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Introduction and notations. We will consider the transplantation
theorems for the operators defined by Fourier multipliers.

We will use the notations and conventions as follows.

R” denotes the n-dimensional Euclidean space and Q" the unit cube
{0 =@, ---,0,)eR;, —1/2<0,<1/2(7 =1, ---,n)}. Q"is identified with
the n-dimensional torus T". The dual of R" is denoted by R” and the
totality of all lattice points with integral coordinates in R" is denoted
by Z*, which is the dual of T™".

The Fourier transform f of fe L'(R") is defined by

fo =\, rae—saaa,

where e(t) = exp(2mit), x = (2, «+-, %, )ER", £ = (&, -+, &) ER" and x& =
= D xE gY Qenotes the inverse Fourier transform of g. The
Fourier coefficients F(m) (m e Z") of Fe L'(T") are defined by

Fm) = SQnF(ﬁ)e(—mﬁ)dﬁ .

For a bounded function ) on R", the operator T, is defined as follows.
Let fe S”(R"), where S”(R") denotes the Schwartz class. T,f is defined
by

(T2)@) = |, MO @elws)de

On the other hand, for an indefinitely differentiable periodic function
FeC=(T", T,F is defined by (ToF)(6) = Simeze Mm)E(m)e(mb). The opera-
tors T, and T, are usually called Fourier multiplier operators defined by
» and the sequence {\(m)}, respectively. The extensions of T, and T,
to L?(R") and L?(T"), respectively, will be denoted by the same notations.
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By a theorem of de Leeuw [20], if A is regulated and T, is bounded
on L*(R), then T, is bounded on L*(T). Conversely, if \ is continuous a.e.
and if T.., is bounded on L*(T™) for any € > 0 and the operator norms
of Th.., are uniformly bounded with respect to ¢, then T, is bounded on
L*(R") (Igari [18], Stein and Weiss [23, pp. 260-267]). The last result
is extended to the boundedness from L* to L? by Jodeit [17]. The former
is treated in a more abstract setting by Coifman and Weiss [5]. Repla-
cement of dilations by translations in the above argument is studied by
Coifman and Meyer [4], and they treat also Hardy class H' there; see
also Goldberg [10].

Let T* and T* be the maximal operators defined by the families
{T:/m; R >0} and {T;.,m; R > 0}, respectively. Kenig and Tomas [19]
have proved the equivalence between the boundedness of T* and that of
T*. They have used duality argument in the L*-theory. We shall try
to take a direct approach, which seems to be more fruitful.

Let (I';, #, ;) and (I';, 45, v;) (3 =1, -+, N) be sequences of totally
o-finite measure spaces such that _Zc.+; (=1, ---, N). Let (I, # p)
and (I', _#; v) be the product measure spaces of the families (I";, _#;, Y;)
and (I';, 47, v;), respectively. Let P = (p, ---, py) and Q = (g, -+, qw),
1=<9p;,,q;,< > (=1, ---, N), be multi-indices. We denote the mixed
normed spaces L¥(I", _#, pt) and L%I", _+;v) by & and &, respectively
(cf. Benedek and Panzone [1]). For an _#-measurable function f, we
denote the mixed LF(I', _#, ¢t)-norm of f;

(5, A0, 170 o e ) ) )

by || f]l.. The case where p, = ~ will be modified in an obvious way.
Similarly | g||» is defined in the same manner for an ._#“measurable
funection g¢.

We consider the Lebesgue measures on R" and R", and denote by
< and & the families of all Lebesgue measurable sets on R* and R-,
respectively.

For an (& X _#)-measurable function f on R" X I', || f|luomn s
0 < p< o, is defined by

| lasao,r = (]I G, ) lde)”

The definition for p = « will be obvious.

For simplicity, we introduce the class (I", & ). For aclass & of
scalar valued functions on R* or T", (I, & ) denotes the class of all
(& X _#)-measurable functions f defined on R* x I' or T" x I"' such
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that f(-,7)e & for each veI'. f(-,7) will be frequently denoted by f;.
Cy(R™) denotes the class of all infinitely differentiable functions with
compact support and & denotes the class of all trigonometric polynomials.
We will use the letter C for a constant, which may be different in
each occurence, but specific constants will be denoted by the letters A
and B.

For a measurable set E, | E| denotes the Lebesgue measure of E.

