Tόhoku Math. Journ. 35(1983), 309-311.

ON THE REVERSE HOLDER INEQUALITIES FOR CERTAIN EXPONENTIAL PROCESSES

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

NORIHIKO KAZAMAKI

(Received July 19, 1982)

Given a continuous local martingale M with $M_0 = 0$, we denote by $\langle M \rangle$ the associated increasing process. The purpose of this note is to establish the reverse Holder inequality for the process defined by the formula

$$
G_{\alpha}(t) = \exp \left\{ \alpha M_t + \left(\frac{1}{2} - \alpha \right) \langle M \rangle_t \right\} \qquad (0 \leq t < \infty),
$$

where α is a real number. This exponential process plays an important role in connection with the problem of finding out sufficient conditions for the uniform integrability of the exponential martingale *Z =* $\exp(M - \langle M \rangle/2)$ (see [4] and [5]). We remark in passing that it is the $\int_{0}^{T} Y_{s} dX_{s}$, where $X = \alpha M + (1-\alpha)^2 \langle M \rangle /2.$

Let now (Q, F, P) be a fixed probability space with a right filtration (F_t) , where $F_{\infty} = F$, and we assume that F_o contains all the null sets. Every martingale here is adapted to this filtration. For simplicity, we denote by *S^* the class of all stopping times. Recall that a continuous local martingale N is said to be in the class BMO if $E[\langle N \rangle_{\infty} \langle N \rangle_{T} |F_{T}] \leq C$ for every $T \in \mathscr{S}$, where *C* is an absolute constant. It is well-known that the space BMO is a Banach space with the norm $\|N\|_{\texttt{BMO}} = \sup_{T \in \mathscr{S}} \|E[\langle N \rangle_{\infty} - \langle N \rangle_T |F_T]^{1/2}\|_{\infty}.$

LEMMA. If $||N||_{BMO} < 1$, then we have

$$
E[\exp(\langle N\rangle_{\infty}-\langle N\rangle_T)|\,F_T]\leqq (1-\|N\|_{\rm BMO}^2)^{-1}\qquad (T\!\in\!\mathscr{S})\;.
$$

In [2] Garsia has first established this inequality for discrete parameter martingales, and it is of fundamental importance in our investigation. For the proof, see [3].

Our first result is the following.

PROPOSITION 1. If $M \in BMO$, then there exist $p > 1$ and $\delta > 0$ such

that the reverse Holder inequality

$$
E[G_{\alpha}(\infty)^p | F_T] \leq C_{\alpha}G_{\alpha}(T)^p
$$

holds for every $T \in \mathcal{S}$ *and every* α *with* $|\alpha - 1| < \delta$ *, where* C_{α} *is a constant depending on a.*

The result for the case $\alpha = 1$ is obtained in [1] by C. Doléans-Dade and P. A. Meyer.

PROOF. Let $M \in BMO$. Then it is easy to see that for any α the process $Z^{(\alpha)} = \exp{(\alpha M - \alpha^2 \langle M \rangle/2)}$ is a uniformly integrable martingale. Moreover, for $|\alpha| \leq 2$ the reverse Hölder inequality

$$
(1) \t E[{Z_{\infty}^{(\alpha)}}]^{r} |F_{T}] \leqq C_{r} {Z_{T}^{(\alpha)}}^{r}
$$

holds for every $T \in \mathscr{S}$ and some $r > 1$, where C_r depends only on r (see the proof of Lemma 9 in [4]). On the other hand, by a simple calcula tion we have

$$
(2) \hspace{3.1em} G_{\alpha}(T) = Z_T^{\scriptscriptstyle{(\alpha)}} \exp\left\{ \frac{1}{2} (1-\alpha)^2 \langle M \rangle_T \right\} \, .
$$

Let now $1 < p < r$, and we set $u = r/p$ and $v = r/(r - p)$. Applying Hölder's inequality to the right hand side of (2) we find

$$
(3) \quad E[{G_{\alpha}(\infty)/G_{\alpha}(T)}^p \mid F_T] \leq E[{Z_{\infty}^{(\alpha)}/Z_T^{(\alpha)}}^p \mid F_T]^{1/u} \times E\Big[\exp\Big{\frac{1}{2}(1-\alpha)^2pv(\langle M \rangle_{\infty}-\langle M \rangle_T)}\Big\} \Big|F_T\Big]^{1/v}.
$$

