
Tδhoku Math. Journ.
35(1983), 267-288.

BOUNDEDNESS OF SOME OPERATORS COMPOSED OF
FOURIER MULTIPLIERS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

MAKOTO KANEKO

(Received May 4, 1982)

Introduction and notations. We will consider the transplantation
theorems for the operators defined by Fourier multipliers.

We will use the notations and conventions as follows.
Rn denotes the w-dimensional Euclidean space and Qn the unit cube

{θ = (θl9 , θn) 6 Rn\ -1/2 ^ θs < 1/2 U = 1, , n)}. Qn is identified with
the ^-dimensional torus Tn. The dual of Rn is denoted by Rn and the
totality of all lattice points with integral coordinates in Rn is denoted
by Zn, which is the dual of Tn.

The Fourier transform / of / e U(Rn) is defined by

/(£) = \j{x)e{-xξ)dx ,

where e(t) = exp(2τri£), x = (xl9 --,xn)eRn, ξ = (ςlf , ξJ 6R n and xξ -
ξx = 2J S S 1 χ.ξβ, gv denotes the inverse Fourier transform of g. The
Fourier coefficients F(m) (meZn) of FeL\Tn) are defined by

F(m) = [ F(θ)e(-mθ)dθ .

For a bounded function λ on Rn, the operator Tλ is defined as follows.
Let / 6 <9*(Rn), where S^{Rn) denotes the Schwartz class. Tλf is defined
by

On the other hand, for an indefinitely differentiable periodic function
FeC°°(Tn), TXF is defined by (TλF){θ) = Σ*msz* \{m)F{m)e{mθ). The opera-
tors Tx and Tλ are usually called Fourier multiplier operators defined by
λ and the sequence {λ(m)}, respectively. The extensions of Tλ and Tλ

to Lp(Rn) and Lp(Tn), respectively, will be denoted by the same notations.
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By a theorem of de Leeuw [20], if λ is regulated and Tλ is bounded
on LP(R), then fλ is bounded on LP(T). Conversely, if λ is continuous a.e.
and if Γλ(β., is bounded on Lp(Tn) for any ε > 0 and the operator norms
of TX{8.) are uniformly bounded with respect to ε, then Tλ is bounded on
Lp{Rn) (Igari [13], Stein and Weiss [23, pp. 260-267]). The last result
is extended to the boundedness from Lp to Lq by Jodeit [17]. The former
is treated in a more abstract setting by Coif man and Weiss [5]. Repla-
cement of dilations by translations in the above argument is studied by
Coif man and Meyer [4], and they treat also Hardy class H1 there; see
also Goldberg [10].

Let T* and Γ* be the maximal operators defined by the families
{Tu./B); R > 0} and {Tu./B); R > 0}, respectively. Kenig and Tomas [19]
have proved the equivalence between the boundedness of Γ* and that of
T*. They have used duality argument in the Lp-theory. We shall try
to take a direct approach, which seems to be more fruitful.

Let (Γjf ^fjf μ5) and (Γs, ^ , vs) (j = 1, , N) be sequences of totally
σ-finite measure spaces such that j c ^ (j = 1, -,-N). Let (Γ, ^f, μ)
and (Γ, ιχf7 v) be the product measure spaces of the families (Γj9 ^ h μά)
and (Γ i f Λrh vs), respectively. Let P = (plf , pN) and Q = (ql9 , qN),
1 ^ Pj, Qj ̂  °° U — 1, *, N), be multi-indices. We denote the mixed
normed spaces LP(Γ, ^f, μ) and LQ(Γ, ^ v) by s/ and &, respectively
(cf. Benedek and Panzone [1]). For an ^C-measurable function /, we
denote the mixed LP(Γ, ^, μ)-norm of /;

(LXL
The case where pά = oo will be modified in an obvious way.

Similarly \\g\\& is defined in the same manner for an ^/:measurable
function g.

We consider the Lebesgue measures on Rn and Rn, and denote by
^f and S& the families of all Lebesgue measurable sets on Rn and Rn,
respectively.

For an {£? x ^^)-measurable function / on Rn x Γ,
0 < p < oo, is defined by

The definition for p = oo will be obvious.
For simplicity, we introduce the class ^ ( Γ , ^~). For a class ^ of

scalar valued functions on Rn or Tn, &(Γt ^~) denotes the class of all
x ^^)-measurable functions / defined on Rn x Γ or Tn x Γ such
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that / ( . , 7) 6 &~ for each 7 e Γ. /(•, 7) will be frequently denoted by fr.
C~(Rn) denotes the class of all infinitely differentiable functions with

compact support and & denotes the class of all trigonometric polynomials.
We will use the letter C for a constant, which may be different in

each occurence, but specific constants will be denoted by the letters A
and B.

For a measurable set E,\E\ denotes the Lebesgue measure of E.
We will discuss the boundedness of some operators from Lp(Rn, Ssf)

to Lp(Rn, &) or from Lp(Tn, sf) to Lp(Tn, &) and the weak type esti-
mates of such operators in the following sections. In §1, we will show
that the boundedness of some operators from Lp(Rn, j*f) to Lp(Rn, έ%)
induces the boundedness of corresponding operators from Lp(Tn, jzf) to
Lp(Tn, έ%?) and also treat the weak type cases. The converse case will
be discussed in §2. In §3, the Littlewood-Paley g*-functions will be
systematically discussed, which have been studied in the unit disc D =
{z e C; I z I < 1} and the upper-half plane H= {z e C; Im z > 0} separately in
most cases, where C denotes the complex plane. In the last section, the
a.e. convergence of the lacunary partial means of f(ξ)e(xξ) for / e H\R)
will be discussed.

I wish to express my gratitude to Professors S. Igari, N. Mochizuki,
C. Watari and I. Yokoyama for many useful advices.