We will discuss the boundedness of some operators from L?(R", &)
to L*(R", &) or from L*(T", &) to L*(T", &&) and the weak type esti-
mates of such operators in the following sections. In §1, we will show
that the boundedness of some operators from L?(R", &) to L*(R", &%)
induces the boundedness of corresponding operators from L?(T", &) to
L*(T*, &) and also treat the weak type cases. The converse case will
be discussed in §2. In §3, the Littlewood-Paley g*-functions will be
systematically discussed, which have been studied in the unit disc D =
{zeC; |z| <1} and the upper-half plane H={z e C;Imz >0} separately in
most cases, where C denotes the complex plane. In the last section, the
a.e. convergence of the lacunary partial means of f(g)e(ws) for fe H'(R)
will be discussed.

I wish to express my gratitude to Professors S. Igari, N. Mochizuki,
C. Watari and I. Yokoyama for many useful advices.

The following paper came to my attention after the preparation of
this paper: Schmeisser and Sickel, On strong summability of multiple
Fourier series and smoothness properties of funections, Anal. Math. 8
(1982), 57-70. They have obtained a theorem for a Fourier multiplier
matrix, which is more general than Th. 1 (i), if .&~ and <# are sequence
spaces and 1 < p < oo,

1. The transplantation from R" to 7T". For a given (,92 X A7)-
measurable function \, such that [A(-, ¥)|l« < o for each verl', g = T,f
is defined by g, v) = (Ts.nf)@) for fe& [, ¥ (R"), and G = T,F is
defined by G, v) = (Tz(.,nFr)(()) for Fez [, C*(T"). In this section,
we prove the following theorem.

THEOREM 1. Assume that an (5,2 X A")-measurable function n on
R xT satisfies the following conditions. \(-,7) is bounded for every
vyel', and there exist @eLl(ﬁ") and an (=.£2 X A" )-measurable function
¢ such that {(¢r)*N(-, V)}m) -»x(m,j’) as €—0 for all (m,v)eZ" x I
and |4, M| S 0@ for all &M eR x T, where (3).6) = g™, 7).
Then we have the following (i) and (ii) for T =T, and T = T,

(i) Assume 1< p =< . If |Tf|mna = Al fllownsn (fe€ T,
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c’(R™)), then
I TF”L”(T’"’,@) S AB|F|lppan, Fez T, P)) ,

where B is the LI(R")-norm of O.
(ii) Assume that 1 < p < . If

H{z e R (T, e >t} = [AL7 | f | zownssn]?
for all t >0 and fe&d, C(R"), then
{6 e @ [(TF)O, )lle >t} < [{p/(0 — DIABE™ | Fllzoan,on
for all t >0 and Fez (I, ).

Our proof proceeds along the line of Calderon [2] and Coifman and
Weiss [5].

LEMMA 1. Suppose that ke C°(R") has the support in B(R, = {x;
|| £ R} and KeC=(T") is defined by

K(0) = 3, k(0 +m) .

Let R>0 and X =Xz be a function on R™ such that X(x) =1 (Jz| £
R, + R). Then

(KxF)(0 + x) = [k+{F(0 + )X}](x)
for |2| £ R,0eQ" and Fe L'(T").
ProoF. By the definition of K, the left hand side equals

[, FOFE + 5 = )y .

Since X(x — ) =1 (2| = R, |y| £ R,), the above integral coincides with
the right hand side.

LEMMA 2. Let » e L™(R") and assume that v and b are in Co(R).
If k = {(\x4)h}Y, then ke C;°(R") and supp k C (supp +) + (supp h).

The proof is obvious.

LEMMA ?i Assume that )€ L°°(I§"), PE L’(ﬁ") and , h € C°(R™). Set
k = {(gx x3r)h)}Y. Then, for any fe S (R") and x € R",

(kxf)(2) = Sﬁn (px)(@)e(@E){ Ta(e(— - &)(h* f)Nx)dE .

ProoF. By the Plancherel theorem and an interchange of the order
of integrations, (kxf)(x) equals

[ P@de] M — DROADe@0L
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The inner integral turns out to be

ew)|, MR + Oftc + etwr)dr ,

which is equal to e(x&){T:(e(— -&)(h*f))} ).

We state briefly the definition of the Lorentz spaces L(p, q) and some
of their properties according to Hunt [12], which will be used in the
following proof of weak type result. Let (M, m) be a totally o-finite
measure space. Let f* be the non-increasing rearrangement of an m-
measurable function f on M into (0, «). Then || f||¥, is defined by

* 1/q
1715 = [ @) { (oot
for 0 <p < e and 0 < ¢ < oo, and || f||}= = sup,, {2f*(®)} for 0 < p<
o and ¢ = . The Lorentz space L(p, q) is the class of f such that
| fll¥, < c. On the other hand, f** is defined by

F** () = sup m(E)™* SEIf(x)ldm(x)

for 0 <t < m(M), where the supremum is taken over all E such that
m(E) = t, and

o) = 17w dmia)

for t > m(M), and || f||,,, is defined by || fll,,, = [|f**|[}.., Where | -3,
denotes the norm in the Lorentz space over the measure space (0, o).
Then we have f*(t) < f**(t) (0 <t < o) and

N flle={p/@ =D} fIF: (A<P=00,0<g= )
(see Hunt [12, p. 258]).

LEMMA 4. Let (M, m) be a totally o-finite measure space and (N, n)
be a totally finite measure space. If a non-negative measurable function
g on M x N satisfies ||g(-, ¥)||¥, =1 (yeN), and if f is given by

f@ = g, vanw),

then || fll3, < {p/(p — D}n(N), provided that 1 < p < o and 1 < ¢ < .
ProoF. First, it is clear that

ros o s | e e .
Multiplying by ¢/# and taking L%dt/t)-norms, we get
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15120 = {_9C, 0l dnw) -

Since || g(+, ¥)llp.e = {0/(@ — D} 9(-, ) [|54 = p/(p — 1), the right hand side
is bounded by {p/(p — 1)}n(N). This completes the proof.

PROOF OF THEOREM 1. Assume +, he C°(R") and 4(0) = h(0) =1, and,
further, assume 4 =0 and 2= 0. For positive constants ¢, 6 and 7,
define A7 by

AE ) = [{n)en(-, V) ERL()
where ’(x) = 4(6x). Let FeZ (", &) be given. Define G by
G20, 7) = 3 M"(m, 1) Fy(m)e(md) .

meZn
Since M(m, 7) is the iterated limit of A)"(m, ) as »— 0,6 — 0 and then

e —0, (TF)@, 7) is equal to the iterated limit of G274, 7) in the same
order. Therefore, we have

(1) | TF || zrrn o < lim inf lim inf lim inf || G27 || 2o xn. =)
e—0 3—0 7—0

and

(2) {6 €@ |(TF)O, )lls > t}]

< lim inf lim inf lim inf | {§ € Q"; |G2"(6, -)||» > t}]
0

e—0 3—0 7—

for all ¢t > 0. Fix ¢, 6 and 7 >0, and put G = G¥”. Our next task is
to estimate G. Define k,, ve I, by

Tow) = |, 776, Melag)ds -

Then, by Lemma 2, k,€C;*(R") and supp k; C (supp +°) + (supp k,). We
remark that the set on the right hand side is independent of v. Define
K, e C~(T™) by K;(0) = Yimezn ky(6 + m). Take R, > 0 such that (supp+*) +
(supp h,) C B(R,). Then suppk,C B(R,) (vYeI'). For an R >0, take a
function X = X, such that XeGC(R*),0=X<1,X(x)=1 (x| = R, + R)
and X(x) =0 (|| = R, + R + 1). Since G = K;+F,, Lemmas 1 and 3 imply

GO +=,7) = Sﬁn{(¢r)e*(«lr")"}(é)e(w$)(Tf 0,0)(X, V)dE
for |2| < R and 6 eQ", where

Joi(2, ) = e(—2&)[h{Fx(0 + -)X}](z) .
Taking the &&- and .»/-norms with respect to v, we have
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(3) 1G@ + 2, e = |, @O N(TF00@, )lade
for all 6€@Q" and all «# such that x| £ R, and

(4) I foe@, Mo S | _pulo)hlz = )1 FO + 2 — 9, ) |udy

for all x ¢ R*. Now we divide the proof into two cases.
Proof of (i). First, assume p # . Using the periodicity and
applying Jensen’s inequality to (3), we have

|G zpaan sy = | J1G(O + a, -)[2do

Q'Ib
= B, ey ©de| 1100w, ) lads

for || £ R. Integrating each term over B(R) with respect to z, we have

(5) BB G iranm = B [, 00w Y@d| || Tfoclltrinmde -

By the hypothesis of (i),

(6 ) “ Tfa,e “}’,P(R"”,,:'//) é Ap ”fﬂ,e“il’m'n,y) .

Applying Jensen’s inequality to (4) and using the properties of A and X,
we have

(1) Vocltswn S | I FO+a,)|ds.

B(Ry+R+1)

Applying (7) to the right hand side of (6) and integrating both sides
over Q" with respect to 6, we have

[l T ltsn 00 < 47| BBy + B + DI F s, -
In the last inequality, the periodicity of F has been used. Using this
relation along with (5), we get
(8) |Gllzoan, = AB|| F || woan,sn{| BB, + B + 1)|/| BR) [} .

In the case p = oo, (8) is directly obtained from (3) and (4). Letting R
tend to « in (8), we have

1G> ||ocrn,ay = |G llvan, 0 S AB|| F|zon, o) -
From the last inequality and (1), we have the conclusion of (i).
Proof of (ii). For a given ¢t > 0, put
E,={0eQ"; |G, -)|le >t} .
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By the periodicity of G,
(9) |Ey| = 1{0eQ% [|GO + =, )|l > t}]
for all x ¢ R*. Therefore, if we put
E = {0,v)eQ X BR); |G + =, )||l= > t},
E@) = {xcBR); (4,x)c E} and E@)={0ecQ"; 0, x)cE},
then (9) is equivalent to | E,| = | E(x)|, and we have

(10) B®R)| 1B =Bl = |EO)Id.
For a fixed 6, put
0@ 9 = [(Thow e and f@) =, 9@ HOntr IO .
Since [|G(0 + @, -)||l» = f'(%) by (3),
11) E@) c{xeR"; f'(x) > t}.

The hypothesis of (ii) implies || g'(+, &) ||« < Al fo.¢llzorn, . The last term
is bounded by the right hand side of (7). Applying Lemma 4, we have

£ < oo — D}AB({
By (11), we have

|B0)| = [{p/(p — DIABET |

Integrating both sides of the last inequality and using (10), we have
| Ey| = [p/(p — D}ABt™ || F||zoan, o {| B(R, + B + 1)|/| B(R)[} ,

by the periodicity of F. Letting R— o and then applying (2), we
obtain (ii).

If (I, &) is dense in L*(T", ), (T,F)(8, 7) is defined for all Fe
L (T, &) at (d0 X dv(7))-a.e. point (@, 7), and if F;— F in L*(T", &)
as j— oo implies (T.F;)0, 7) — (T.F)6,7) (d6 % dv(7))-a.e. as j— oo,
then the conclusions of (i) and (ii) in Theorem 1 are true for all Fe
LT, 7).

Now we give some applications of Theorem 1.
The Riesz-Bochner means S%f and S3F' are defined by the following
formulae:

1/p
| F(6 + a, -)H&dw) .

B(Ry+R+1)

)||F(¢9 + 2, )% dx .

B(Ry+R+1

@SH@ =| 1= erR Y Ae)ds

and
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(Se.F(6) = mz< - |m 2R~ F(m)e(md) .

Assume that a sequence {R(7); ¥ =1, 2, ---} of positive real numbers
is given. Let I'={1,2, ---} and (I, _#;v) be the discrete measure
space on I'. Define (g, 7) by

ME ) =1 — [EPR(M ).

Then we have

(12) (T2 @, V) = (Sapfr)(@) and (T F)0, ) = Ss, F)0) .
Let & = & = LXI", +;v) = ¢*. Then

<13) ” (E [S%(r)fr [2)1/2“LP(R2) s=A “ (Z ]fr [2)1/2”L1’(R2)

implies

| 182 Fr ) | ioany, < AICS I Fr Y2 | oy

by (12) and (i) of Theorem 1. It has been proved, by Igari [16], that,
iWf 0>0, 4/83<p <4 and the sequence {R(7)} satisfies the lacumary
condition R(v + D/R(M =a>1 (v =1,2, ---), then (13) holds. Recently
Cordoba and Lépez-Melero [6] have obtained the same theorem without
the lacunary condition for {R(7)}.

Now let {R(7)} be lacunary and <& = L=, .+, v), Where (I", ¥, V)
is the same as above, and let .7 = {@, I'} and p#(I") = 1. Then, in this
case, % may be identified with the set of all scalars. In [16], [15] and
[6], it has also been proved that, ¢f ¢ > 0 and 4/3 < p < 4, then

Il §B}Plsﬂ(r>f| lzrwey = Al f |z, -

Applying Theorem 1 to this relation, we have
I ?Epplg}'mFl llzocry = Al Fl| 2o

for 0 > 0 and 4/3 < p < 4. This has been stated in [15] with R(7) = 2.

Igari [16] has proved the following result (14) which is a decomposi-
tion theorem of the Littlewood-Paley type for weak annular truncations.
Let 0<7<1and set D(&) =1, if 16| <2, ={2+ 77— gD/}, if 2
| <247, and =0, if 2+ 7 2 |&] < 0. Further set 4,(x) = Dy(x) —
D;_(), D(&) = Dy277¢) (ve Z). