Tôhoku Math. Journ. 35 (1983), 309-311.

ON THE REVERSE HÖLDER INEQUALITIES FOR CERTAIN EXPONENTIAL PROCESSES

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

NORIHIKO KAZAMAKI

(Received July 19, 1982)

Given a continuous local martingale M with $M_0 = 0$, we denote by $\langle M \rangle$ the associated increasing process. The purpose of this note is to establish the reverse Hölder inequality for the process defined by the formula

$$G_{lpha}(t) = \exp\left\{lpha M_t + \Big(rac{1}{2} - lpha\Big)\langle M
angle_t
ight\} \qquad (0 \leq t < \infty)$$
 ,

where α is a real number. This exponential process plays an important role in connection with the problem of finding out sufficient conditions for the uniform integrability of the exponential martingale $Z = \exp(M - \langle M \rangle/2)$ (see [4] and [5]). We remark in passing that it is the solution of the stochastic integral equation $Y_t = 1 + \int_0^t Y_s dX_s$, where $X = \alpha M + (1 - \alpha)^2 \langle M \rangle/2$.

Let now (Ω, F, P) be a fixed probability space with a right filtration (F_t) , where $F_{\infty} = F$, and we assume that F_0 contains all the null sets. Every martingale here is adapted to this filtration. For simplicity, we denote by \mathscr{S} the class of all stopping times. Recall that a continuous local martingale N is said to be in the class BMO if $E[\langle N \rangle_{\infty} - \langle N \rangle_T | F_T] \leq C$ for every $T \in \mathscr{S}$, where C is an absolute constant. It is well-known that the space BMO is a Banach space with the norm $||N||_{\text{BMO}} = \sup_{T \in \mathscr{S}} ||E[\langle N \rangle_{\infty} - \langle N \rangle_T | F_T]^{1/2}||_{\infty}$.

LEMMA. If $||N||_{BMO} < 1$, then we have

$$E[\exp\left(\langle N \rangle_{\infty} - \langle N \rangle_{T}\right) | F_{T}] \leq (1 - \|N\|_{\text{BMO}}^{2})^{-1} \qquad (T \in \mathscr{S}) \ .$$

In [2] Garsia has first established this inequality for discrete parameter martingales, and it is of fundamental importance in our investigation. For the proof, see [3].

Our first result is the following.

PROPOSITION 1. If $M \in BMO$, then there exist p > 1 and $\delta > 0$ such

that the reverse Hölder inequality

$$E[G_{\mathbf{a}}(\infty)^p | F_T] \leq C_{\mathbf{a}} G_{\mathbf{a}}(T)^p$$

holds for every $T \in \mathscr{S}$ and every α with $|\alpha - 1| < \delta$, where C_{α} is a constant depending on α .

The result for the case $\alpha = 1$ is obtained in [1] by C. Doléans-Dade and P. A. Meyer.

PROOF. Let $M \in BMO$. Then it is easy to see that for any α the process $Z^{(\alpha)} = \exp(\alpha M - \alpha^2 \langle M \rangle/2)$ is a uniformly integrable martingale. Moreover, for $|\alpha| \leq 2$ the reverse Hölder inequality

$$(1) E[\{Z_{\infty}^{(\alpha)}\}^r | F_T] \leq C_r \{Z_T^{(\alpha)}\}^r$$

holds for every $T \in \mathscr{S}$ and some r > 1, where C_r depends only on r (see the proof of Lemma 9 in [4]). On the other hand, by a simple calculation we have

$$(2) \qquad \qquad G_{\alpha}(T) = Z_T^{(\alpha)} \exp\left\{\frac{1}{2}(1-\alpha)^2 \langle M \rangle_T\right\} \,.$$

Let now 1 , and we set <math>u = r/p and v = r/(r - p). Applying Hölder's inequality to the right hand side of (2) we find

$$(3) \quad E[\{G_{\alpha}(\infty)/G_{\alpha}(T)\}^{p} | F_{T}] \leq E[\{Z_{\infty}^{(\alpha)}/Z_{T}^{(\alpha)}\} | F_{T}]^{1/u} \\ \times E\left[\exp\left\{\frac{1}{2}(1-\alpha)^{2}pv(\langle M \rangle_{\infty} - \langle M \rangle_{T})\right\} | F_{T}\right]^{1/v}.$$