The following paper came to my attention after the preparation of
this paper: Schmeisser and Sickel, On strong summability of multiple
Fourier series and smoothness properties of functions, Anal. Math. 8
(1982), 57-70. They have obtained a theorem for a Fourier multiplier
matrix, which is more general than Th. 1 (i), if sf and & are sequence
spaces and 1 < p < ©o.

1. The transplantation from Rn to Tn. For a given (^f x
measurable function λ, such that ||λ( , 7)||oo < °° for each 7 eΓ, g = Tλf
is defined by g(x, 7) = (TX{.tr)fr)(x) for / e ^ ( Γ , S^(Rn))9 and G = TλF is
defined by G(θ, 7) = (Tλ{.>r)Fr)(θ) for Fe<^(Γ,C~(Tn)). In this section,
we prove the following theorem.

THEOREM 1. Assume that an (=Sf x ^V)-measurable function λ on
Rn x Γ satisfies the following conditions. λ( , 7) is bounded for every
7 6 Γ, and there exist Φ e L\Rn) and an {^ x Λ*)--measurable function
φ such that {(0r).*λ( , 7)}(m)->λ(m, 7) as s->0 for all (m, 7)6Zn x Γ
and \Φ(ξ,V)\ύΦ(ξ) for all (ξf7)eRnxΓ9 where (φr)ε(ξl = ejXe^f, 7).

Then we have the following (i) and (ii) for T = Tλ and f = Tλ

( i ) Assume l^p^oo. If \\Tf \\mR«,^ £A\\f |UP ( Λ ,^> (/ 6 9f (Γ,
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C?(Rn))), then

where B is the L\Rn)-norm of Φ.
(ii) Assume that 1 < p < oo. //

\{xeRn; \\(Tf)(x, )IU > «}|

for all t>0 and f e i f (Γ, C0°°(Rn))9 then

\{θeQ"; \\(TF)(Θ, OI

/or all t>0 and Fe<ίf(Γ,

Our proof proceeds along the line of Calderόn [2] and Coifman and
Weiss [5].

LEMMA 1. Suppose that k e C0°°(i2
n) has the support in B(R0) = {x;

\x\£R0] and KeC"(Tn) is defined by

K(θ) = Σ ifc(0 + m) .
meZ*

Let R > 0 and X — XB be a function on Rn such that X(x) = 1 (\x\ ^
RQ + R). Then

(K*F)(Θ + x) = [k*{F(θ + . )*}](*)

/or |a?| ^R,θeQn and FeL\Tn).

PROOF. By the definition of K, the left hand side equals

\ k(y)F(θ + x - y)dy .
JB(RQ)

Since X(x — y) = 1 (|a?| ^ i?, | j/ | ^ Ro), the above integral coincides with
the right hand side.

LEMMA 2. Let xeL°°(Rn) and assume that ψ and h are in Co°°(Rn).
If k = {(λ*ψθfe}v, then keC0°°(Rn) and supp k c (supp ψ) + (suppfc).

The proof is obvious.

LEMMA 3. Assume that X e L°°(Rn), φ e L\Rn) and ψ,he Co°°(Rn). Set
k = {(0*λ*f )h)}w. Then, for any f e S*(Rn) and x e Rn,

(k*f)(x)=

PROOF. By the Plancherel theorem and an interchange of the order
of integrations, (k*f)(x) equals

A λ ( ζ -
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The inner integral turns out to be

> X(τ)h(τ + ζ)f(τ + ξ)e{xτ)dτ ,

which is equal to e(xξ){Tλ(e(— ξ)(h*f))}(x).

We state briefly the definition of the Lorentz spaces L(p, q) and some
of their properties according to Hunt [12], which will be used in the
following proof of weak type result. Let (ikf, m) be a totally σ-finite
measure space. Let /* be the non-increasing rearrangement of an m-
measurable function / on ikf into (0, ©o). Then | | / | | * g is defined by

for 0 < p < oo and 0 < q < oo, and ||/||?,co = supt>o{ί1/p/*(*)} for 0 < p ^
oo and q = oo. The Lorentz space L(p, q) is the class of / such that
11/11?.* < °° °n the other hand, /** is defined by

y**f(ί) = sup m(E)-1 [ I f(x) I dm(x)
JE

for 0 < t ^ m{M), where the supremum is taken over all E such that
m(E) ^ t, and

\f{x)\dm{x)

for ί>m(ilf), and | |/| |, i f f is defined by | | / | | M = ||/*ΊI?.«> where | | . | |*9

denotes the norm in the Lorentz space over the measure space (0, oo).
Then we have /*(«) ^ /**(«) (0 < t < oo)" and

II/IU ^ ίp/(P - i)} 11/11?.. ( K v ^ - , o < q <ί oo)

(see Hunt [12, p. 258]).

LEMMA 4. Lei (ikf, m) 6β a totally σ-finite measure space and (N, n)
be a totally finite measure space. If a non-negative measurable function
g on M x N satisfies \\g( , y)\\$,q ^ 1 (yeN), and if f is given by

l(x, y)dn(y),

then | | / | | ? f ί ^ {p/(p — ΐ)}n(N)f provided that 1 < p <̂  oc

PROOF. First, it is clear that

/*(ί) ^ /**(«) ^ j ^ ( , V)}**(t)dn(v)

Multiplying by t1/p and taking Lq(dt/t)-noτms, we get



272 M. KANEKO

11/11?,, ύ\ \\9( ,y)\\P,,dn(y).
J N

Since ||flr(., y)\\Ptq £ {p/(p - l)}||sr( , y)\\*,q ^ p/(p - 1), the right hand side
is bounded by {p/(p — ϊ)}n(N). This completes the proof.

PROOF OF THEOREM 1. Assume ψ9 h e C~(Rn) and ψ(Q) = h(Q) = 1, and,
further, assume ψ ;> 0 and h ^ 0. For positive constants e, <5 and η9

define λίf* by

\aΛξ, 7) =

where ψ\x) = ψ(δx). Let Fe<^(Γ, &) be given. Define GY' by

Ga

β'
η(θ, 7) = Σ λβ

M(m, Ί)F7(m)e(mθ) .

Since λ(m, 7) is the iterated limit of λίf*(m, 7) as 37 -> 0, δ -> 0 and then
ε->0,(TF)(θ,Ύ) is equal to the iterated limit of Gδ

ε'
η(θ,7) in the same

order. Therefore, we have

( 1 ) || TF\\Lp{Tnt^) <ί lim inf lim inf lim inf [| GδfV
 | | L P ( T ^,^)

ε->0 <5->0 η-*0

and

( 2 ) \{θeQn;UTF)(θ, )\U>t}\

^ lim inf lim inf lim inf | {θ e Qn, \\ Gδ

ε'\θ, ) IU > *} I
e-»0 δ-+0 ?7—»0

for all t > 0. Fix e, δ and 97 > 0, and put G = Gδ'\ Our next task is
to estimate G. Define kr, 7 eΓ, by

Then, by Lemma 2, &r e C0°°(Rn) and supp &r c (supp ψ*δ) + (supp Λ9). We
remark that the set on the right hand side is independent of 7. Define
Kr 6 C°°(Tn) by Kr(β) = Σimezn kr(θ + m). Take Ro > 0 such that (supp^3) +
(supp Λ,) c B(R0). Then supp &r c B(RQ) (7 6 Γ). For an R > 0, take a
function % = ZΛ such that X e C0°°(/in), 0 ̂  % ̂  1, Z(α?) = 1 (|a?| ^ RQ + R)
and Z(a?) = 0 (\x\ ^ i?0 + R + 1). Since G = Kr*Fr, Lemmas 1 and 3 imply

G(θ + χfy)= [ {(Φr)e*(ψδ)AKξ)e(,xξ)(Tfθtξ)(x, 7)dζ

for \x\ ^ R and 0 e Q \ where

fθj(x, 7) = e(—a?f)[Λ9*{ίV(β + )X}](x) .

Taking the ̂ - and j^-norms with respect to 7, we have
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( 3 ) \\G(Θ + x, ) |U ^

for all θeQn and all a? such that | x | <̂  R, and

( 4 ) ||/,,<(*, )IU ̂  ( Λ*(v)Z(s - 2/)\\F{Θ + x - y,

for all xeRn. Now we divide the proof into two cases.
Proof of (i). First, assume p Φ oo. Using the periodicity and

applying Jensen's inequality to (3), we have

^, = ( \\G(θ + x, )\\%dθ

\ I
for I a? I ̂  Λ. Integrating each term over B(B) with respect to x, we have

(5) \B(R)\

By the hypothesis of (i),

(6) || Tfθtξ |

Applying Jensen's inequality to (4) and using the properties of h and X,
we have

(7) I IΛJSPW.^, ^ ( IIF(θ + x, )\\%dx .
JJ5(i20+J2+l)

Applying (7) to the right hand side of (6) and integrating both sides
over Qn with respect to θ, we have

^dθ ^ A»\B(R0 + R + 1)| | |F||£p ( Γ f J θ .

In the last inequality, the periodicity of F has been used. Using this
relation along with (5), we get

(8) HGILKΓ .*, ^ ABWFlUr^HBiR, + R + 1)\/\B(R)\Y/P .

In the case p = oo, (8) is directly obtained from (3) and (4). Letting R

tend to oo in (8), we have

From the last inequality and (1), we have the conclusion of (i).

Proof of (ii). For a given t > 0, put

E0 = {θeQ»; \\G(Θ, ) I U > *> -
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By the periodicity of G,

( 9 ) \E0] = \{θeQ«;\\G(θ + x, ) I U > « } I

for all xeBn. Therefore, if we put

E={(θ,x)eQ" xB(R); \\G(Θ + x, ) I U > « } .

E(θ) = {xe B{R); {θ, x) e E) and E(x) = {θe Qn; (θ, x) e E},

then (9) is equivalent to \E0\ = \E(x)\, and we have

(10) \B(R)\\E()\ = \E\ = \ \E(θ)\dθ.

For a fixed θ, put

9'(x, ξ) = II (T/,.,)(x, •) IU and f\x) =

Since ||G(0 + x, )IU ̂  /'(*) by (3),

(11) E(θ)c{xeR»;f'(x)>t}.

The hypothesis of (ii) implies ||flf'( , f)||?,«, ^ A||/ί(elUπa*,.^). The last term
is bounded by the right hand side of (7). Applying Lemma 4, we have

II/'II?,- ̂  {PKP - 1)}AB(\ IIF(θ + x,

By (11), we have

I E{θ) I ̂  [{pl(p - l)}^^-1]- \ || F(θ + », . )||!̂ <to .
)B{RO+R+1)

Integrating both sides of the last inequality and using (10), we have

\EQ\ ̂  [{pl{p - lMBt-'WFlUr^niBiRo + R + 1)\/\B(R)\} ,

by the periodicity of F. Letting R -> oo and then applying (2), we
obtain (ii).

If ^ ( Γ , &) is dense in Lp(Tn, j/\ (TXF)(Θ, 7) is defined for all Fe
Lp(Tn, s/) at (dθ x dv(7))-a.e. point (θ9 7), and if Fά->F in Lp(Γn, J ^ )

a s y_>oo implies (fλFj)(θf7)-^(fλF)(θfΎ) (dθ x ώ>(7))-a.e. as j-^™,
then the conclusions of (i) and (ii) in Theorem 1 are true for all Fe
Lp(Tn, sf).

Now we give some applications of Theorem 1.
The Riesz-Bochner means Sσ

Rf and S%F are defined by the following
formulae:

(SRf)(x) = \ (1 - |f \*B~yf(ξ)e(xς)dξ

and
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(S%F(Θ) = Σ (1 - \m,\*R-yF{m)e{mθ) .
\m\<R

Assume that a sequence {JB(7); 7 = 1, 2, •} of positive real numbers
is given. Let Γ = {1, 2, } and (Γ, ^ v) be the discrete measure
space on Γ. Define λ(f, 7) by

Then we have

(12) (Tλf)(x, 7) = (SRiΐ)fr)(x) and (TλF)(θ9 7) = (5j(r)JFV)(0) .

Let sf = & = L\Γ, ^Tf v) = S\ Then

(13) II(Σ \SR{ΐ)fr\r2\U^ £ A| |(Σ \fr\2)m

implies

II (Σ IS^^rlTΊU,^ ^ A||(Σ IFrlT
by (12) and (i) of Theorem 1. It has been proved, by Igari [16], that,
if σ > 0, 4/3 ^ p <̂  4 cmd ίfcβ sequence {i?(7)} satisfies the lacunary
condition R{Ί + l)/iZ(7) ^ α > 1 (7 = 1, 2, •), *fcew (13) holds. Recently
Cordoba and Lόpez-Melero [6] have obtained the same theorem without
the lacunary condition for {J?(7)}.

Now let {R(Ύ)} be lacunary and & = L°°(Γ, ^V, v), where (Γ, ^ v)
is the same as above, and let ^£ = {0, Γ} and μ(Γ) = 1. Then, in this
case, j ^ may be identified with the set of all scalars. In [16], [15] and
[6], it has also been proved that, ifσ>0 and 4/3 ^ p 5j 4, then

Applying Theorem 1 to this relation, we have

f or cr > 0 and 4/3 ^ p ^ 4. This has been stated in [15] with R(y) = 2r.
Igari [16] has proved the following result (14) which is a decomposi-

tion theorem of the Littlewood-Paley type for weak annular truncations.
Let 0 < r < 1 and set D0(ξ) = 1, if \ζ\ ^ 2 , = {(2 + τ - If |)/τ}σ, if 2 ^
If I <: 2 + τ, and = 0, i/ 2 + τ <Ξ |f | < <χ>. Further set Δr{x) = Z?r(a?) -
A-iW, A(f) = Λ(2-'f) (7 e Z). 2 7 ^

^ ii (Σ iΛ*/rnu*, ^
/or σ > 0 α^ώ 4/3 ^ p ^ 4. If we set sf = C, ̂  = L2(Γ, ^ y) = /2,
Γ = Z and (ΔrF){θ) = Σ Δr(m)F(m)e{mθ), then we have

(15) IKΣMrF|2)1 / 2IU,(r2, ^
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for σ > 0 and 4/3 <; p ^ 4 by Theorem 1. On the other hand, if F(0) =
0, then there exists a sequence {Kr} of operators such that

ί F(θ)G(θ)dθ = Σ ( (ΔrF)(θ){KγG)(θ)dθ

and

for 1 < r < oo (see [16]). Therefore, we have

\\F\\LPiτh ^ c.uΣ.i^Fir^

for σ > 0 and 4/3 ^ p ^ 4, if F(0) = 0. Combining this with (15), we
obtain the transplantation of (14) to the periodic case.

2. The transplantation from Tn to Rn. Let λ be an ( ^ x
measurable function such that λ( , 7) is bounded for all ΎβΓ. Then we
have defined the operators Γ = Tλ and f=fx in §1. At the same time,
we may consider the operators defined by the dilations of λ. We define
Γe, ε > 0 , by (TεF)(θ,Ύ) = (Tλ{9.,τ)Fr)(θ) for Fe<έ?(Γ, C°°(Tn)). Our aim
in this section is to prove the following theorems.

THEOREM 2. Assume that λ is an (J& x Λ^ymeasurable function

defined on Rn x Γ, and that λ( ,7) is bounded and continuous a.e. in

Rn for every 7 e Γ. Then we have (i) and (ii) for T = Tλ and fε.

( i ) Assume that 0 < p, q <; oo. //

for all ε > 0 and Fe^(Γ, C°°(Tn)), and if

( 1 ) A = lim inf S ICI/PH-U/O^ <

then

for f e <έ?0(Γ, C~(Rn)), where ^ 0 ( Γ , Cr(Rn)) is the class of all f e i f (Γ,
C~(Rn)) such that \J supp /( , 7) is bounded, where the union runs over
all ΎeΓ.

(ii) Assume that 0 < p <; <χ> cmd 0 < q < oo. //

\{θeQn; \\{TεF){θ, )IU > ί}| ^ {^rMl^ lUp^^,} '

/or ί > 0, ε > 0 α^d Fe<^(Γ, C°°(Tn)), and if the constants A£ satisfy
(1), then

\{xeRn; UTf)(x, )IU > *)l
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for all t > 0 and f e ίfo(Γ, Cϊ(Rn)).

If ΐfo(Γ, CΌ~(Λn)) is dense in Lp(/2% jf)9 and if /, -> / in LP(R\ sf)
as j - > oo implies (Tfj)(x, 7) -> (Tf)(x, 7) (d« x &>(7))-a.e. as j - * oo, then
the conclusions of Theorem 2 are true for every feLp(Rn, sf).

We introduce some notations to state the next theorem.
For a multi-index a — (al9 , an) with non-negative integers ajf we

define the operators Ra and Ra as follows. First, for scalar valued
functions feS*(Rn) and FeC°°(Tn), define

and

(RaF)(θ) = Σ ί - i l

For / G 9f(Γ, ^(Λ n)), we define J?α/ by (Raf)(x, 7) = (Rafr)(x). In the
same manner, for Fe<ϊf(Γ, C^Γ71)), we define β α F by (RaF)(θ,Ύ) =
(RaFr)(θ).

We denote by ^?(/ίn) the space of all / e &{Rn) such that 0 £ supp/,
which is dense in the Hardy class Hp(Rn) of Fefferman and Stein [8],

THEOREM 3. Let λ be an (£f x <yK)-meamrable function on RnxΓ
such that λ( ,7) is bounded and continuous a.e. for every ΎeΓ. Then
we have (i) and (ii) for T = Tλ and fe.

( i ) Assume that 0 < p ^ 1 and 0 < q ^ oo. if

|| TtFWLqπn^) ^ Aε Σ H-Bαί

for all ε> 0 α^d αii Fe^(Γ, C°°(Γra)), α^ώ i/ίΛe constants Aε satisfy (1),

for f
(ii) Assume that 0 < p 5S 1 cmd 0 < <7 < °o. If

, )I

/or t > 0, ε > 0 am? .Fe ^ ( Γ , C°°(Tn)), and if the constants Aε satisfy
the condition (1), then

\{xeRn; \\{Tf)(x, )IU > ί}| ^ U r 1 Σ I I ^ /

for t>0 and fe i f (Γ, ^(Λ71)).

In the above theorem, the constant K may be an arbitrary integer,
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but K should be larger than (n — l){(l/p) — 1}, if Hp(Rn) is under con-
sideration.

Our proofs depend strongly upon the following simple lemma, which
we obtain by representing (Txf)(x) as the limit of the Riemann sums
of the integrand. The proof is found in [13, p.p. 154-155], [14] and [23,
p. 266].

LEMMA 1. Assume that X is a scalar valued function on Rn, which
is bounded and continuous a.e. Let feS^(Rn). If Fε is defined by
Fε(θ) = Σ / (0 + m)> where the summation is taken over all meZn and
f£x) = e^fie-'x), then

LEMMA 2. Let λ be an (*£f x ^/K) -measurable function defined on
Rn x Γ such that λ( ,7) is bounded and continuous a.e. for all ΎeΓ.
If / e ίf(Γ f £S(Rn)) and if Fε is defined by Ft(θ, 7) = Σ (Λ).(0 + m) =
Σ e " 7 ( ( ί + m)/ε, 7), then we have

(2) || Tf | U W f * ) ^ lim inf e"w/ff || Tε(snFε) ||
0

and

(3) |{*6Λ-
^ lim inf β-1 {θ e Qn; \\ {fe(ε«Fe)}(θ, •) IU > «} I

e-+0

for all t > 0.

PROOF. Let {e(j)} be an arbitrary sequence of positive numbers such
that ε(i)->0 as j —> ©o. By the definition of (Tf)(x, 7) and Lemma 1,

(Tf)(x, 7) = lim{f9{JMJ)»Fg{J))}(6(j)x, 7) .

Therefore, ||(Γ/)(OJ, )IU is bounded by the inferior limit of || {Tε{j)(εU)nFε{j))}
(ε(j)x, )IU a s 0—* °° Let Z be the characteristic function of Q\ Since
%(fi(j)x) —> 1 a s j —> oo,

(4) || (Γ/)(s, •) IU ̂  lim inf

When q Φ oo, integrating the g-th powers of both sides of (4), using
Fatou's lemma and then changing the variables on the right hand side,
we see that || TfWlq^^^ is bounded by

liminf e(j)~n{\\ fΛlJ)(e(3)nKi))\\mQ^)}9

Therefore, (2) is obtained. When q = oo, it is evident from (4). Further-
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more, (4) implies

) | U > ί }

climinf {»eΛ"; \\{Tεω(εUTFeU))}(ε(j)x, )ll*Z(β(i)x) > t]

for all t > 0. The last set is equal to

eUΠθeQ"; \\{Tε{JM3)nFεU))(θf )IU > ί}

Therefore, (3) is obtained.

PROOF OF THEOREM 2. Let / e <afo(Γ, Cϊ(Rn)) and F.(θ, 7) = Σ ε
m)/ε, 7). Assume the hypothesis of (i). Then
/ r\ o—n/q II m /_ π iτr \ II ^ ~-n/q A II -,π 17T II

for all ε > 0. Since εnjFe(0, 7) = /(0/ε, 7) for sufficiently small ε > 0 and
θeQn, llε^.HwΓ ,^) =en/p||/IUί»(ii»,^) for such ε. Therefore, the right
hand side of (5) equals en{(1/p)-(1/ί)lA,||/|UP(Jι ,^,. Applying this estimate
to (2), we obtain the conclusion of (i). Now assume the hypothesis of
(ii). Then

ε-n\{θeQn; \\{TE(snFε)Kθ, -)IU > «}| «£ 6-*{Att-
1\\6*F.\\L,ιτ*tJ,)y

for t > 0. Since \\εnFε\\LPiτn^) = en/p\\f\\Lp{Rnfjr) for sufficiently small ε,

the right hand side of the above inequality is bounded by

This, together with (3), implies the conclusion of (ii).

PROOF OF THEOREM 3. Let / e 9f (Γ, &%Rn)) and define Fe as in
Lemma 2. Since Raf e ί f (Γ, ^0(Rn)), Fε

a e<if(Γ, C°°(Tn)) may be defined
by F?(θf 7) = Σ e~n(Raf)((θ + m)/ε, 7). Comparing the Fourier coefficients
of both sides, we easily find that

(6) Fε«(θ,f) = (RaFε)(θ,Ύ).

Since \\εnFε"(θ, )IU ^ Σ II(#«/)((# + m)/e, )IU and 0 < p ^ 1,

(7) Hβ l^lϋpd-^, ^ Σ ( URafW + m)/ε, )\\UΘ = ε ^ l ^ /

Now, assume the conditions of (i). Then

^

By (6) and (7), the right hand side of the last inequality is bounded by
enί(1/p)-(1/g)ίA,Σι«ι«ll-δ«/IUp(H ,^). Applying the inequality just obtained
to (2), we get the conclusion of (i). Next assume the conditions of (ii).
Then, for a given t > 0,
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e-|{0eQ"; \\{T.(frF.W, )IU > *}l £ e - U f Σ l|5α(εFs)||£!)(τ», J

By (6) and (7), the last term is bounded by

t fin{{l/p)-a/q)) Λ /-I V II 7? f II I

e -Λe6 ^ \\HctJ \\LP{Rn,JV)
\oc\^K J

This estimate and (3) imply (ii).
3. The Littlewood-Paley 0*-function. We discuss two types of the

classical Littlewood-Paley #*-functions, one of which is defined in the
upper-half plane H and the other in the unit disc D.

We use the following notations. Let φ and φ be analytic in H and
D, respectively. Assume 2 <* q < °o and a > 1 — (1/q) = l/qf, and define

and
ri/2 ηi/ff

'dr J .
The norms of φ and Φ are defined by

= sup U ^(x
y>o U-ooand

(C1/2 ^ 1/P

| |Φ | | , = sup \ |Φ(rβ(ff))|'(W[ ,
0 ^ r < l C J —1/2 )

respectively. The set of all φ such that | |^ | | p < oo is denoted by HP(H),
and HP(D) is also defined in the same manner.

The following theorem on G*,qΦ is known (Sunouchi [24], Zygmund
[27], Flett [9] and Kaneko [18]).

THEOREM A. // 0 < p < oo and a > max {l/p, l/q'}, then

(1) \\GlqΦ\\LP{T)<ίAa,pJΦ\\p.

If 0 < p < 2, (l/p) + (1/?) > 1 and a = 1/p, then

(2) I {θ 6 Q; (G* fΦ)(0) > t} I ̂  (A,,,*-11| Φ | | ,) '

for all t > 0.

We will show that the following theorem on g*}Qφ can be directly
obtained from (1) and (2) by applying the theorems in §2.

THEOREM 4. Assume φeHp(H).
( i ) If 0 < p < oo and a > max {l/p, 1/qr'}, then
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A'a,Ptq\\φ\\p .

(ii) // 0 < p< 2, (1/p) + (1/g) > l α ώ α = 1/p,

for all t > 0.

This theorem is partially established by Waterman [26], Sunouchi
[25], Stein [21] and Fefferman [7].

To investigate the relation between g*qφ and Gί,gΦ, we define <&Φ by

{^Φ){Θ) = \ i\ 2πr{yK\s\ + y))aq'\Φ\re{θ — s))\q'ds\ 2πrdy ,
LJo U-OO ) J

where r = exp( — 2πy) and Φ is analytic in D. Then we have

(3) C^GZtΦXΘ) ^ (Sf Φ)(0) ^ C2(GlqΦ)(θ) ,

where the constants d and C2 are independent of Φ and θ. We shall
postpone the proof of (3) until the end of this section.

Let Λ = {1, 2}, Γ2 = ( - oof oo) and Γ3 = (0, oo), and let (Γ, ^rf v) be
the product measure space of (Γί9 Λ}, v3) (j = 1, 2, 3), where vι is the
counting measure and v2 and v3 are the Lebesgue measures on Γ2 and Γ3,
respectively. Set & = L2'qf'q(Γ, ^ v). On the other hand, let ^ *=
{&> Γj} (j = 1, 2, 3) and each jtίi be the probability measure on each Γά.
In this case, s/ coincides with all the scalars, so that LP(R, £/)- and
LP(T, j^)-norms are the usual LP(R)- and Lp(Γ)-norms, respectively. We
define λ by

2πi£exp( — 2πiζs — 2π\ξ\y){y/(\s\ + y)Y (j = 1) ,

-2π\ζI exp(—2πiξs — 2π\ξ\y){y/(\s\ + y)}a (j = 2) ,

where 7 = (jί, s, y) and we denote Tx by Γ.
For a real valued function / 6 S^(R), f denotes the Hubert transform

of / and we denote the Poisson integrals of / and / over H by u and v,
respectively. If we set φ = u + iv, then φ is analytic in H and | φ\x +
iy)\ = \Fu(x, y)\, and further (Tf)(x, j, s, j/) is equal to {y/(\s\ + /̂)}αâ (α; —
s, y)/dx, if j" = 1, and to {y/(\s\ + y)}adu(x — s, j/J/δj/, if j = 2. Therefore,

( 4 ) (9lqφ)(x) = \\(Tf)(x, ) IU

For a real valued periodic function FeC°°(T), let F denote the con-
jugate function of F, and C7and V the Poisson integrals of F and F
over D, respectively. If we set Φ = U + i V and write ^ = pe(τ) e D, then

{|t^Cr, p)\2 + 4ττ2/
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where Uτ = dU/dτ, UP = dU/dp, Vτ = dV/dτ and VP = dV/dp. By the def-
inition of fε, (TεF)(θ,j,s,y) is equal to {y/(\s\ + y)}aeUτ(θ - εs, re), if
j = 1, and to {i//(|s| + y)}a(-2πrε)εUP(θ - εs, re), if j = 2, where r =
exp(—27Γ2/). Replacing J7 by F in the above argument, then we obtain
a similar relation for (TεF)(θ, j , s, j/). Therefore,

( 5 ) \\(TεF)(θ, O I U ^ 2m{^Φ){θ) ^ \\{TεF){θ, O I U + I I ( Γ £ W , OIU

for all ε > 0. We remark

(0 < p ^ 1) ,

PROOF OF THEOREM 4. For FeC°°(T), TεF (ε > 0) are estimated by
(1), (2), (3), (5) and (6). Applying Theorems 2 and 3 to these estimates,
we obtain those for Tf, where / 6 ̂ J(JB), if 0 < p ^ 1, and / e Cr(Λ),
if 1 < p < °° If 0 is the Poisson integral of / + if, then the above
estimates together with (4) give those of g*,qφ in terms of the LP(R)-
norms of / and /, which are bounded by C||^| |p. If Φ3-^Φ in HP(H)
as j-> oo, then Ĵ(aj + ij/) ->φ\x + iy) for all x + ίyeH as j - * °°9 and
then (g%,qφ)(x) is bounded by the inferior limit of (gt,qφ3)(x) as j-+oo.
Therefore, the conclusions of Theorem 4 hold for all φeHp(H).

Fefferman [7] was the first to succeed in proving the critical case
α = 1/p. His result is that, if 1 < p < 2 and a = 1/p, then

(7) I{xeR, (g*f)(x) > t}\ ^ (Ar1 \\ f \\LnR)y

for any t > 0, where

{gtf)iχ) = {SX(W(|s| + y)T\Vu{x - 8, y

and u is the Poisson integral of f He has considered this in the n-
dimensional case.

We now consider the converse transplantation of (7). Let T = Tλ

be the same as above and feC~(R). If φ is the Poisson integral of
/ + if, then

(8) (gif)(χ) = (gi.iΦ)(χ) = II (Tf)(x, .) |U

by (4), but, in this case, we have & — L2>2>2(Γ, ^ v). Therefore, the
weak type estimate for Tf is obtained from (7) and (8). Applying
Theorem 1 to this estimate, we obtain that for TF = TXF for Fe&.
Let Φ be an algebraic polynomial such that Φ(0) = 0. Put F(θ) — Re Φ(e(β))
and F(θ) = Im Φ(e(θ)). Then (G*,2Φ)(Θ) is bounded by a constant multiple
of {UΐFXΘ, OIU + UTF)(Θ, OIU} by (3) and (5). Therefore, we have
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( 9 ) \{θeQ; <β*AΦ){θ) > t}\ ^ (A'J'1 \\Φ\\9)>

for all t > 0, if 1 < p < 2 and a = 1/p. If we define Φs(z) as the i-th
partial sum of Φ(z) = Σ < ^ e HP(D), then Φ = lim Φά in ifp(/)), Φ'(s) =
limΦ O) for z eD and |Φ(0)| ^ | |Φ| | P . Therefore, (9) holds for Φ e HP(D).
This is just (2) in the case of q = 2 and 1 < p < 2.

We now return to the proof of (3). By simple computations, we
have

(10) (1 - τ)l\ 1 - re(τ) | ^ (1 - r)/(l + r) ^ 1/7 (0 < r ^ 3/4) ,

(11) (1 - r) + 2ττ|r| ^ |1 - rβ(τ)| ^ {(1 - r) + 2ττ|r|}/(2ττ)

and

(12) 1 - r ^ πy (1/2 ^ r < 1, r = exp(-2ττί/)) .

Divide the integral in the definition of (G£,ffΦ)(0) with respect to r
into two integrals one of which is the integral over (0, 1/4) and the other
is that over (1/4,1). We prove that the former is bounded by the latter.
Since 1 — r <; |1 — re(r)|,

S1/4 (f 1/2 \qfq'

((1 - r)/| 1 - re(τ) | Γ ' | Φ'(re(θ - r)) | 'dτ dr
o IJ -1/2 S 1/4 (f 1/

o IS
1/4 (f 1/2

IS J
Since the inner integral increases as r ΐ 1> the last term does not exceed
a constant multiple of

S1/2 (f 1/2 \qfq'

((1 - r)/| 1 - rβ(τ) |)α ' ' | Φ'(re(ί - τ)) \"'dτ\ dr ,
1/4 U-l/2 )

where (10) has been used. Therefore,

(13) (G fΦ) (0) ̂  Cf {Γ/ ((1 - r)/|l - rβ(r)|
J1/4 (J-1/2

On the other hand, restricting the domains of integration with respect
to s and y in (&Φ)(Θ) to (-1/2,1/2) and (0, (log 2)/τr), respectively, and
putting r = exp(—2πy), we have

2πr(y/(| r | + y))"' \ Φ'(re(θ - τ)) \*'dτ\ dr .
1/4 U-l/2 J

Using the fact that 1 — r <̂  2πy and the second inequality in (11), we
easily prove that y/(\τ\ + y) ^ (1 — r)/(2π\l — re(τ)\). Therefore, the
right hand side of (14) is bounded from below by a constant multiple of
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S I ffl/2 ) q/q'

I ((1 - r)l\ 1 - re{τ) \)«qf \ Φ\re{θ - τ)) \q'dτ dr .
1/4 U-1/2 )

This and (13) imply (G*,qΦ)(θ) ^ C(S?Φ)(Θ).
Now we prove the second part of (3). We write the inner integral

in the definition of {^Φ){θ) by I. Divide I into the integrals over (m —
1/2, m + 1/2) (m e Z) and denote them by Im, respectively. Then

S l/2

2πr(y/(\m + τ\ + y))aq'\Φ'(re(θ - τ))\q'dτ .
-1/2

Since \m + τ\ ^ |m|/2 (m ^ 0, \τ\ ^ 1/2),

S l/2

\Φ'(re{θ - τ))\>'dτ (m Φ 0) .
-1/2

Since αg' > 1 and Σ»*o{2l//(W + 2?/)}α5' is bounded by both Σ » # (2ί//|m|)α?'
and twice the integral of {2yj{s + 2y)}aqf over (0, °o) with respect to
s, Σjm,Φo{2yK\m\+2y)}aqf is bounded by a constant multiple of mm{yaqf, y} =
ψ(y)t s aY Therefore,

S l/2

r*O0|Φ'(rβ(0-r))|«'(Zr.
-1/2

If we consider the two cases 0 < y <; 1 and 1 < y < °o separately, then
rqf/3ψ(y) ^ C{j//(|τ| + 2/)}α*' is easily obtained. Therefore, the right hand
side of (16) is bounded by a constant multiple of

(17) Γ r'-(qf/*Xyl(\τ\ + y))aq'\Φ\re(θ - τ))\qfdτ .
J—1/2

When m = 0, it is evident from (15) that Jo is bounded by a constant
multiple of (17). Therefore, I = X Im does not exceed a constant multiple
of (17). (5fΦ)9(0) is the integral of Iqlqt over (0,1) with respect to r.
Divide it into the integrals over (l/2n+1, l/2n) (n = 0, 1, ) and denote
them by Jn9 respectively. By (12) and (11), y/(\τ\ + y) ^ 2(1 - r)/|l -
re{τ)\ for 1/2 < r < 1. Since r1"973 ^ 1, Jo is bounded by a constant
multiple of

S I Cf 1/2 } ςr/g'

] I ((1 - r)l\ 1 - rβ(τ) \)aqf \ Φ\re(θ - τ)) \q'dτ dr ,
1/2 ( J —1/2 J

and so Jo <̂  C(G*>qΦ)q(θ). Now consider the case n Φ 0. Applying the
inequality r1-«'/8{y/(| r | + 7/)}^'^ 2-n ( 1-? 7 3 ) (l/2n+1 ^ r ^ l/2n) to (17), we get

S l/2™ Cf 1/2 \ q/qr

\\ \Φ'(re{θ - τ))\q'dτ\ dr .
l/2Λ + 1 (J-l/2 )

Since the inner integral is an increasing function of r, the right hand
side increases, when the domain of the integration with respect to r is
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replaced by (1/2, 3/4). Since (10) holds for 1/2 < r < 3/4, J n is bounded

by C2-n»(1/s'-1/3) times

\ ((1 - r)l\ 1 - rβ(τ) I)"'' | Φ'(re(θ - τ)) \"'dτ dr ,

1/2 U-l/2 J

and so /„ ^ C2-" ϊ ί l / ϊ'-I/s)(G:,gΦ) ϊ(0). Therefore,

This completes the proof of (3).

4. The lacunary partial means of the integral of f(ξ)e(xζ). Let
H\R) be the set of the real parts of the functions which are the boundary
values of functions in H\H). This is identified with the Hardy class H1

discussed in [8]. For feH\R), the norm | |/ |Ui ( Λ ) of / is defined as
ll/IUi(K) + ||/IUi(ji)» where / is the Hubert transform of /. In this section,
we will prove the following theorem by using (ii) of Theorem 3.

THEOREM 5. Let R(k) > 0 and R(k + ΐ)/R(k) ^ a0 > 1 (k = 1, 2, •),
and define S*f for f e H\R) by

t-1

| f{ζ)e{xξ)dξ

Then

( 1 ) I{x6R; (S*f)(x) >t}\^ At-

for all t > 0, where the constant A depends only on a0.

From this theorem, the following corollary is obtained by routine
methods (cf. de Guzman [11, §3.3]).

COROLLARY. Under the same conditions as in Theorem 5, the follow-
ing relation holds for all d with 0 < δ < 1 and for all measurable set
E of finite measure.

where A is the same constant as in (1).

Both Theorem 5 and the corollary imply that, if / e H\R), then the
lacunary partial means of the integral of f(ζ)e{xξ) converge to f(x) for
almost all xeR.

To prove Theorem 5, some comments are needed on the lacunary
partial sums of the Fourier series of power series type. For a power
series Φ(z) = Σ:=oV r o eH\D), let (SnΦ)(θ) = Σ*l=o cme(mθ). It is stated
in [28, p. 231, Th. (4.4)] that, if a sequence {n(k)} satisfies
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(2) n(k + l)/n(k) ^ a > 1 (k = 1, 2, •) ,

then (Sn{k)Φ)(θ) -> Φ(e(θ)) a.e. as &—• °°. Using the fact that the singular
integral operators for /2-valued functions are of weak type (1,1), and
following carefully the proof of Theorem (4.4) in Zygmund's book, we
have

(3) I{θeQ; sup|(Sm ( WΦ)(0)\>t}\£ Ajr1 \\Φ\l

for any t > 0 and any sequence {n{k)} satisfying (2), where the constant
Aa does not depend on {n(k)} but only on a.

PROOF OF THEOREM 5. Our aim is to deduce (1) from (3). Let a =
(α0 + l)/2 and β = max {α, 2/(α0 — 1)}. For a given e > 0, we write

if - if(ε) = min {k; β ^ [s-^Jk)]} , n{k) = [e-^ίΓ + & - 2)]

(k = 2, 3, ), n(l) = 1 and w(0) = 0, where [ ] denotes the integral part
of the number in the bracket. Then n(k + ΐ)/n(k) ^ a > 1 (fc = 1, 2, •)•
Let F b e a real valued function in C°°(T) and let Φ be the Poisson
integral of F + iF. Then Φ e H\D) and, by (3), the following relation
is obtained.

(4) \{θeQ; svv\(Sn{h)F)(θ)\ > t}\ ύ Aat-\\\F\\LHτ) + \\F\\LHT))

for all t > 0, where Sn{k)F denotes the n(k)-th partial sum of the Fourier

series of F. Let X be the characteristic function of the set {ξ e R; \ ζ \ ̂  1}

and define λ by

λ(f, k) = X(ξ/R(k)) (ξ e R, k = 1, 2, 0 .

Defining T = 2̂  as in § 1 and the corresponding operators Γε, ε > 0, as
in §2, we see that (TεF)(θ,k) is equal to the [e~\R(fc)]-tli partial sum of
the Fourier series of F and so

{T.F)(Θ, k) = (SMk_κ+2)F)(θ) (fc = JE, tf + 1, • • •)

and

ί* )| ^ max | (S n F)(ί) | (fc = 1, , K - 1) .

These relations and (4) together imply that

\{ΘGQ; s u p \(T.F)(θ,k)\ >t}\^ A'at-\\\F\\LHT) + \\F\\LHT))

for all t > 0 and all ε > 0. Therefore,

l ί ^ G / ϊ ; sup I(Tf)(x, k)\>t}\^ A'at-Wlfhuv + \\f\\Lu*>)

for all ί > 0 and / e ^?(Λ) by (ii) of Theorem 3. The right hand side
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is equal to A't~ι\\f\\Hi{R) and

(Tf){x,k) = \ f{ξ)e{xζ)dζ.

Thus, we get the theorem by the density of S^(R) in H\R).
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