = (P} x P;, H, + H,), this definition is a
little ambiguous. However, usually, it is more convenient to consider
(M, L) to be of type (3) rather than of type (II). See (3.3).

3. Type (I), (II) and (IV). (3.1) Let (M, L) be a hyperelliptic
polarized manifold of type (I). Then, by (2.6), we have M = Ry(P") for
some hypersurface B of even degree. We say (M, L) to be of type (I7)
if deg(B) = 2a + 2. Clearly B is connected unless » = 1. Since F =
2(a + 1) in this case, (2.2) implies

(1) HYM,tL)= H(P", 2 (t)) @ H(P", &t — a — 1)) for any integers
a0, t. In particular, (1.2) implies H'(P", ©(—a)) = 0, and hence we have

(2) a=1.

Moreover, by easy calculations and (1), we obtain

(3) XMtL)={¢t+1)---Et+n)+E—a)---(t—a+n—1}nl

Combining (2.2; 3) and the above (1), we see:

(4) (M, L) is globally Gorenstein with sectional index a — 1.

Furthermore

(5) M is a hypersurface of degree 2a + 2 in the weighted projective
space P(a + 1,1, ---, 1) (cf. [M]).

For a proof of (5), use the induction on = (like [M] and [F3; (3.2)])
and the following:

LEMMA (8.2). Suppose that n =2 and let D be a general member
of |L|. Then (D, L) is a hyperelliptic polarized manifold of type (I;7).

Indeed, the image H of D is a general hyperplane on P". Hence
Y = BN H is non-singular. So D = R,(H) is non-singular, too. Then
the assertion is obvious.

(8.8) Let (M, L) be a hyperelliptic polarized manifold of type (II).
Then M = R,(Q), where @ 1is the non-singular hyperquadric with
dimQ = n and Be|2F| for some FePic(Q). (M,L) is said to be of
type (II?) if F = (a + 1)H. When n = 2, F is not necessarily an integral
multiple of H = Z%(1). In such a case (M, L) will be considered to be
of type (2).

(8.4) Similarly as in (3.1), we have the following results for any
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hyperelliptic polarized manifold (M, L) of type (II7).

(1) H'M,tL)= HQ, tH)® H'Q, (t — a — 1)H) for any g, t.

(2) a=1.

(3) XM, tL) ={¢t+1)---¢t+n—-1DCt+n)+E—a)---(t—a+
n — 2)2t — 20 + n — 2)}/n!.

(4) (M, L) is globally Gorenstein with sectional index a.

(5) (M, L) is a weighted complete intersection of type (2,2a + 2)
wn Pla+ 1,1, ---,1). (cf. [M] and [F3; (3.3)]).

(6) For any general member D of |L|, (D, L,) is a hyperelliptic
polarized manifold of type (II27Y).

(8.5) Let (M, L) be a hyperelliptic polarized manifold of type (IV).
Then M = Ry(P?) for some Be|(2a + 2)H,| and L = f*[2H,], where fis
the natural morphism M — P?. In this case (M, L) is said to be of type
(IV2) or (IV,). Similarly as before, we have:

(1) HM,tL) = H(P?, ~2t)) P H(P?, /2t — a — 1)) for any q, t.

(2) a=2 (compare (3.1; 2)).

(3) X(M, tL) = 4 — (2a — 4)t + (a* — a + 2)/2.

(4) (M, L) is globally Macaulay and K¥ = (a — 2)H,. So (M, L) is
globally Gorenstein if and only if a is even, and the sectional index is
a/2 in that case.

REMARK. (M, L) is not a weighted complete intersection even if a
is even. Needless to say, the manifold M itself is the same as that of
type (I5).

(8.6) We will further calculate several invariants of (M, L) such as
Betti numbers, Picard groups and so on. Our main tool is the Lefschetz
theorem. So we make the following:

DEFINITION. A covariant (or contravariant) functor F from the
category of algebraic varieties to the category of groups is called a
Lefschetz functor of degree d if it has the following property:

For any non-singular ample divisor A on any manifold M with
dim M =n > d + 1, the homomorphism F(¢) is bijective for the inclusion
¢ A— M.

If the above assertion is valid in case H'(M, —tA) = 0 for any q < =,
t > 0, then F will be called a weakly Lefschetz functor of degree d.

ExampPLES (8.7). (a) In case & = C, the topological homotopy group
w, is a Lefschetz functor of degree <. The homology group H,(-; Z) is
a Lefschetz functor of degree q. The cohomology group HY(-;Z) is a
contravariant Lefschetz functor of degree q. The Picard group Pic ()
is a contravariant Lefschetz functor of degree 2.
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(b) In case p = char (&) > 0, the l-adic cohomology group HY-; Q)
is a contravariant Lefschetz functor of degree q. The tame fundamental
group 7{”, which is defined similarly as the usual algebraic fundamental
group by considering only étale coverings of degree prime to p, is a
Lefschetz functor of degree 1. The Picard group is a weakly Lefschetz
functor of degree two.

LeMMA (3.8). Let A and B be hypersurfaces in P" of degrees a and
b respectively. Suppose that they intersect mormally along C = AN B
and that a >b. Then there exists a non-singular hypersurface D of
degree a such that DN B = C.

PROOF. Let E be the exceptional divisor on the blowing-up of P"
with center C. The proper transforms A’ and B’ of A and B belong to
|aH — E| and |bH — E| respectively, where H is the pull-back of &7.(1).
Since A'NB =@ and [A']=[B]+ (e« —b)H, we infer that
Bs|aH — E| = @ and that this linear system is very ample outside B'.
Hence a general member D' of |aH — E| is non-singular. Moreover the
image D of D’ in P has the desired property.

THEOREM (3.9). Let (M, L) be a hyperelliptic polarized manifold of
type (I2) (resp. (II7)) and let f be the morphism M — W = P" (resp. Q).
Then F(f) is bijective for any weakly Lefschetz functor of degree <m.

PrOOF. Here we consider the case of type (II) only, because the
same method works in case of type (I). By (8.8), there exists a non-
singular hypersurface D in P"™ such that DN Q"= B, the branch locus of
f. Then N = R,(P™") is hyperelliptic of type (I*!), and M is an ample
divisor on N. The ramification locus R of N — P"*' is an ample divisor
on N and is isomorphic to D. Therefore, by (3.1; 4) and (3.4; 4), we
obtain: F(M)=F(N)=F(R)=F(D)= F(P"™) = F(Q"). So F(f) is bijective.

COROLLARY (8.10). Let (M, L) be as above. Then Pic (M) is generat-
ed by L if n = 3.

COROLLARY (8.11). Let (M, L) be as above. Then, for any integer
1 with 1 % n, b(M) =0 if ¢ is odd and b,(M) =1 if © is even.

For a proof, use also the Poincaré duality. Moreover, one can show
that H*(M; Z) is generated by ¢,(L)* for ¢ < n/2 in case & = C.

REMARK. As for the Euler number, we have e(M) = 2¢(W) — e(B).
So we can calculate b,(M) too, using (3.11).

COROLLARY (8.12). Let (M, L) be as in (3.9) and suppose that n = 2.
Then (M) = {1} in case & = C, and w® = {1} in case p = char (&) > 0.
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COROLLARY (8.18). Let (M, L) be as in (3.12). Then Pic (M) has
no torsion prime to char (R). In particular, it is free of 2-torsion.

4. Type (x). (4.1) For a while until (4.4), let (M, L) be a hyperel-
liptic polarized manifold of type (x). Namely, the image W of p = p,,
is singular.

(4.2) The results in [F1; §4] and [F6; (4.11)] describe the structure
of Wc PY as follows:

Let S be the set of singular points of W. Then S is a linear sub-
manifold in P¥. Let Y be a linear submanifold of P¥ such that Y N
S=@ and dimS +dimY =N —1. Then T = YNW is non-singular
and 4(T, H) =0. So T is one of the types (a), (b), (¢) and (d) in (2.8).
Moreover, W is the generalized cone S * T, that is, the closure of the
union of all the lines passing a point on S and another point on 7.

(4.3) Combining (4.2) and (2.5), we infer that (T, H) = (P}, 2H;) or
(P;, 2H;). In view of (2.7), we let P’ (resp. M') be the blowing-up of
PV (resp. M) with center S (resp. X = p7%(S)), and let W’ be the proper
transform of W on P’. Then there is a natural double covering p':
M ->W.

Since W = S« T, we infer that W’ = P,2H,@® V), where V is the
direct sum of (1 + dim S) trivial line bundles on T, and the tautological -
line bundle H, on W’ is the pull-back of <%(1) = H. Moreover, the ex-
ceptional divisor E lying over S is the unique member of |H, — 2H,]|.

E is a component of the branch locus B of p’. So we write B =
E+ A, Then EN A = @, since B is non-singular. We may set [4] =
xH, + yH,, because Pic (W’) is generated by (the pull-backs of) H, and
H;. Then « is odd and y is even, since [B] is divisible by two in
Pic (W’). On the other hand, £ = T x P*™S and [H,]; is the pull-back
of &7(1) of the second factor. Therefore, 0 = [A]; implies that y =0
and dim S = 0. Now we make the following:

DEFINITION (4.4). (M, L) is said to be of type (*II,) (resp. (*IV,)) if
T = P' (resp. P? and z = 2a + 1.

In any case, S is a point and W is the cone over the Veronese
manifold 7' with vertex S. In particular dim M = 2 (resp. 3) if (M, L)
is of type (*II,) (resp. (*IV,)).

(4.5) Conversely, given a Veronese manifold (T, H) = (P;™', 2H,;)
and any non-singular member D of |(2a + 1)H| on the cone W over T,
we can construct a polarized manifold (M, L) in the following way.

Let P’ be the blowing-up of P¥ at the vertex of W and let W', E,
H, be as in (4.8). Furthermore set B = E + A, where A is the lift of
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D to W. Let F=(a+ 1H, — Hy; and M’ = R, ,(W’) and let C be the
component of the ramification locus B of M’ — W’ lying over E. Clearly
C= E= P**' and [C], = &(—1), since [E]; = ~(—2) and [E], = [2C].
So C can be contracted to a non-singular point. Let M be the manifold
obtained by this contraction. Then M’ — W’ induces a finite morphism
fiM—W. Setting L= f*~ 1) we get a polarized manifold (M, L),
which is hyperelliptic of type (*II,) (resp. (*IV,)) if n =2 (resp. = 3)
and a =1. We can carry out this process even if a =0, but then
H(W, H) — H(M, L) is not surjective and one easily sees that (M, L) =
(P, &(2)).

REMARK. (M, L) is determined uniquely by the divisor D. Hence
they are all deformations of each other.

(4.6) Let things be as above (n being an arbitrary positive integer)
and set Z’ = C + H;ePic(M’). Then [Z']; = 0 and hence Z’ is the pull-
back of Ze& Pic(M). Moreover we have:

(1) L=2Z and K" = (2a — n — 1)Z in Pic (M).

(2) HYM,tL)= H(W', tH,) ® H(W', (t — a — 1)H, + H,).

(3) dM,L)y=2", dM,Z)=1, gM,Z)=a and gM L) =1+
(2a + n — 3)2"72

(4) (M, L) and (M, Z) are globally Macaulay.

(5) For any general member Y of |L|, (Y, Z) is a hyperelliptic
polarized manifold of type (Iz;).

(6) For any general member X of |Z|, (X, Z;) is a polarized
manifold of the same type as in (4.5).

(7) (M, Z) is a hypersurface of degree 2(2a + 1) in the weighted
projective space P(2a +1,2,1, ---, 1).

(8) F(M)= F(P") for any weakly Lefschetz functor F of degree
<n.

ProorF. Wehave L = H, = [E] + 2H; = 2C + 2H,; = 2Z' in Pic (M').
Hence L = 2Z in Pic(M). We have K" = —2H, — (n — 2)H, because
W =P,2H,H 7y), and K" =K" + F =(a—1)H,— (n —1)H, by
(2.2). On the other hand K" = K” + (n — 1)C. Combining them we see
K" = (2a —n —1)Z on M’. Thus we prove (1).

(2) follows from (2.2) and HYM, tL) = H'(M', tL). (3) is a conse-
quence of (2). In fact, it is easy to calculate X(M, tL).

Next we will prove (5). Since H (W, H) = H'(M, L), Y is the pull-
back of a general hyperplane section U of W. Then U= T = Py and
DNU is a non-singular hypersurface in U = P, of degree 2(2a + 1).
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Clearly Y= R,.,(U) and L is the pull-back of Z,(1) = 2H,. Hence
(Y, Z) is of type (Iz™).

Applying [F3; (2.1) and (2.2)], we infer from (5) and (3.1.4) that (M, Z)
is globally Macaulay. Thus we prove (4).

In order to show (6) we use the following:

LEMMA (4.7). Let I' be a general member of |H;| on W'. Then
I'n A is non-singular.

Proor. Recall that D is isomorphic to the divisor A on W’, which
is a P'-bundle over T. So we have a natural homomorphism ¢: 6, —
(6,),, where @’s denote tangent bundles of the given manifolds. Let
Y be the set of points on D at which @ is not surjective. We claim that
Y+ D.

Assume that ¥ = D and let R be the image of ¢. In view of the
restriction of the exact sequence 0 — Oy, — Oy — 0, — 0 to A, we infer
that Ker (p) = O r)p = [2H, — 2H;], and that R is a subbundle of
(@), of corank one. Moreover we see (0;),/R = (0y),/0, = [A] =
(2a + 1)H, by 9-lemma. Therefore ¢, ,((0;)—A]) =0. On the other
hand, using [H, — 2H;], = E, =0 and the exact sequence 0— 2~ —
H@ - ®H,—6,-0, we obtain oO,[—A] = (1 + ¢(H,) — ¢,[A])"
Sii=eci([A]). On A we have [A] = Qo + 1)H, = (4da + 2)H,. So
(07— Ay = Hp {A}- (1 — (—4a — 1)")/(4a + 2) by an easy calculation.
Clearly this is not zero. This contradiction proves the claim.

Thus we see dim¥ < dim D = n — 1. On the other hand, for any
point x on 3, there exists only one member of the linear system 4 = | H;|,
which is singular at x, because rank (p,) = n — 2. Clearly any member
of A is non-singular outside Y. Hence the dimension of the family of
singular members of 4 is at most » — 2. So a general member of 4 is
non-singular, proving the lemma.

REMARK. If char (R =0, this lemma is obvious by Bertini’s
theorem.

(4.8) PROOF OF (4.6), CONTINUED. Let A’ be the linear system
C + |H;| on M'. Since h"(M, Z) = n, one easily sees that A’ is the pull-
back of |Z|. So a general member X of |Z| determines a general
member I" of |H;ly. The image of I' on W is a cone over a Veronese
manifold (P;~%, 2H;) and I'N A is non-singular by (4.7). This observation
shows (6).

We prove (7) by induction on ». When n =1, M is a hyperelliptic
curve of genus a and Z = [C], C being a Weierstrass point of M. Hence
(7) is valid in this case. When n =2, we apply [F3; (3.2)] since
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HM, tZ) — H'X, tZ,) is surjective for every integer ¢ by virtue of (4).
To show (8) we embed T'= P;™' in P= P} as a hyperplane and we
consider W to be a subspace of the cone V over the Veronese manifold
(P, 2H;). We claim that |[(2¢ + 1)H,| contains a non-singular member G
such that G,=D. Indeed, the linear subsystem of |(2a+1)H,| consisting
of the member containing D is very ample outside W. Therefore, simi-
larly as in (3.8), any general member G of this subsystem is non-singular
and Gy = D, as claimed. Starting from V and G, we construect a polarized
manifold (N, Zy) as in (4.5) in such a way that M is a member of |Z,]|.
Let Y be a general member of |2Z,|. Then F(Y) = F(P") by (5) and
(3.9). Moreover we have F(Y) = F(N) = F(M). Thus we obtain (8).

REMARK (4.9). Of course, the analogues of (3.10) ~ (3.13) are valid
in this case, too. In particular, Pic (M) is generated by Z if n =3
(this follows also from (7) and [M]).

(4.10) Any polarized manifold (M, Z) with d(M, Z) = 4(M, Z) =1
and g(M, Z) = a can be constructed as in (4.5) if a £ 2 and n > a + 1.
This will be proved in [F4-3].

5. Type (¥). (5.1) In this section we consider the case in which
(M,L) is of type () and dmM =n=2 (cf. (2.9)). So (W,H)=
(P(E), H®) for an ample vector bundle E on P!, where (W, H) is as in
(1.1). As is well-known, E is a direct sum of line bundles.

(5.2) Notations and Definitions. Given a sequence 6 = (6, -, d,)
of positive integers such that 6,=.-- =4,, we denote 4,, 4, and
0, + +++ + 0, DY Omax, Omin and |0| respectively. By E(5) or E, we denote
the vector bundle @7, [0,H;] on P;. W(3) or W, denotes P(E,), and the
tautological line bundle on W, is denoted by H(0) or H,. (W, H,) is
called a 7rational scroll of type (0). The following facts can be easily
proved.

(6.3; 1) HYW,, tH, + sH,;) = HY(P}, S'(E;) ® [sH;]) for any ¢=0,
qQc Z.

(5.8; 2) X(WytHy +sHp) =@t +1)---(t+n— Dt|o] + n(s + 1}/n!
for any integers ¢, s.

(6.3; 83) K" = —nH, + (|0] — 2)H,.

(5.4) If (W, H) is a rational scroll of type (9), then (M, L) is said
to be of type (2, ---,d,) or (2*|d|). For example, (M, L) is of type
(2*4) if it is either of type (X(2,2)) or (X(3,1)). Clearly we have
d(M, L) = 2d(W, H) = 2|6| and 4(M, L) = |d|.

By virtue of (2.6), M = Ry(W) for the branch locus B of o: M — W.
We consider the following cases separately:
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(a) B is connected.

(b) B consists of several fibers of 7: W — Pj.

(e¢) All the other cases.

(5.5) For a while, until (5.20), we consider the case (a) above. In
view of (2.6) we set B = 2aH,+ 2bH; in Pic (W), where a, b are
integers. In this case (M, L) is said to be of type (2"(9).,), and also
of type (2"|9]3).

REMARK. In the case of type (2(1,1)i,), we have W = P! x P} and
H=H,+ H;. So the choice of the two rulings of W is completely
optional, and hence this can be viewed to be of type (X(1, 1)i,, ), too.

(5.6) By virtue of (2.2), we have:

(1) H*M,tL)= H*(W,tH)PD H*(W, (t — a)H — bH,;) for any integers
P, t.
(2) K"=(a —n)L+ (b+ 16| —2)H,.

Furthermore, using (5.3), we obtain an explicit formula for X(M, tL).
In particular we have:

(8) 9(M,L)=ald|+b—1,X, (M, L) = (a — 1)(a|d] +2b —2)/2 + 1
and XM, Zy) =1+ ) a —1) -+ (@ — n + 1)(a|d]| + bn — n).

(5.7 We easily see that a polarized manifold (M, L) of type
(2"(8)+,) exists if and only if b is greater than a constant which depends
on (0) and a. If () and a are fixed, we can determine this constant
without any essential trouble. However, at present, no explicit “formula”
for this purpose is found. We have only the following partial results,
which are enough for many purposes.

(1) We should have HW, H)= H°M, L), and hence HY(W,
(1—a)H,—bH;) =0 by (5.6; 1). This implies ¢ =1 and b> 0, or a = 2.

(2) Omax + @2 — 1)0mm + 20 = 0. This is a consequence of Reid’s
lemma (cef. [Is; (7.4)]). This inequality follows also from the observa-
tion below.

Let C be the section of W — P} corresponding to the quotient bundle
0,H;. Then HC =6, and BC = 2ad, + 2b. So the assertion is obvious
if C ¢ B. Suppose Cc B. Then we have a surjection from the normal
bundle N of C in W onto [B],. Since N is isomorphic to E(, — 4, - - -,
0, — 0,_1), We have BC = Min (6, — 0;) = Omin — Omax- This implies the
desired inequality.

(38) Let j be the largest integer such that ad; +b=0. Then
27 = n. Or equivalently, ad, + b =0 for any © with 2t < n + 1.

To see this, let Y be the subspace of W corresponding to the
quotient bundle 6;,H, P --- Do, H;, of E,, Then Y B by Reid’s
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lemma. Clearly Y = W(é,,,, ---,0,) and the normal bundle N of Y in
W is @i..[H; — 6,Hs;]. Since we have a surjective homomorphism
N — [Bly, we have divisors D,, ---, D; on Y such that D, e |B — H, + 6,H,|
for each ¢ and that D,n---ND;=@. This is impossible unless
j>dimY—-1=n—35—1. So 2j=n.

(4) When n =2, we have adni, + b = 0. Indeed, in this case, B
is an irreducible curve, and hence cannot contain the curve C as in (2).

(5) On the other hand, for any (a, b) with ¢ = 2 and ad.., + b =0,
there exists a non-singular member B of |2aH, + 2bH,|, and hence we
have a hyperelliptic polarized manifold (M, L) of type (Z"(6):,)-

Indeed, the assertion is clear if @d..., + b > 0, because then B is very
ample. So we consider the case in which ad, + b =0. Let j be the
largest integer such that ad; + b > 0. Then 6;,, = --+ =6, = Omi. Let
Y be the subspace of W = W, corresponding to the quotient bundle
E®,.,, -+, 0, of E@®). Clearly we have Bs|H,| = @ on W, where H, =
H, — 6..H;. Let p be the induced rational mapping into P, and let
W' = p(W) and S = po(Y). Then W’ is a generalized cone over a base
=W, — 0, -+, 0; — 0,) with the vertex set S, which is a linear sub-
space of dimension » — 7 — 1. From the converse viewpoint, W is the
blowing-up of W’ with center S. Now, let B’ be a general member of
|2aH,| on W’'. Since H, is very ample on W’, the singular locus of B’
must be contained in Sing (W’) = S. Moreover, we can take B’ to be
transverse to S. Then, we easily see that B = p*B’ is a non-singular
divisor on W, and Be |2aH; + 2bH;|, as required.

Of course, (M, L) is obtained if we set M = Ry(W).

PROPOSITION (5.8). Suppose (M, L) is of type (2"(0)i,). Then
H*(M, Z7y) =0 for 0 < p < n, except when 6, = --- =9,, W= P; x P},
Be|2aH,|, M = P; X R,(P;™) for a hypersurface A of Pz of degree
20,a =2n =3 and p =n — 1.

Proor. Suppose H?(M, <7,) # 0. Then, using (5.3) and (5.6), we
infer that 0 = h*(W, —aH, — bH;) = h»*(W, (¢ — n)H, + (b + |0| — 2)H,).
This implies p =% —1, a =% and (¢ —n)d, + b + |[6| =< 0. Combining
this with (5.7, 2), we obtain 0= (2n — 1)d, + 6, — 2|0| = (0, — 0, +
S, 20, —0;). Hence 6, =--+- =9,. This implies W= P; x P;™ and
H,=H,+ 0,H;. Moreover we have ad, + b = 0, hence B¢ [2aH; + 20H,| =
2aH,. The rest of the assertion is now obvious.

COROLLARY (5.9). p,(M) ={(b — 1)n + a|d|}(a—1)--- (@ —n + 1)/n!
except when h**(M, &) # 0, as described in (5.8).

For a proof, use (5.6; 3).
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PrOPOSITION (5.10). A hyperelliptic polarized manifold of type
(Z"(8)F,) is globally Macaulay if and only if 1 — 0| = b =1.

Proor. For 0 < p < m, we have h?(M, tL) = h»(W, (t — a)H — bH;) =
h?(W, (@ —n — t)H; + (b + |6| — 2)H,). If (M, L) is globally Macaulay,
substituting ¢t = ¢ and ¢t = @ — % and using (5.3; 1), we obtain b <1 and
b+ |6] >0. Conversely, suppose 1 — |6/ <b<1. Then, by virtue of
(5.8; 1), h*(M, tL) = 0 follows from b <1 for ¢t = a, or from b + |[6| >0
for ¢t < a — m, or is true automatically for a — n < t < a. Thus (M, L)
is globally Macaulay.

COROLLARY (5.11). (M, L) is globally Goremstein if and only if
b=2—16|

For a proof, use (5.10) and (5.6; 2).

REMARK. This can happen only when a = 2, provided n = 2. Indeed,
if a =1, then b =1 by (5.7; 1). So || <1, which is possible only when
n=1.

PRrROPOSITION (5.12). — K" is ample only in the following cases:
(1) 6,=0,+1,0,=---=0, ad, +b =0 and a < n.

(2) 6,=+--=26,, a0, +b =0 and a < n.

(8) 6,=+-+=06,, ad, +b=1and a <mn.

Proor. By (5.6; 2), (¢« — n)H, + (b + |6| — 2)H, is a negative line
bundle on W. So we have a < n and (#): (@ — n)d, + b + [6]| < 1. Sub-
tracting 2(#) from (5.7; 2), we get (2n — 1)d, + 6, — 2|6| = —2. Hence
226,—6,+237,(;—90,. So we infer that 6,= --- =4, and
0, — 0, < 2. Suppose that §, =9, + 2. Then ad, + b < —1 by (#), which
contradicts (5.7; 8 or 4). Therefore 6, — 6, =0 or 1.

Suppose 6, =4, +1. Then 2(ad, +b) +1=0 by (5.7, 2). So
ad, +b=0. Together with (#), this implies ad, + b = 0. This is the
case (1).

Suppose 6, = d,. Then ad, +b =0 or 1 by (5.7; 2) and (¥). So we
are in case (2) or (3).

(5.13) We study further the above three cases.

In case 1), W= W(@,0, ---,0), which is isomorphic to the blowing-
up of P; with center C being a linear subspace of codimension two.
Moreover, under this isomorphism, we have H, = H, — E; and H, = H, +
0,Hs;. Be|2aH,|, which means, B is the total transform of a hypersurface
A on P:. Since Bis non-singular, A must be non-singular and intersect
C transversally. From this we infer that M = R;(W) is isomorphic to
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the blowing-up of N = R,(P?) with center being the full inverse image
of Con N. By (3.10), Pic (N) is generated by H, if n = 3. Consequently,
Pic (M) is generated by L and H,.

In case (2, W= P, x P;', H=H,+ ¢,H;, and Be|2aH,|, that
means, B is of the form P} x A for a hypersurface A on P;™. n =3
since B is connected. M is isomorphic to P; x R,(Pz™"), and Pic (M) =
Pic (W). Furthermore, an analogue of (3.9) holds for the morphism
M—-W.

In case 38), W= P, x P!, H=H,+ 6,H, and Be|2aH, + 2H,|.
In particular, B is ample on W. If n = 4, we have Pic (M) = Pic (B) =
Pic (W).

COROLLARY (5.14). Suppose that K" = —mL for some positive
integer m. Then one of the following conditions is satisfied:

(1) m=1, =2, 6,=---=6,=1, a=n—1, b=1—n and
n = 3.

(2) m=1,6,=---=06,=1l,a=n—1,b=2—n and n = 3.

(8) m=2,0,=++=6,=1,a=n—2,0=2—n and n = 4.

(4) m=1,0,=-+=0,=2,a=n—1,b=2—2n and n = 3.

ProOOF. By (5.6; 2), we have a =7 — m and b =2 — |6|. In case
(5.12; 1), ad, + b = 0 implies mdé, = 1. So m =6, = 1 and we verify the
condition (1). Similarly, in case (5.12; 3), we obtain the condition (2).
Here n = 8 follows from (5.7; 1). In case (5.12; 2), we have md, = 2
and obtain the condition (8) or (4).

REMARK. This argument is a generalization of that in [Is; §7].

(5.15) For the sake of comparison, we consider what happens when
K" =0. By virture of (5.6: 2), we have a=mn and b=2—|6|. But there
are infinitely many possible ¢’s even if we impose the stronger condition
ad, +b =0 in (5.7; 5), which guarantees the existence of (M, L) of type
(Z™(6)r,). In particular, there is no bound for |§|. However, there are
only finitely many possible isomorphism types for the manifold W itself.

Similarly, for any fixed positive integer m, there are infinitely many
types of (M, L) such that K¥ = mL. Moreover, there are infinitely
many possible isomorphism classes for W.

ProposITION (5.16). Let (M, L) be of type (3"(0):,). Then, for a
general member D of L, (D, L) is of type (2"'(0")f,) and there is an
exact sequence 0 — [0] — E(0) — E(0") — 0 of wvector bundles on P. In
particular, |6'] = |0, Omin = Onin ONA Omex = Omax.

PROOF. We have M = Rz(W). Let H be the hyperplane section of
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W corresponding to D. Since D is general, H is non-singular and meets
B transversally. Therefore D = R;,,(H) is non-singular. BN H is con-
nected because it is ample on B. Moreover, letting E(§') = w,x1)
where 7 is the morphism H — P!, we see H=W(’). So (D, L) is of type
(Z»(0")%,). Furthermore, by the definition of (6’), we have an exact

sequence 0 — [0] — E(0) — E(") — 0. It is easy to see the rest of the
assertion.

COROLLARY (5.17). Let (M, L) be of type (2"(6)*). Then m{» (M) = {1}
for » = char (8. Moreover, M s topologically simply connected in case
! =0C.

A proof will be given in §8 by means of a deformation theory of
(M, L) (cf. (8.15)).

PRrRoOPOSITION (5.18). Let (M, L) be of type (X™(6)F,). Then

(1) gM, L) = 4(M, L) in general,

(2) gM,L)=4M, L) if and only if (M, L) is of type (Z"(0){.),
(2°(1, 1, )5 ), (3% + 1, p) o) o (Z*(tt, 1)3510n)-

(3) 9(M, L) =AM, L) + 1 if and only if (M, L) is of type (2"(0)/2),
(2*1, 1,1, 1)), (2°2,2,2), ), (2%2 1,15, (2°Q,1,15_), ¢+
& Maeow) with =1, ¢ =0,1,2, or (2*(1, 1);_,).

Proor. We first prove (2). By (5.6; 8), g(M, L) = 4(M, L) if and
only if (@ —1)|6|+b=1. If a =1, then b =1. Suppose a = 2. Then
|6 =1 —band 35, + 2b + 6, = 0 by (5.7; 2). Hence 2=6, + 26, + --- +
20,_, — 0,. This is impossible unless » < 3. If » =3, we have 2 = ¢, +
20, — 0, =6, +0,, s0 1 =0, =0,=0, and b = —2. Thus (M, L) is of
type (2°(1,1,1)),). If » =2, we have 2/, +b=0 by (5.7; 4). Since
b=1-—06,— 0, we infer e =6, — 6, =0 or 1. Thus (M, L) is of type
(e + 1, )5 o) or (Z*(p, )5, _ss). Finally we consider the case a = 3.
Then (2¢ — 1), + 2 — 2(a — 1)|6| +6,=0. So 2= 2(a —1)|5] — 5, —
2a — 1), = (2a — 3)0, + {2(a — 1)(n — 1) — (2a — 1)}d,. From this we
obtain n =2. Then, by (5.7; 4), we have 0=<ad, +b=ad, +1—
(@ —1)[6]. Sol=(a—1)0, — 8, = (a —2)5,. Hencea =3and s, =4, =1.
So b = —3. But then W= P} x P! and Be|6H,| cannot be connected.
Thus we exclude this possibility.

The assertion (3) is proved by a similar elementary argument.

(1) is proved by a similar method, or by the following observation:
By virtue of (5.16), we can find a ladder M=V, DV, ,D---DV, of
(M, L) such that (V;, L) is of type (37|d|f,) for each j7 =2, and V, is
a non-singular hyperelliptic curve. H'(V;, &, = 0 by (5.8). Therefore,
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this ladder is regular (cf. [F6; (1.5)]). So we have g(M, L) = g(V,, L) =
4V, L) = 4(M, L).

PROPOSITION (5.19). Let (M, L) be of type (£™(0)s,). Then H'(M, L)=
0 except in the following cases: (1) a=1. (2) n =2 and (a — 2), +
0,+b=0.

For a proof, use (5.6) and (5.3). These results (5.18) and (5.19) will
be used in the study of deformations of (M, L).

(5.20) The Kodaira dimension k(M) is calculated as follows. In view
of (5.6; 2), weset D = (a —n)H, + (b + |0| — 2)H; and b’ = (@ — N)0mex +
b+ 16| —2. Of course, we have k(M) = (D, W) by (5.6; 2) and [F5;
3.17)].

(1) k(M) <0 if a<mn.

(2) When a =n, we have k(M) < 0 if and only if b < 0. We
further analyse this case. Together with (5.7; 2), b’ < 0 implies 2 =
2@ —mn) +1)(6,—06,)+ 2>, (; —d,). So d,=20, Hence ad,+b=0 by
(5.7; 8 or 4). From this we obtain 1= (¢ — n + 1)(6, — §,). So 6, =9,
ora—m=20,—0,—1=0. Thus there are following three possibilities:

(2a) 6,=20,+1, 60,=0, a=n and b = —nd,. In this case (M, L)
has a structure similar to those in (5.13; 1).

(2b) 0, =0, ad, + b =0. In this case (M, L) is similar to those in
(5.18; 2). In particular, M = P' x R, (P;™") for a hypersurface 4 in P;™*
of degree 2a.

(2¢) 6, =0,, ad, + b =1. In this case (M, L) is similar to those in
(5.13; 3).

(8) k(M) =0 if a=n and b =0. In this case K =0. By a
method similar to above, one can show 6, = 4, in this case, and (6, — 0
d, — 9,) = (0,0), (1,0), (2,0), (1,1) or (2, 1).

(4) kM) =1if a =n and b’ > 0.

(5) k(M)=mnif a >mn and b’ > 0. Indeed, since |H — 6,H;| # @,
we have (D, W) = k(¢ + 1)D, W) =Z k(D + tb'H,;, W) = n for t > 0.

(6) It remains to consider the case ¢ > % and ' = 0. By (5.7; 2)
we obtain 4 = 2(a — n) + 1)(6, — 0,) + 2 D2, (0; — 0,). From this we
infer 6, =0,. So ad, +b=0 by (6.7, 8 or 4). Hence 2=(a —n + 1)
(6, — 6,), which implies 6, =0, or a — m =8, — 0, = 1. Thus there are
the following two possibilities:

6a) 0,=90,+1,0,=6,, a=n+1, b=—(m+ 1)5,. In this case,
as in (5.13; 1), W is a blowing-up of P" and D turns out to be the
exceptional divisor on it. So x(M) = 0.

(6b) 6, =20, b=2—ad, In this case, as in (5.13; 2), W= P; x

n?
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P and D = (a — n)H,. Hence k(M) =n — 1. Note that n = 3, because
otherwise B is not connected.

REMARK. When » =2 and £(M) < 0, M is a rational surface since
we have q(M) = 0 by (5.8).

(5.21) Now we consider the case (5.4; b). Clearly Be|2bH,| for
some positive integer b. In this case (M, L) is said to be of type (3"(5))).

The image Y of B on Pj is a divisor of degree 2b. Clearly C =
R,(P;) is a hyperelliptic curve of genus b — 1 and M is isomorphic to
the P~‘'-bundle P(E, over C. In particular, ¢q(M)=0b—1 and
M, Zy) =0 for p > 1.

THEOREM (5.22). Let (M, L) be of type (2"(0);). Then

(1) H*M,tL) = H(W,tH)® H*(W, tH — bH;) for every t, p.

(2) b > Omax-

(3) LM, L)y =2—-b for j=0,1,---,n — 1. In particular
gM,L)=b— 1.

(4) K"= —nL + (b + |0]| — 2)H,. So, this cannot be a multiple
of L.

Proor. (1) follows from (2.2). (2) is a consequence of (1) and
HW,H)= H"M, L). By calculation using (5.3), we get a formula for
X(M, tL), which yields (3). (4) follows from (2.2; 3). b =2 —|d]| is
impossible by (2).

(5.23) Now we consider the remaining case (5.4; ¢). Because (b) is
not the case, we must have a component B, of B such that n(B,) = P}
Moreover, we claim that #(B;) = P; for any component B; of B. Indeed,
otherwise, B; would be a fiber of 7, and hence B, N B; # O, contradict-
ing the smoothness of B.

Furthermore, we claim n =dimM = 2. To see this, let F be a
general fiber of z. Then F = P"'. F N B, and F N B; are hypersurfaces
in F' not intersecting each other. This is impossible if n = 3.

Thus, W = W(d,, d,), which is isomorphic to the Hirzebruch surface
Y, with &k = 46, — 0,.

(5.24) Suppose that £k =0. Then W = P} X P; and H = H, + 6,H,.
We have Be|2aH, + 20'H,;| for some integers a, b'. If &' > 0, then B
is ample and hence connected. So b’ = 0 and B consists of 2a horizontal
components. In this case (M, L) is said to be of type (3*(y, ¢)7), where
Mt =0, =0,

REMARK. The type (2(1, 1);) is the same as (¥(1, 1)}). Compare the
Remark to (5.5).
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(5.25) If k> 0, then X, has a unique section X such that X2 < 0.
Moreover, setting H, = H — 6,H;, we have H: =k, H X =0, [X] = H, —
kHy = H— 6,H; and X* = —k. For each component B; of B, we set
[B;] = »;H, + y;H,. Since n(B;) = P, we have z; > 0. Moreover, y; =
XB; = 0 unless B; = X. Suppose that there are two components B,, B,
different from X. Then %, «, >0 and ¥, ¥, =0, hence BB, = ka,x, +
.9, + x,9, > 0. This contradicts B, N B, = @. Thus we conclude: There
is only one component of B other than X.

So X must be a component of B, since B is not connected. Let B’
be the component other than X and set [B'] = 2H, + yH;. Then y =0
because B'X = 0. Thus we have [B] = (x + 1)H, — kH;, which is 2F
for some Fe€Pic(W). Therefore x = 2a — 1 and &k = 27 for some integer
a, Y. Thus, in this case, (M, L) is said to be of type (J(4,, 8,)7).

THEOREM (5.26). Suppose (M, L) is of tyve (Z(y, 1);). Then

(1) W=P,x P, H=H, + ptH; and Be|2aH,|.

(2) H*M,tL)= H(W,tH)® H (W, tH — aH,).

(3) a=2

(4) gM,L)=ap—1, M) =0a—1 and p,(M) = 0.

(5) K'=(a—2)H,—2H; = (a —2)L — ((a —2)¢t +2)H;. So ¢,(M)* =
—8a + 16.

For a proof, use (2.2) and (5.3).

THEOREM (5.27). Suppose that (M, L) is of type (Z(¢+ 27, 1)),
where Y > 0. Then

(1) W=23, and B= B, + B,, Be|H, — 2vH,|, B,e|(2a — 1)H,|,
where H, = H — pH,. B, is the unique curve on W with megative self
intesection number.

(2) H*M,tL)= H*(W,tH)® H*(W,tH —2H,+ YH;). This implies
a = 2.

(8) gM,L)y=ap+2a7y—7—1, gqM)=0 and p,M)=(a—1)
(av — v —1).

(4) K¥*=(a—2)H,+ (¥ —2H; =(a —2)L — ((a — 2)pt — 7 + 2)H,
and ¢,(M)* = 4(a — 2)(a7 — 7 — 2).

(5) (M, L) is globally Macaulay if and only if (a — 2) <7 — 1.

(6) (M, L) is globally Gorenstein if and only if (a — 2)pt =7 — 2.

(7) gM, L) = 4(M, L) in general. g =4 if and only if v =1 and
a=2. g=4+1if and only if Y =a = 2.

(8) H'M,L)+0 if and only if a > 2 and p = ".

These are proved similarly as the preceding results.
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6. Summary. (6.1) Now we can give a classification table of
hyperelliptic polarized manifolds. See Tables I and II.

TaBLE I Hyperelliptic polarized surfaces.

type d(M, L) g(M, L) qa(M) (M) ci(M)?

(L) 2 a 0 ala—1)/2 2(a—2)?

(IVy) 8 2a+1 0 ala—1)/2 2(a—2)?

(*IL,) 4 2a 0 ala—1) (20—38)%

(3(01, 02)g,5) 29| alo|+b—1 0 (a—1)(ald|+20—2)/2 2(a—2)(ald|+2b—4)
(2(8y, 82)3) 219] b—1 b—1 0 —8b+16

(S(p, 1)3) 4p ap—1 a—1 0 —8a+16
(Z(pe+27, 1)3) 4(pe+7)  ap+2a7—7—1 0 (a—1)(a7—T7—1) 4 a—2)(aT—7—-2)

TABLE II Hyperelliptic polarized manifolds with dim M = 8.

type d(M, L) g9(M, L) q(M) be(M) Xn—-2(M, L)
(I3 2 a 0 1 >0
(112) 4 2a+1 0 1 >0
(*IVy) 8 40+1 0 1 >0
(Z™0)a 1) 2|0 aldl+b—1 0 =2 >0
(Z™(6)3) 2|4] b—1 b—1 2 <0

REMARK. (II}) is the same type as (31, 1);;,,,) and hence is omitted
in Table I. Note also that (3(1, 1)} ,) = (2, 1)) (ef. (5.5)) and that
(2@, 1)%) = (31, 1)7) (cf. (5.24)).

(6.2) q(M) =0 unless (M, L) is of type (Z"(6)") or (2*)=). These
two types are characterized by the property X, (M, L) < 0.

(6.3) H(M,L)=0 unless (M,L) is of type (2", (g, ©)°),
(2™(0)iy) with b = 2, (2%(0)r,) With (@ — 2)0min + b + 0mex = 0, or (Z%p +
27, 1)) with a =3, pu=1.

(6.4) (M, L) is globally Macaulay if and only if it is of type (I),
I, aAV), (=), (F(@is with 1 —[6|=b=1 or (2*(¢ + 27, p);) with
(a —2p=v-—1.

(6.5) (M, L) is globally Gorenstein in all the cases where K¥ is a
multiple of L, namely, the cases (I,,,), (IL,), (IV,), (*IV,), (3™(0)sr1.0_1s)
and (3*(¢ + 2(c — )p + 4, p);,), where ¢ is the sectional index.

(6.6) If (M, L) is globally Gorenstein with negative index, then
(M, L) is either of type (I?) with 1 <a<mn, (II?) with 1 <a=<n — 2,
(*IV,), or the types described in (5.14). In particular, d(M, L) = 2, 4,
2n, 2n + 2 or 4n.

(6.7 g(M,L) z4(M, L) except when q(M) >0 (cf. (6.2)). When
q(M) =0, we have g = 4 + 2 except in the following cases: g = 4: (I?),
(*IL), (Z(¢ + 2, 1)7) and those in (5.18; 2). g =4+ 1: (Ip), (II}), (IV)),
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(*IV), (Z(¢ + 4, ¢);7) and those in (5.18; 3).

(6.8) The canonical bundle K” of M cannot be very ample.

In fact, if (M, L) is not of type (x), we have M = R; (W). So, by
(2.2), H (M, K*) = H(W, K" + F)@ H(W, K"). On the other hand, we
have p, (W) = 0 since 4(W, H) = 0 (recall (2.8)). Hence H(W, K" + F) =~
H°(M, K™). This implies that the rational mapping defined by K* factors
through W, and hence cannot be birational. If in addition K" + F is
very ample on W, the canonical mapping of M is nothing but the
morphism M — W.

When (M, L) is of type (x), let M’ and W' be as in (4.3). Then,
similarly as above, the rational mapping defined by the canonical bundle
of M’ must factor through W’. Hence it is not birational, and so 0,
is not birational.

(6.9) The calculation of the Kodaira dimension of M is easy except
possibly in the case of type (3"(8)!,), which was treated in (5.20). The
results are summarized in Table III.

REMARK. In all the cases where (M) =0, M is birationally equi-
valent to a manifold with trivial canonical bundle, and ¢(M) = 0. There-
fore, if n = 2, M is (birationally) a K3-surface. :

TABLE III Kodaira dimension of M.

value of #(M) n n—1 1 0 —oco

I2) a>n — — a=n a<n
(I12) a>n—1 — — a=n—1 a<n—1
(IVa) a>2 — — a=2 —
(*I1a) a>1 — — — a=1
(*I1V,) a>2 — — a=2 a=1
(Z™0)45) (cf. (5.20)) case (5) case (6b) case (4) case (3) & (6a) case (1) & (2)
(2"@)9) - - - - any b
(3(g, m37) - — - - any a
(Z(p+27, 1)3) a>2 — a=2 & 7>2 a=7=2 a=2 & =1

7. Small deformations.

DEFINITION (7.1). A deformation family of prepolarized manifolds
consists of a quadruple (_#Z X, n, &) of manifolds _# and X both of
which are connected but may not be complete, a proper smooth morphism
w: # — X and a line bundle & on _Z

Given a point x € X, we set M, = =~'(x) and let L, be the restriction
of ¥ to M,. This prepolarized manifold (M, L,) is said to be a member
of the above deformation family.

We say that any small deformation of a given prepolarized manifold
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(M, L) has a certain property (¥) if, for any deformation family (.7 X,
7, &) as above and any o€ X such that (M, L,) = (M, L), there exists
a neighborhood U of o in X such that (M, L,) has the property (#) for
every x€ U. We use the terminology ‘“small deformation” for various
objects in a similar sense.

(7.2) The purpose of this section is to consider the following:

PrROBLEM. Let (M, L) be a hyperelliptic polarized manifold of
certain type. Then, is any small deformation of (M, L) hyperelliptic?

REMARK (7.8). If HYM, &) = 0, then any small deformation {M,},.,
of M carries a family of line bundles {L,}, and thus can be made a
family of prepolarized manifolds.

When n = dim M = 3, this condition is satisfied except when (M, L)
is of type (3(u, w, )i _.,). For a proof, use (5.8) and (5.22; 1) (compare
also Table II in §6).

REMARK (7.4). If H'M,L) =0, then any small deformation of
(M, L) satisfies d(M,, L,) = 24(M,, L,).

Indeed, we have KM, L, =0 by the semicontinuity theorem.
Applying the theory of Grothendieck [EGA; Chap. III] (or see [Ha 2;
Corollary 12.6]), we infer that =,% is locally free of rank A(M, L).
So n'(M,, L,) = h°(M, L), which implies the assertion.

When n = 2, we have HM, L) = 0 unless (M, L) is of type (2"(6)"),
(Z(u, w)=), (Z™(0){,) with b = 2, (2*0):,) With (@ — 2)0min + b + Omex = 0, or
(Z*w + 27, u);) with ¢ =8, u =7. For a proof, see (6.4), (5.19) and
(5.27; 8).

(7.5) Assume d(M,, L,) = 24(M,, L,) in the question (7.2). Then
any small deformation of (M, L) is hyperelliptic if g(M, L) > 4(M, L)
and if (M, L) is not a Fano-K3 variety.

Indeed, taking a smaller neighborhood of o if necessary, we may
assume that L, is ample and Bs|L,| = @ for any « in U. Moreover,
we have R (M, F)=0 or (M, —F) =0 for F = K" + (n — 2)L. since
(M, L) is not Fano-K3. So we may assume h°(M,, F,)=0 or h°'(M,— F,)=0
for any x€ U. Hence (M,, L,) is not Fano-K3. So (1.4) applies.

REMARK (7.6). We have g(M, L) = 4(M, L) + 2 except when (M, L)
is of the types given in (6.7). Clearly this condition implies that (M, L)
is not Fano-K3.

(7.7) Combining the above observations we obtain the following:

THEOREM. Let (M, L) be a hyperelliptic polarized manifold with
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n =dimM = 2. Then any small deformation of (M, L) is a hyperelliptic
polarized manifold if (M, L) is of one of the following types: (I¥) with
a =3, (I7) with a = 2, IV,) with a = 3, (*II,) with a = 2, (*IV,) with
a =2, (3"0)i,) with a =22 and (@ — 2)0min + Omax + b >0, (Z(u + 27, w)y)
with v = 3, (J(u + 27, w);) with a =3 and u < 7.

REMARK. The same is true for the type (Iz), too. In this case we
have g(M, L) = 4(M, L) + 1, but L, cannot be simply generated because
(M, L,) = n + 1. Hence (1.4) applies.

COROLLARY (7.8). Let (M, L) be a hyperelliptic polarized manifold
of dimension m =3. Then any small deformation of M carries a
structure of a hyperelliptic polarized manifold if (M, L) is of one of the
following types: (12) with a = 2, (A1) with o = 2, (*IV,) with a = 2,
(Z™(0)k,) with a =2 and (@ — 2)0mim + Omex + b > 0.

(7.9) Now we consider the same problem (7.2) from an entirely
different viewpoint by the aid of the theory of Kodaira-Spencer-Horikawa.

Let things be as in (2.1) and suppose that W and B (and hence
V = Ry (W) also) are non-singular. Then we have a natural homomor-
phism 6, - 7*@, on V, where @ denotes the sheaf of vector fields.
Taking direct images we obtain 6: 7,0, — 0y, & 7,. The involution ¢
of V over W acts on these sheaves equivariantly. Let 7,6, = 0, 6
be the decomposition such that the action of 7 is the identity on @} and
is (—1)-times the identity on ©;. Then # induces an isomorphism 6: ©; =
Oy @7 = 0y[—F] and an injective homomorphism 6*: 6; — 6, such
that Coker(6%)= 75 B], the normal sheaf of Bin W. Taking cohomologies
and setting 7z = H(W, 0}) and z; =H'W, 65), we obtain 7, =7, Dy
and an exact sequence HYW, ©,)— H*B,[B]) -t} — tw — H'(B, [B]) —
H*®}) — H¥Oy) where 7, denotes H'(M, 0,) for any manifold M. The
meanings of these mappings may be interpreted roughly as follows.

In general, 7, is the Zariski tangent space of the formal moduli
space for the deformation functor of M. <z} corresponds to the subspace
of 7, along which the structure of a double covering is preserved.
Similarly, H°(B, [B]) parametrizes infinitesimal displacements of B in W.
A family {B,} gives rise to a family {V, = Rz, (W)} of double coverings
of W. This assignment corresponds to the mapping H°(B, [B]) — zi.
Moreover we can show the following:

THEOREM (7.10). Let things be as above and suppose that t; = 0.
Then any formal deformation of V turns out to be a double covering of
a formal deformation of W. This means that, for any proper smooth
morphism f: B — S of formal schemes such that S has only one closed
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point o and that the fiber V, over o is isomorphic to V, there exists a
formal scheme T over S together with a morphism II: 8 — W which
makes B a double covering of W such that II,: V,— W, is isomorphic to
VoW,

For a proof, it is enough to show the following:

LEMMA (7.11). Let R be an Artinian K-algedbra with the maximal
ideal m and let I be an ideal of R such that I-m=0. Let f:V —
Spec (R) and g;: W; — Spec (R/I) be proper smooth morphisms and suppose
that there is a morphism II;: V,— W, which makes V; =V Xspee m)
Spec (R/I) a double covering of W,. Suppose in addition that the re-
striction of II; over the closed point of Spec (R) is isomorphic to w: V —
W (where we have t; = 0 by assumption). Then there exists an R-scheme
g: W — Spee (R) and a morphism II: V — W such that their restrictions
over Spec (R/I) is isomorphic to W, and II;.

This is proved by the same argument as that in [Ho 2; Lemma in
p. 276]. Indeed, the injectivity of HA W, 0,)—HXV, t*0y) = H¥ (W, 05X
w,) is clear and the surjectivity of HYW, 0y)— HYV,n*0y) =
HY W, 0y, K n.) follows from z; = H(W, 04— F']) = 0.

COROLLARY (7.12). Let (M, L) be a hyperelliptic polarized manifold
and let (W, H) be as in (1.1). Suppose that W 1is non-singular and
that 7z = 0. Then any small deformation M, of M carries a line
bundle L, such that (M,, L,) 18 a hyperelliptic polarized manifold.

PrROOF. Given any deformation family .2 — X with M, = M for
some point o on X, by (7.10) we can find a formal deformation I — X
of W over the formal completion of X at o together with a double
covering I7: I8 — B whose restriction over o is w: M — W, where I is
the formal completion of _# along M, Since HXW, &%) = 0, there is
a line bundle § on W whose restriction to W, = W is H. § is ample
on W since so is H on W. Hence its pull-back to I is ample. From
this we infer that the morphism I% — W is algebraisable. So, there is
a neighborhood U of o in X (with respect to the étale topology) over
which we have a morphism _#, — % of families as an extension of
M — BW. Shrinking U further if necessary, we see that n,: M, — W, is
a finite double covering and 4(W,, H,) =0 for any xe€ U. Thus we
obtain the conclusion.

PROPOSITION (7.13). Let (M, L) be a hyperelliptic polarized manifold
with n =dimM = 2. Then ty = 0 if (M, L) is of one of the following
types:
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(1) (I?) with n =38 or a = 3.

(1) AV, with a = 3.

(2) II?) with a = 2.

(38) (2Z™0)r,) with a =2 and n = 3, except when n=a =3, §, =
0, =05 b= —0, and M = P* x R,(P? for a hypersurface A of degree 6
on P2

(4) (20, 0+, with a =3 and ad, + b + 6, — 6, = 3.

(5) (Z(uw + 27, u);) with a =3 and ¥ = 3.

PROOF. In case (1) we have W= P" and F = (a + 1)H. There is
an exact sequence 0 — 7y > AQRQ[H]— 60, >0 on W where 4 is the
dual space of H(W, H) (cf., e.g., [Ha 2; p. 182]). This yields an exact
sequence 0 — HY (W, 0,[—F]) - H (W, —(a + 1)H) > A4 Q H W, —aH).
So 77z = 0 unless n=2. When n=2, the last mapping is the dual of the
natural mapping H (W, H) QH(W,K" +aH)—H"(W,K" +(a+1)H), which
is surjective unless a=2. So ;=0 if a=3. Case (1) follows from (1).

In case (2), W is a hyperquadric in P=P"*"* and F = (a+1)H. Using
the exact sequence 0 — & — H (W, H) Q[H]— (@p)y — 0, we infer
that H(W, @,]—F],) = 0 by the same argument as above. Using the
exact sequence 0 — @y, — (0,)y —2H — 0, we obtain t; = H'(W, 6,[—F]) = 0.

In case (8), let T"/* denote the relative tangent bundle of W — P;j.
Then we have two natural exact sequences: () 0 > 7" — 0, — 2H, — 0
and (#%) 0 - &, — H, ® EY — T"'? — 0, where the notation is as in (5.2).
Since n = 8, H(W, —tH, + uH;) = 0 for any t >0 and any integer u
by (5.3; 1) and the Serre duality. In particular H(W, 2H, — F) = 0.
Therefore, by virtue of (%), it suffices to show HY(W, T"?[—F]) = 0.
We have H(W, H, — 6,H;, — F') = 0 because ¢ = 2. In view of (4%), we
infer that z; =0 if H*W, —F)=0. If this is not the case, then
0< A W,K" + F) < h*M, K') = h*(M). By (5.8), this is possible
only when n =38, 6, =6, =20, ad; + b =0, W= P; X P; and M = P; X
R, (P?) for a hypersurface A on P2 of degree 2a with a = 3. Moreover,
if @ = 4, the mapping HX W, —F)— HXW, H,Q E,[—F]) is injective,
because it is the dual of the surjective mapping H°(PZ (o — 4)H,) ®
H(P:, H,)) — H(P:, (o« — 3)H,). So a =3 if t;; # 0.

In case (4), W is isomorphic to the Hirzebruch surface Y, with
k=20, — 09, We use the exact sequence 0 — [2H; — 4H;] — 6y — 2H, — 0,
where 4 =4, + 0, Using the Serre duality and (5.3), we obtain
HYW,2H, — 4H, — F) =0 and H'W,2H, — F) =0 by assumption.
Hence H'(W, 64— F]) = 0.

In case (5), we have W = X,; and F = aH, — YH; where H, = H; —
uH,. So we get H(W, 6,[—F]) = 0 by the same argument as above.
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COROLLARY (7.14). Let (M, L) be a globally Gorenstein hyperelliptic
polarized manifold with n =dim M = 2. If (M, L) is mot of type (*),
then any small deformation of M admits a structure of a hyperelliptic
polarized manifold unless M is a K3-surface or (M, L) is of type (II7).

ProoF. In view of (6.5), we infer z; =0 by (7.13). So (7.12)
applies.

REMARK. As a matter of fact, the conclusion is true even if (M, L)
is of type (x). Compare (7.8).

EXAMPLE (7.15). Let (M, L) be a hyperelliptic polarized manifold of
type (II?). Then (M, L) is a weighted complete intersection of type

(2,4)in P2,1, ---,1) (see (3.4; 5)). But a general complete intersection
of this type is a hypersurface of degree four in P"*!, and hence not
hyperelliptic.

In this case the conditions in (7.3) and (7.4) are satisfied when n = 3,
but (7.5) does not apply because (M, L) is Fano-K3. We see also 75 # 0.
In fact, dim(z3) =1 when » = 8 and dim (z;) = 2 when % = 2 (in this
case M is a K3-surface).

REMARK (7.16). In case M is a K3-surface, we must have z; # 0
because any general small deformation of M is non-algebraic. In fact,
(7.3) is not true. Moreover, usually, a small deformation (M,, L,) of
(M, L) is not hyperelliptic, because L, turns out to be very ample.

REMARK (7.17). We have t; # 0if (M, L) is of type (2"(6);,). Note
that b =1 by (5.7; 1). When b = 2, the condition (7.4) does not hold.
When b = 1, (7.5) does not apply because g(M, L) = 4(M, L) (see (5.18; 2)).

We have 73 # 0 in case (M, L) is of the exceptional type described
in (7.13; 3). In this case (7.8) is not true. Indeed, the product factor
R,(P?) of M is a K3-surface.

Thus, the assertions (7.13;1, 2 and 3) are the best possible. Perhaps,
however, (4) and (5) may not be so. Compare (7.7).

8. Deformation equivalence.

DEFINITION (8.1). Prepolarized manifolds (M, L) and (M’, L') are
said to be deformation equivalent if there exist prepolarized manifolds
(M,, L) = (M, L), (M, Ly, ---, (M,, L,) = (M’, ') such that (M, L;) and
(M;_,, L;_,) are members of one and the same deformation family for
each j=1,2, ---, 7. In this case we write (M, L) ~ (M', L').

In this section we will study deformation equivalences among
hyperelliptic polarized manifolds. When (M, L) is of a certain type (%),
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we write (M,L)c(¥). If in addition (M,L)~ (M',L'), we write
(M'\L') ~ (8). If (M',L")e (%), then we write () ~ (#).

(8.2) For any fixed integers n and a, all the hyperelliptic polarized
manifolds of type (I?) form a single deformation family. Indeed, they
correspond to non-singular members of |(2a + 2)H| on P", which are
parametrized by a Zariski open (hence connected) subset of the projective
space |(2a + 2)H|.

Similarly, if (§) = (II2), (IV.), (*IL), (*IV.), (2"(9)%), (2"(d)), (Z(u, w)2)
or (¥(u + 27, w);) with indices such as a, n, (6), 7, b being fixed, all the
hyperelliptic polarized manifolds of type (#) form a single deformation
family. Therefore, for any types (#) and (%) as above, (#) ~ (&) implies
(M, L) ~(M', L') for any (M, L)€ (%) and (M’', L') e (#).

(8.3) An invariant ¢ of a prepolarized manifold (M, L) is called a
deformation invariant if (M, L) ~ (M', L') implies «(M, L) = «(M’', L').
In this case (%) is well-defined for any types (#) as in (8.2).

(8.4) Examples of deformation invariants. (1) The Hilbert poly-
nomial X(M, tL) is a deformation invariant. By the formula X(M, tL) =
Do X, (M, L)t'9/5! where t¥1=1¢t(t+1)---(t+ 75— 1), we infer that
X;(M, L) is also a deformation invariant for every j. In particular,
dM,L)=X,(M,L) and gWM,L)=1—-%X, (M, L) are deformation
invariants.

(2) In case & = C, all the topological invariants of M are deforma-
tion invariants. In particular, so are q(M), p,(M) and all the Hodge
numbers h*?(M). This is not always true when char (&) > 0.

(8) If char(®) = p =0, the tame fundamental group #{P(M) is a
deformation invariant.

(4) The l-adic cohomology ring H' (M; Q,) is a deformation invariant.
Moreover, if (M, L) ~ (M', L'), there exists a (non-canonical) isomorphism
H(M; Q) — H'(M'; Q) which maps ¢,(L) and the total Chern class of M
to ¢,(I') and to total Chern class of M’, respectively. So, in particular,
all the Chern numbers are deformation invariants.

(8.5) In order to study deformation equivalences within the type
(%), we need several preparations.

DEFINITION. Given () = (d,, 8,, -+, 6,) as in (5.2), we define u(d) =
Omax — Omin aNd v(8) = Min (#{0;]0; = Omes}, £{0;10; = Omn}). For example
v(3,8,2,1,1,1) = 2 and v(4,2,1,1) = 1.

(6) is said to be stable if u(d) <1. We see easily that any stable
integral vector () is determined uniquely by |d].

DEFINITION (8.6). The vector bundle E(5) is said to be a specializa-
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tion of E(0") if there exists a deformation family of vector bundles E,
parametrized by te A' such that E, = E(0) and E, = E(') for every
t + 0. Here notations are as in (5.2). In the above case, we say that
W(6) is a specialization of W(3").

REMARK (8.7). If E(9) is a specialization of K(d'), then Om. = Omaxs
Omin < Ominy u(8) = u(6’), and |6| = [6'| by the semicontinuity theorem.

min =

In particular, (6’) = (6) if (d) is stable.

LEMMA (8.8). If a — b = 2, then E(a,b) is a specialization of some
E(a',b') with a >a’' =b" > b.

PROOF. Let T be a one dimensional subspace of Ext' (<~ (a), (b)) =
HYP*, (b — a)), which is not trivial by the assumption ¢ — b = 2. For
each t€ T, let E, be the vector bundle with the natural extension 0 —
() — E, — ©(a) — 0. Clearly E, = E(a,b) and E, = E(a’, b’) for every
t # 0 for some fixed (a/,d’) with o’ = b, because t’s differ only up to
scalar multiplication. So, it suffices to show & > b.

The image of ¢ wunder the isomorphism HYP!, 7 — a)) =
Hom (H°(P*, w(a — b)), H'(P*, w)) gives the first mapping of the long
exact sequence H(P!, ~7(a—b—2))—H'(P', o(—2))—>HYP', E,(—b—2))—
HYP', 7(a — b — 2)) = 0. From this we infer H'(P', E,(—b — 2)) = 0 for
t #= 0, which implies &' > b.

COROLLARY (8.9). If (0) is not stable, then E(8) is a specialization
of another vector bundle E(6") such that u(d") < u(d), or u(d") = u(d) and
v(d") < (d).

ProOF. E(5, 6,) is a specialization of some E(a’,d’) with 6, > a' =
b’ > 4, by (8.8). Then E(') = E(a’, b)) D E@®,, -+, 6,_,) has the required
property.

COROLLARY (8.10). For any (d), there exists a chain (), = (8), (9),,
<+, (0), of tntegral vectors such that E(5);_, is a specialization of E(5);
Jor each 5 =1, ---, k and that (9), 18 stable.

LEmMMmA (8.11). Suppose that E(5) is a specialization of E(6"). Then
(2™(0)ds) ~ (3™(0")as) if @Omin + b = 0.

PrOOF. We have vector bundle E on P} x A' such that E, = E(5)
and E, = FE(0') for t # 0, where the subscript ¢ indicates the restriction
over te A'. Set W = P(E) and let H be the tautological line bundle on
W. Set & = Z(2aH + 2bH;) and let f: W— A' be the natural
morphism. HYW,, &%,) =0 since adnm + b =0. By [Ha 2; Chap. III,
§12], we infer that & = f,<Z is a locally free sheaf on A' of rank
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r = h(W,, &&,). Let X be the corresponding vector bundle, which we
consider to be an A”-bundle over A'. Let W be the fiber product of
W and X over A'. The natural homomorphism &, — &, induces a ho-
momorphism & — 2y, while we have 27 — & induced by f*<2 — F
on W. Combining them, we get & — <5, which defines a divisor B
on W such that [B] = [2aH + 2bH;l7. Set M = R,W). Then, over
each point # on X, we have a double covering M, — W, with branch
locus B,, where p is the projection X — A4

Now, thanks to (5.7; 5), we find an open set U of X such that
p(U) = A* and B, is non-singular for every x€ U. Thus we have a
family {M,} of hyperelliptic polarized manifolds over U. (M,, H,) is of
type (3"(0):,) if p(@) = o and of type (27(d"):;) if p(x) # o. Therefore
(3M(0)ks) ~ (Z™(0"):,), sinee U is connected.

THEOREM (8.12). (2"(0)+;) ~ (2™(0")ap) if |0 = |0"|, @0min + b =0 and
aa::nin + b g O-

For a proof, use (8.10) and (8.11).
QUESTION (8.18). Is the above assertion true even if adnm + b < 07

According to Horikawa, there is an example where the answer is
affirmative. But we do not know the answer in general.

THEOREM (8.14). (Z"(8)) ~ (Z(8")}) if |6] = |&'].

The proof is almost identical to that of (8.12).

(8.15) Now, as an application of (8.12), we will prove (5.17).
However, since the same method works for #{» in case p = char (&), we
show only 7,(3"(0)},) = {1} in case & = C. Our proof consists of several
steps.

Step 1, the case in which n = 3 and ad.i, + b > 0. In this case B
is ample on W(d) and the ramification locus R of M — W is ample on M.
Therefore, by the Lefschetz theorem, we infer n,(M) = 7,(R) = 7, (B) =
(W) = {1}.

Step 2, 7,(3(2, 2)f,) = {1}. Since the assertion has nothing to do
with L, it suffices to show 7, (¥, 1)i..;) ={1}. If a+b=0, (3.12)
applies. So, thanks to Remark to (5.5), we may assume that ¢« + b > 0.
Then there exists (M, L) of type (2(2,1,1);,) by (5.7; 5). By (5.16), we
have (S, L)e (3(2, 2);,) for a general member S of |L|. Then 7,(S) =
(M) = {1} by the Lefschetz theorem and Step 1. This completes Step
2.

Step 3, 7.(3(2, 1)f,) = {1}. We have a + b =0 by (5.7; 4). So there
exists (M, L) of type (2(1, 1, 1);,). Then (S, L) € (¥(2, 1)f,) for a general
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member S of |L|. So it suffices to show #,(M)={1}. If a +b>0,
Step 1 applies. If a +b=0, then M= P*' X R,(P? similarly as in
(5.13; 2). Hence w,(M) = {1} by (38.12) and the Kiinneth formula.

Step 4, the case » = 2. We have ad,, +b =0 by (5.7; 4. So, by
(8.12), we may assume (0) to be stable. Then, replacing L if necessary,
we reduce the problem to either Step 2 or Step 3.

Step 5, the general case. Using (5.16) and the Lefschetz theorem,
we prove the assertion by induction on =.

(8.16) So far, we have seen that (M, L) ~ (M’', L’) if they are of
the (almost) same type. From now on, we consider the converse problem.
In the following, (M, L) is always a hyperelliptic polarized manifold.

THEOREM (8.17). (M, L) ~ (I*) implies (M, L) e (I2).

Indeed, d(M, L) = 2 and g(M, L) = a imply (M, L)€ (I7). See Tables
I and II.

COROLLARY (8 18). Amny small deformation of type (I%) is a hyperel-
liptic polarized manifold of type (I%).

For a proof, use (7.7) and (8.17).
THEOREM (8.19). (M, L) ~ (II?) implies (M, L)€ (II3) if » = 3.
THEOREM (8.20). (M, L) ~ (*IV,) implies (M, L)< (*IV,).

THEOREM (8.21). (M, L) ~ (2"(8)}) implies (M, L)€ (27(d");) for some
(0") with |0"| = |d].

Proor. If m = 8, consult Table II. If n = 2, from X, (M, L) < 0 we
infer (M, L)e (3(0")) or (Z(u, w);). Comparing ¢,(M)* and g(M, L), we
get ©* = b in the former case, or y = b and u = 1 in the latter case. In
view of Remark to (5.24), we finish the proof.

LEMMA (8.22). (M, L)~ (2"(8)},) and (M, L)e (3 *|d]%) imply (M, L) €
(Z™(8")+,) for some (8") with |6’ = |d].

Proor. Comparing d, g, X,_, and (K" + (n — 2)L)*L""* (cf. (8.4; 4)), we
obtain (1): |0'| = |6], (2): z|d| + ¥y = a|d| + b, 3): (x — L)(x|d| + 2y — 2) =
(@ —1)(a|0]| + 2b—2) and (4): (x —2)(x|d| + 2y — 4) = (a — 2)(a|d]| + 2b — 4),
where we assume (M, L)e (2"(d")),). Using (2), we get from (3) — (4) the
equality (5): 2 + ¥ = 2a + b. Together with (2), this implies ¢ = a and
Yy =b unless |§] =2. If |6] =2, we must have » = 2, and () = (¢§') =
(1,1). We easily see that there are two possible solutions: (x, ¥) = (a, b)
or (@ + b, —b). Recalling the Remark to (5.5), we obtain the conclusion.

THEOREM (8.23). (M, L) ~ (5"(8)z.,) implies (M, L) € (3%8")t,) for some
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8"y with 18" = |dl, if » = 3.
ProoF. In view of Table II, we see that (8.22) applies.

(8.24) The preceding results altogether determine the deformation
equivalences among hyperelliptic polarized manifolds of dimension =3,
except the question (8.13).

To study the case of surfaces, we need a couple of results.

PROPOSITION (8.25). Let (7 X, f, &) be a deformation family of
prepolarized manifolds. Suppose that there exists a point o on X such
that 7P (M,) = {1} and L, = mF, for some F,cPic(M,), where m is a
positive integer prime to p = char (8). Then for every x € X, there is
F, e Pic(M,) such that L, = mF,.

ProOF (due to A. Ogus). Consider the exact sequence 0 — p,, —
O — % — 0, where &5 — & is the m-power homomorphism and g,
is the constant sheaf of m-th roots of unity. This gives rise to an ex-
act sequence Pic(_#) — Pic(_#7)— H*(_#; !t,), the second homomorphism
of which will be denoted by c¢™. Clearly the difinition of ¢™ is fune-
torial, and ¢{™: Pic (M,) — H¥(M,; pt..) and ¢™ are compatible with respect
to restrictions. So, we have ¢™ (%), = ¢/™(L,) = 0. What we should
show is ¢™ (%), = 0 for every xzec X.

We have R'f.t, = 0 since 7"’ (M,) = {1}. So, by the Leray spectral
sequence, we get a natural exact sequence 0 - H*X, f.tt.) — H*(_#Z, tt,.) >
H(X, R*f.tt,) — 0. Since R*f,, is a locally constant sheaf (with respect
to the étale topology), ¢™ (<), = 0 implies that the image of ¢ (<) in
H(X, R*f,p,) vanishes. Hence ¢™ (%) comes from H*X, f.t.), which
implies ¢™ (), = 0 for every zc X.

ProposITION (8.26). If (M, L)e (2%0)*), then L is mot divisible by 2
in Pic (M).

Proor. By virtue of (8.12), (8.15) and (8.25), we may assume that
(0) is stable. If L is divisible by 2, then L* = 2|§] is divisible by 4.
Hence we may assume |d| is even and d, =0,, So W= P; x P, H=
H, + 6,Hy;y M= Ry(W) and Be|2aH, + 2bH;| for some positive integers
a, b. Note that K = (¢ — 2)a + (b — 2)8, where a and B denote the
pull-backs of H, and H, on M respectively. Set ¢ =0 if 4, is even, and
e = 1if §,is odd. Then, if L is divisible by two, we have a + ¢Q = 2F
. for some FePic(M). We will derive a contradiction from this.

CramM. If |F + 2a + yB| #= @, then 20 +1 > a and 2y + e > b.

To prove this claim, we may assume (z,y) to be a minimal pair
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among those such that | F+ za + y8| # @. So, for any De |F + za + y3|,
there is no non-trivial effective divisor D’ such that D — D’ is effective
and that [D’] comes from Pic (W). In particular, the ramification locus
R of M — W, which is member of |aa + b3/|, is not a component of D.
Furthermore, if ¢ is the involution of M covering W, D and ¢*D have
no common component C, because then C + +*C would be a part of D
and come from Pic(W). Therefore N = DN R is a 0-dimensional sub-
scheme of M. ¢*N = N since the restriction of ¢ to R is the identity.
On the other hand we have *N=1¢*DNR. So NcDN+*D. From this
we obtain D-i*D=DR. We have [2:*D]=1*[2D]=2D in Pic (M) because
2D comes from Pie(W). Now, calculating the intersection numbers on
both sides, we get: 4oy + 2y + 2ex + e = b(2x+1) + a(2y + ¢), which yields:
Qx +1—a)2y +e—0b) =ab>0. Therefore, if our claim were not true,
both factors of the left hand side would be negative. On the other hand
we have 2x+1=aD=0 and 2y +e= 8D =0. Combining them we infer
2¢ +1 =2y + ¢ = 0, but this is impossible unless D = 0. If D =0, then
F is an integral combination of « and 3, and we get a non-trivial relation
for @ and B in Pic (M). This is absurd. Thus we prove the claim.

Returning to the proof of the proposition, we note that F? = ¢ and
FK" =b— 2 + e(a — 2). Since F?= FK" (mod 2), there are four possible
cases: (1) a, b and ¢ are even. (2) @ and e are odd, b is even. (3) b
and e are even, a is odd. (4) b and e are odd, a is even.

Case (1), 0 =2a/,b=2ande=0. SetZ=F+ (o' —2)a+ " —1)5.
Then K*"—Z = F+(a'—1)a+®"'—1)8. So h’(M, Z) =0 = b’ (M, K"—Z) =
r(M, Z) by the above claim. Hence X(M, Z) = —h'(M, Z) £ 0. On the
other hand, by the Riemann-Roch theorem, we have X(M, Z)=
(Z* — K"Z)|2 + X(M, Z,) = 2a'b’ > 0. Thus we get a contradiction.

Case (2), a = 22"+ 1, b=2b" and e=1. Set Z=F + (¢ — Da +
(" —2)8. Then K" — Z =F + (¢’ — 1)a + (b’ — 1)3. Similarly as above,
we obtain X(M, Z) < 0 using the claim. On the other hand, we have
XM, Z) = (2¢" + 1)b' > 0 by the Riemann-Roch theorem.

Case 3),a =2a"+1,b=20',e=0. Set Z=F+(a/' —1a+ @ —1)3.
Then X(M, Z) < 0 by the claim, while we have X(M, Z) = b'(2a’ + 1) > 0
by the Riemann-Roch theorem.

Case (4). The situation is the same as in case (2), except that the
role of the two rulings of W are interchanged.

Thus, in any case, we derive a contradiction, as desired.

(8.27) We come back to the problem of deformation equivalences
among hyperelliptic polarized surfaces.

THEOREM. (M, L) ~ (IV,) implies (M, L) (IV,).
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Proor. Using (8.25), we infer that L is divisible by two. Hence
(M, L) is not of type (X(6)*) by (8.26). (M, L) is neither of type (2(6)°)
nor of type (2(6)"), because X(M,7,) >0. If (M,L) is of type
Z(w + 27, w);), then uw =7 =1 because d(M, L) =8. Comparing g, X
and ¢, we get (1): 3x —2=2a + 1, (2): 2(x — 1)(x — 2) = a(a — 1), (3):
20 — 2)(x — 8) = (@ — 2)%.. (2) — (3) yields 4(x — 1) = 3a. Together with
(1), this implies @ =2 — 1 =0, which is absurd. Now, in view of
Table I, we conclude that (M, L) is of type (IV). Comparing g(M, L)
we see (M, L)e (IV,).

THEOREM (8.28). (M, L) ~ (*II,) implies (M, L)€ (*I1,).

PROOF. ¢, (M)* = (2a — 3)* is odd. So, in view of Table I, we infer
(M, L) e (*I1,).

THEOREM (8.29). (M, L) ~ (2(u, w);) implies (M, L)€ (2 (u, w)z).

PROOF. Since X(M) =2 — a =0, (M, L) is either of type (3(¢");) or
of type (Z(v, v);). In the former case, as we saw in (8.21), we have
(M, L)e (21, 1)3) = (21, 1)7). So we need not worry about this possibility.
In the latter case, we obtain v = u and x = a by the comparison of
d(M, L) and g(M, L).

THEOREM (8.30). (M, L) ~ (2*4},) implies either

(1) (M, L)e(2*d),) for some (9) with |0| = 4, or

(2) (M, L)e(Z(u + 27, w)7), 4 =21u + 7), u is odd, ¥ = (a — 2)u + 2
and b =2 — 4.

Proor. If (M, L) is of type (Z(6)") for some (6), then (8.22) applies.
Otherwise, in view of Table I and the preceding results altogether, we
infer that (M, L)€ (X(u + 27, w);) for some u, ¥ and z. Comparing d,
g, X and ¢, weget2(u +7)=4,x =aand b= —au — 7. Furthermore,
using (8.25) and (8.26), we infer that L is not divisible by two. This
implies that w is odd. Indeed, by (5.27; 1), we have M = Ry W), B =
B, + B, and B,e|L — (u + 27)Hy|. So L = 2R, + (u + 2Y)H,;, where R,
is the component of the ramification locus lying over B,. Thus, if
were even, L would be divisible by two.

We should further show that b +4—-2=7—(a —2u —2=0.
Assuming #0, we set b+ 4 — 2= p°m, where e is a non-negative
integer and m is an integer prime to p = char (8) (if » = 0, we let p*=1).
Note that K* — (¢ — 2)L = pmH; and that K’ — (a — 2)L' = p'mp’,
where (M, L) ~ (M', L") e (3*4;,), K’ is the canonical bundle of M’, and
@' is the pull-back of H; on M’. Therefore we have K — (a — 2 — m)L =
m(L + p°H;) = m(2R, + (u + p° + 27)H,;), which is divisible by 2m because
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p° is odd. So, by virtue of (8.25), K' — (a — 2 — m)L' = m(L’' + p°R’)
is divisible by 2m in Pic (M’). Hence L' + p°Q’ = L” is divisible by 2,
because Pic (M') has no torsion prime to p (ef. (5.17) and (8.15)). This
contradicts (8.26) since (M’, L") € (2*%6")*) for some (6”). Thus we com-
plete the proof.

REMARK. The last condition of the above case (2) is equivalent to
saying that K¥ = (a — 2)L.

THEOREM (8.31). (M, L)~ (Z(u+27, w);) tmplies (M, L) € (X(u+27, u);)
except in the case (8.30; 2), where w is odd and ¥ = (a — 2)u + 2.

ProoF. In view of Table I and the preceding results, we infer
(M, L)e (Z(w" + 27, u');) except in the case (8.30; 2). In the former case
we obtain £ = a, ¥’ = % and ¥ = v by comparison of d, g, X and c.

(8.82) The results in this section may be summarized as follows.

THEOREM. Aside from the problem (8.13), hyperelliptic polarized
manifolds of the same type such as (1), (1I7), (IV,), (*IL,), (*IV,), (24} ,),
2 4y), (X(u, u)7), (X + 27, u),) are deformation equivalent to each other.
Conversely, these classes are stable under deformation equivalence, but
for the exceptional possibility (8.30; 2).

(8.83) It is a delicate problem whether the case (8.30; 2) does really
happen or not.

When a¢ = 2, M is a K3-surface. We show that the surjectivity of
the period mapping for polarized K3-surfaces implies (X(u + 4, u);) ~
(2*|2u + 4|5, _su_,) for any odd positive integer u. To see this, let
(M, L) e (3(u + 4, w);) and (M, L,) € (2*|2u + 4|/ _,,_,). We claim that
both polarizations are primitive, that means, there is no ample line
bundle F such that L, = mF for some m > 1. Indeed, for ¢ =1, this
follows from L,R, = w and L.H, = 2(u + 8), where the notations are as
in (5.27) and R, is the ramification divisor lying over B,. As for the
case 1 = 2, we use (8.26) and LH,; = 2.

Now, by the results in the Appendix of [PS], it follows that there
is a bijection f: HXM,; Z) — H*M,; Z) such that f(c,(L,)) = ¢/(L,) and f
is compatible with the intersection pairings. So they define the same
marked lattice 4. Let D(4) be the period domain for polarized K3-
surfaces with lattice 4. One easily sees that the connectedness of D(A)
and the surjectivity of the period mapping imply (M,, L,) ~ (M,, L,).

On the other hand, in case & = C and a = 3 (this implies K* = L),
Horikawa [Ho 1] showed that (33w + 4, w);) and (2*|4w + 4|5 _,._,) are
not deformation equivalent to each other. His method involves the
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study of all the possible deformations of such surfaces, where the
canonical bundles may not be ample. He -classified them into two
species, and then showed that both are stable under small deformations
(cf. [Ho 1; §7)).

His method seems to be generalized in case a = 8. Indeed, for any
deformation (M, L) of such polarized surfaces, M is a minimal surface
of general type. So L is semiample, i.e., there is a positive integer
m such that Bs|mL|= @. If in addition Bs|L| = @, we can show,
by the techniques in [F6; §3], that M is a double covering of a polar-
ized variety of 4-genus zero. Although the covering may not be a
finite morphism and the branch locus may have certain singularities,
it is not very difficult to transplant the techniques of Horikawa. When
a is odd, we can actually prove Bs|L| = @ as Horikawa did in case
a = 3. When a is even, the problem seems a little subtler.

The author hopes to carry out the above plan in detail in a future
paper.

Appendix. The main purpose of this appendix is to prove the
following:

THEOREM (Al). Let K be the canonical line bundle of a locally
Gorenstein curve C. Suppose that the rational mapping defined by K
18 birational. Then K 1is simply generated and hence very ample.

This was proved by Max Noether when C is a non-singular curve
defined over the complex number field. Saint-Donat [Sa 1] showed that
this is valid in positive characteristic cases, too. There it was assumed
that C is non-singular, but this assumption can be omitted. Indeed,
the crucial lemma on p. 162 is proved by the same argument since the
Jacobian variety of C is non-singular even if C is singular. Moreover,
it is easy to generalize Clifford’s theorem on singular curves (see (1.9)).
Here we provide a different proof.

(A2) From now on, we fix an irreducible reduced curve C with
W(C, Z,) = g. C is locally Macaulay and the dualizing sheaf will be
denoted by w.

(A3) A shaf . on C is said to be quasi-invertible if it is torsion
free and of rank one. If so, we define d(&)=X%)—1+g¢ and
NF)=1+d(F)—hr(F)=9g—h(F) as in [F2]. When & is
invertible, we have d(&) = deg (&) by the Riemann-Roch theorem.

PROPOSITION (A4). Let D be an effective divisor, L be a line bundle
and & be a quasi-invertible sheaf on C. Let o€ Hom (&, ©#[L — DJ)
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and B € Hom (7, & [ — D)) such that Supp (Coker (a)) N Supp (Coker (B))= &.
Then h() + h"(L) £ (& [L — D)) + (D).

Proor. Consider the homomorphism p: H(.& YPH(L)—H (< [L— D))
defined by (e D v) = as(®) — B(¥), where a, ¢ Hom (&, 7 [L — DJ)
and B, € Hom (L, & [L — D)) are induced by a and g8 respectively. By
assumption we infer that a. () = B.(y) implies the existence of § € H(D)
such that « = a,(8) and @ = B,(6), where a,<c Hom (<[D], <[L]) and
Bp€Hom (~[D], &) are the induced homomorphisms. Therefore
h(Z [L—D])=dim (Im ())=hr%(Z )+ h(L)—dim (Ker (#£)) = k(& )+ h(L) —
h'(D), which proves the assertion.

PROPOSITION (A5). Let L be a line bundle with Bs|L| = @ and let
Z be a quasi-invertible sheaf such that 2h°(&") = K (& [L]) + h(& [—L)).
Then the natural homomorphism H( & ) Q H(L) — H(F [L]) is surjec-
tive.

Proor. Take a, € H(L) = Hom (&, <’[L]) in such a way that the
supports of their cokernels do not meet. Consider the homomorphism
H:H( )P H(s ) — H (< [L]) induced by « and B. Similarly as in
(A4), we infer dim (Ker () < h(& [—L]). Hence, by assumption, we
get dim (Im () = 2h°(%) — dim (Ker (1)) = k(& [L]). Thus g is surjee-
tive, hence so is H (&) ® H(L) — H(< |L]).

LEMMA (A6). Let L be a line bundle and let & be a quasi-invertible
sheaf. Let » be a simple point on C such that p¢Bs|L| and ¢o(p) # 0
for some pe H(). Suppose that H(F ) K H'(L — p) —» H (& [L — p])
18 surjective. Then the natural mapping H(F ) Q H(L) — H (& [L))
18 surjective.

Proof is almost identical to that of [F2; Lemma 1.8, (b)].

(A7) Clearly (Al) follows from the result below.

THEOREM. Let L be a line bundle such that Bs|L| = @. If
dim |L| = 2, assume in addition that 0,z is birational. Then the natural
mapping p: H (@) Q@ H'(L) — H(@w[L]) s surjective.

ProoF. We use the induction on A°(L). If A'(L) = 2, (Ab) applies
by virtue of the Riemann-Roch theorem. If A°(LL)=3, then Bs|L—z|= @
for a general point x on C because p  is assumed to be birational. So
(A6) applies if h°(L) = 3. Thus it suffices to consider the case r(L) = 4.

Let C’ < P" be the image of C via p,;,, where h = dim |L| = h(L) — 1.
If a general secant of C’ is not a multiscant, then p,,_,, is birational
for any general point * on C. Hence our assertion follows from (A6)
and the induction hypothesis. So we may assume that any secant of C’
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is a multi-secant.

Let H be a general hyperplane in P*. Then the divisor D = HN ('
on C' is a non-singular scheme. Since dim (Im (H°(P*, H) = H*(C, L) —
HD, Lp))) = k(L) — 1 = h, we infer that D is not contained in any
hyperplane of H = P*'. Hence we can find 2 — 1 points of D which
span P*% Let B be the divisor on C consisting of the points on this
P*2  Then (L — B) =2 and Bs|L — B| = @. However, unlike the
previous cases, deg B> h — 1 and hence H°(C, L) — H°(B, L) is not
surjective. Instead we claim 2°(C, B) = 1.

To prove the claim it suffices to show that any hyperplane S of P*
containing D — B must contain B, too. Take a point x of D not in
Span (B) = P2, For any point ¢ of B we have a third point y of D
on the line z * q, because any secant of C’ is a multi-secant. % ¢ Span (B)
because otherwise zeyxqCSpan(B). Hence z,yeD— BcS. So
gex*yCS, as required.

Now we have h'(w[—B]) =1 by the Serre duality. So H'(w[—B]) —
HY(w) is injective and H(w)— H%(B, w;) is surjective. Therefore H(w[L])
and Im (¢#) have the same image in H(B, w[L];). So H(w[L])CIm (z) +
Im (8), where g3 is the natural mapping H°(w[L — B]) Q H(B) — H(w[L])).

On the other hand, H(w) ® H(L — B) — H(w[L — B]) is surjective
by (A5) (or by the induction hypothesis in case h'(L) = 2). So Im (B)
comes from H(w)&Q H(L — B) ® H(B), hence Im (8) — Im (¢). Putting
things together we obtain H°(w[L]) < Im (z).

REMARK (A8). It is actually possible that any general secant of C
is a multi-secant.

Let C, be the affine curve in A® given parametrically by = =¢,
Yy =1, z= (97, where q is a power of p = char (R). Let C be its
closure in P®. Then C is a complete intersection of type (¢, ¢) with one
singular point at infinity. One can easily check that any general secant
line of C is a g-secant, that means, passes exactly ¢ points on C.

Of course, however, such a phenomenon is impossible if char (&) = 0
(cf., e.g., [Ha 2; p. 312]). Correspondingly we can improve the result
(A7) in the following way.

LEMMA (A9). (In the sequel we assume char (]) =0.) Let L be a
line bundle such that Bs|L| = @ and that the morphism 0, defined by
|L| 1s birational. Then, for any general point » on C, we have
Bs|L — p| = @. Moreover, the morphism 0, ._, s birational unless
dim |L| £ 2.

This is clear because any general secant of C' = p . (C)c P* is not
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a multi-secant.

THEOREM (A10). Let L be a line bundle such that Bs|L| = @. If
dim |L| = 2, assume in addition that 0,,, is birational. Let & be a
quasi-invertible sheaf such that h(Z ) >0 and 20(F ) + K(L) — 2 =
(& [L)) + W (& [—L]). Then the natural mapping H(Z ) K H(L) —
H(Z[L]) is surjective.

PrOOF. Similarly as in (A7), we use the induction on A°(L). By
virtue of (A6) and (A9), it suffices to show the following inequality (%)
for any general point p on C.

() 2K(F)+ KL —-p)—22h(F[L—p)+r(F[-L+0].

To show this, we first consider the case in which A'(&[—L]) =0.
Then h'(&[—L + p]) =0 by [F2; Lemma 1.4], and similarly we have
WF)=h(F[L—p)=0 since |L—p|#@. Hence 2r(F)=
WL — p)) + (& [—L + p]). So h%L — p) =2 implies (#) unless
(L) = 2.

If n'(&#[—L]) >0, then h'(F [—L + p]) = dim Hom (Z, w[L — p]) =
dim Hom (&, w[L]) — 1 = k(& [—L]) —1 since p 1is general. So
W F[—L + p)) = (& [—L]). On the other hand A(F[L — p]) =
(L) —1 and R(L — p) = kL) — 1. Combining them with the
assumed inequality, we obtain (%).

REMARK (All). The assumed inequality in (A10) is true in the
following cases.

(1) ¥ =w.

(2) deg (%) =24(%) and (& [—L]) = 0.

(8) deg (%) =24(% ) and deg (L) = 29 + 1.

Proor. (1) The left hand side is k(L) + 29 — 2, while the right
hand side is equal to X(w[L]) + h'(L) = h'(L) — 1 4+ d(L) + g. They are
equal by the Riemann-Roch theorem. ,

(2) d(&)=24(%) implies 2 (F )= d(& )+ 2. On the other
hand AYL) = b (F[L]) — d(&") because h'(< [L]) < h'(L) by [F2; Lemma
1.4]. Combining them we get the inequality.

(83) We may assume h(&F[—L]) >0 by 2). So d(&)=d(L)=
29 +1, and A(F) =g + 2. Take an effective divisor D such that
deg(D) =g +1and W(&F[-D])) =h(%)—g—1. Then H'L — D) >0
since (L) =1+dlL)—g=g+2 So h(F[-L)<r(F[-D])=
() — g — 1. Combining them we obtain the desired inequality.

QUESTION (A12). Is (A10) true im case char (&) > 07?
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Note that (Al1l) is valid in positive characteristic cases too.

REFERENCES

[EGA] A. GROTHENDIECK, Eléments de géométrie algébrique, Publ. Math. L.H.E.S. 4 (1960),
8 (1961), 11 (1961) and 17 (1963).

[F1] T. Fuarra, On the structure of polarized varieties with 4-genera zero, J. Fac. Sci. Univ.
Tokyo 22 (1975), 103-115.

[F2] T. Fuiita, Defining equations for certain types of polarized varieties, in Complex

Analysis and Algebraic Geometry (Baily and Shioda, eds.), Iwanami, Tokyo, 1977,
165-173.

[F3] T. Fuiira, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan 32
(1980), 153-169.

[F4] T. Fuaita, On the structure of polarized manifolds with total deficiency one, I, J. Math.
Soc. Japan 32 (1980), 709-725.

[F4-8] T. FuJaita, ibid, part III, preprint.

[F5] T. FuJsitA, On L-dimension of coherent sheaves, J. Fac. Sci. Univ. of Tokyo 28 (1981),
215-236.

[F6] T. Fuiira, On polarized varieties of small 4-genera, Téhoku Math. J. 34 (1982), 319-341.

[G1] A. GROTHENDIECK, Revétements Etales et Groupe Fondamental, SGA 1, Lecture Notes
in Math. 224, Springer-Verlag, Berlin, 1971.

[G2] A. GROTHENDIECK, (Notes by R. Hartshorne), Local Cohomology, Lecture Notes in Math.
41, Springer-Verlag, Berlin, 1966.

[Ha 1] R. HARTSHORNE, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math.
156, Springer-Verlag, Berlin, 1970.

[Ha 2] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag,
Berlin, 1977.

[Hi] F. HirzeBrucH, Uber eine Klasse von einfach zusammenhingenden komplexen Mannig-
faltigkeiten, Math. Ann. 124 (1951), 77-86.

[Ho 1] E. Horikawa, Algebraic surfaces of general type with small ¢, I, Annals of Math.
104 (1976), 357-387.

[Ho 2] E. HorikAwWA, On deformations of holomorphic maps, III, Math. Ann. 222 (1976),
275-282.

[Ii] S. IrtakaA, On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373.

[Is] V. A. IskovskiH, Fano 3-folds, I (Russian), Izv. Akad. Nauk SSSR 41 (1977); English
translation: Math. USSR Izvestija 11 (1977), 485-527.

[KS] K. Kopaira AND D. C. SPENCER, A theorem of completeness for complex analytic fiber
spaces, Acta Math. 100 (1958), 281-294.

[M] S. Mor1, On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975),
619-646.

[PS] I. I. PsATECKIH-SAPIRO AND I. R. SAFAREVIE, Torelli’s theorem for algebraic surfaces of
type K3, Izv. Akad. Nauk SSSR, Ser. Mat. 35 (1971), 530-572.

[R] M. RAYNAUD, Profondeur et théorémes de Lefschetz en cohomloogie étale, SGA 2, Expose
XIV, North-Holland, Amsterdam, 1968.

[Sa 1] B. SAINT-DONAT, On Petri’s analysis of the linear system of quadrics through a
canonical curve, Math. Ann. 206 (1973), 157-175.

[Sa 2] B. SAINT-DONAT, Projective models of K3-surfaces, Amer. J. Math. 96 (1974), 602-639.

[Se] J. P. SERRE, Faisceaux algébriques coherents, Ann. of Math. 61 (1955), 197-278.

[W] J. Wavgrik, Deformations of branched coverings of complex manifolds, Amer. J. Math.
90 (1968), 926-960.



44

DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
UNIVERSITY OF TOKYO

KomaBA, MEGURO, Tokyo 153
JAPAN

T. FUJITA