By (1) the first term on the right hand side is smaller than $C_{r'}^{1/v}$. In proving our claim, we may assume that $0 < \|M\|_{\text{BMO}}$, and so we let $\delta = (\sqrt{pv} \|M\|_{\text{BMO}})^{-1}$. Then $(1-\alpha)^2 pv \|M\|_{\text{BMO}}^2 < 1$ for any α with $|\alpha - 1| < \delta$, and thus from the lemma it follows at once that the second term on the right hand side of (3) is bounded by $2^{1/v}$. Combining these estimates, we find that the inequality

$$E[G_{\alpha}(\infty)^{p} | F_{T}] \leq 2^{1/v} C_{r}^{1/u} G_{\alpha}(T)^{p} \qquad (T \in \mathscr{S})$$

is valid for any α with $|\alpha - 1| < \delta$. This completes the proof.

Furthermore, in the above setting we have $E[\sup_t G_{\alpha}(t)^p] < \infty$ for any α with $|\alpha - 1| < \delta$, because $\{G_{\alpha}(t), F_t\}$ is an L^p -bounded submartingale. But it should be noted that the condition $M \in BMO$ does not always imply the integrability of $G_{\alpha}(\infty)$ for all α (see Example 4 in [3]).

Finally, we prove the following converse of Proposition 1.

PROPOSITION 2. Let $\alpha \neq 1$. Suppose that $Z^{(\alpha)}$ is a uniformly integrable martingale and that the inequality

310

$$(4) E[G_{\alpha}(\infty)|F_T] \leq C_{\alpha}G_{\alpha}(T)$$

is valid for every $T \in \mathcal{S}$, with some constant $C_{\alpha} > 0$. Then M belongs to the class BMO.

PROOF. We begin with the case $\alpha = 0$. Since $G_0(t) = \exp(\langle M \rangle_t/2)$, it follows from (4) that

$$E\!\!\left[\exp\left\{rac{1}{2}(\langle M
angle_{\infty}-\langle M
angle_{T}
ight\}\Big|\,F_{T}
ight]\!\leq C_{\scriptscriptstyle 0}\;.$$

Then we get $||M||_{BMO}^2 \leq 2C_0$.

Secondly, we deal with the case $\alpha \neq 0$. By the assumption, $Z^{(\alpha)}$ is a uniformly integrable martingale, and so $d\hat{P} = Z_{\infty}^{(\alpha)} dP$ is also a probability measure. Then, according to the theorem of Girsanov-Schuppen-Wong, for any continuous local matingale X the process \hat{X} defined by the formula $\hat{X}_t = \alpha \langle X, M \rangle_t - X_t$ is a continuous local martingale relative to \hat{P} such that $\langle \hat{X} \rangle = \langle X \rangle$ under either probability measure (see [6] for example). Applying this result to the local martingale αM , we can derive from (2) and (4) that

$$\widehat{E}\left[\exp\left\{\frac{1}{2}\left(1-\frac{1}{\alpha}\right)(\langle \widehat{\alpha M} \rangle_{\infty}-\langle \widehat{\alpha M} \rangle_{T})\right\} \middle| F_{T}\right] \leq C_{\alpha} \qquad (T \in \mathscr{S}) \ .$$

This implies that αM is a BMO-martingale relative to \hat{P} . So, we have $M \in BMO$ by Theorem 2 in [3]. Thus the proof is complete.

References

- [1] C. DOLÉANS-DADE AND P. A. MEYER, Inégalités de normes avec poids, Sém. de Prob. XIII, Univ. de Strasbourg, Lecture Notes in Math., 721, Springer-Verlag, Berlin, Heidelberg and New York, 1979, 313-331.
- [2] A. M. GARSIA, Martingale inequalities, Seminar Notes on Recent Progress, Benjamin, 1973.
- [3] N. KAZAMAKI AND T. SEKIGUCHI, On the transformation of some classes of martingales by a change of law, Tôhoku Math. J. 31 (1979), 261-279.
- [4] N. KAZAMAKI AND T. SEKIGUCHI, Uniform integrability of continuous exponential martingales, Tôhoku Math. J. 35 (1982), 289-301.
- [5] D. LÉPINGLE AND J. MÉMIN, Intégrabilité uniforme et dans L^r des martingales exponentielles, Sém. de Rennes, 1978.
- [6] J. H. VAN SCHUPPEN AND E. WONG, Transformation of local martingales under a change of law, Ann. of Probability, 2 (1974), 879-888.

DEPARTMENT OF MATHEMATICS TOYAMA UNIVERSITY GOFUKU, TOYAMA, 930 JAPAN