By (1) the first term on the right hand side is smaller than $C_r^{1/v}$. In proving our claim, we may assume that $0 < ||M||_{\text{BMO}}$, and so we let $\delta = (\sqrt{\,p\hspace{0.5pt} v \,}\,\, \| M \|_{\text{\tiny BMO}})^{-1} . \quad \text{ Then} \quad (1 - \alpha)^{\text{\tiny 2}} p v \, \| M \|_{\text{\tiny BMO}}^2 < 1 \quad \text{for \;\; any \;\; α \;\; with}$ $|a-1|<\delta$, and thus from the lemma it follows at once that the second term on the right hand side of (3) is bounded by *21/v .* Combining these estimates, we find that the inequality

$$
E[G_{\alpha}(\infty)^p | F_T] \leq 2^{1/v} C_r^{1/u} G_{\alpha}(T)^p \qquad (T \in \mathscr{S})
$$

is valid for any α with $|\alpha - 1| < \delta$. This completes the proof.

Furthermore, in the above setting we have $E[\sup_t G_a(t)^p] < \infty$ for any α with $|\alpha - 1| < \delta$, because $\{G_{\alpha}(t), F_{t}\}\$ is an L^{p} -bounded submar tingale. But it should be noted that the condition $M \in BMO$ does not always imply the integrability of $G_a(\infty)$ for all α (see Example 4 in [3]).

Finally, we prove the following converse of Proposition 1.

PROPOSITION 2. Let $\alpha \neq 1$. Suppose that $Z^{(\alpha)}$ is a uniformly *integrable martingale and that the inequality*

$$
(4) \t\t\t\t E[G_{\alpha}(\infty) \,|\, F_{T}] \leqq C_{\alpha} G_{\alpha}(T)
$$

is valid for every $T \in \mathcal{S}$, with some constant $C_a > 0$. Then M belongs *to the class* BMO.

PROOF. We begin with the case $\alpha = 0$. Since $G_0(t) = \exp(\langle M \rangle_t/2)$, it follows from (4) that

$$
E\!\!\left[\,\exp\,\left\{\frac{1}{2}(\langle M\rangle_\infty-\langle M\rangle_T)\!\right\}\Big| \,F_T\right]\!\leqq C_0\;.
$$

Then we get $||M||_{\texttt{\tiny BMO}}^2 \leq 2 C_{\textup{o}}$.

Secondly, we deal with the case $\alpha \neq 0$. By the assumption, $Z^{(\alpha)}$ is a uniformly integrable martingale, and so $d\widehat{P} = Z_{\circ}^{\scriptscriptstyle(\alpha)} dP$ is also a probability measure. Then, according to the theorem of Girsanov-Schuppen-Wong, for any continuous local matingale X the process \hat{X} defined by the formula $\hat{X}_t = \alpha \langle X, M \rangle_t - X_t$ is a continuous local martingale relative to \hat{P} such that $\langle \hat{X} \rangle = \langle X \rangle$ under either probability measure (see [6] for example). Applying this result to the local martingale αM , we can derive from (2) and (4) that

$$
\hat{E}\bigg[\exp\Big\{\frac{1}{2}\Big(1-\frac{1}{\alpha}\Big)(\langle\alpha\hat{M}\rangle_{\infty}-\langle\alpha\hat{M}\rangle_{T})\Big\}\,\Big|F_{T}\bigg]\leqq C_{\alpha}\qquad (T\!\in\!\mathscr{S})\;.
$$

This implies that $\alpha \hat{M}$ is a BMO-martingale relative to \hat{P} . So, we have $M \in$ BMO by Theorem 2 in [3]. Thus the proof is complete.

REFERENCES

- [1] C. DoLέANS-DADE AND P. A. MEYER, Inegalites de normes avec poids, Sem. de Prob. XIII, Univ. de Strasbourg, Lecture Notes in Math., 721, Springer-Verlag, Berlin, Heidelberg and New York, 1979, 313-331.
- [2] A. M. GARSIA, Martingale inequalities, Seminar Notes on Recent Progress, Benjamin, 1973.
- [3] N. KAZAMAKI AND T. SEKIGUCHI, On the transformation of some classes of martingales by a change of law, Tόhoku Math. J. 31 (1979), 261-279.
- [4] N. KAZAMAKI AND T. SEKIGUCHI, Uniform integrability of continuous exponential martingales, Tόhoku Math. J. 35 (1982), 289-301.
- [5] D. LέPiNGLE AND J. MEMIN, Integrabilite uniforme et dans *L^r* des martingales ex ponentielles, Sem. de Rennes, 1978.
- [6] J. H. VAN SCHUPPEN AND E. WONG, Transformation of local martingales under a change of law, Ann. of Probability, 2 (1974), 879-888.

DEPARTMENT OF MATHEMATICS TOYAMA UNIVERSITY GOFUKU, TOYAMA, 930 JAPAN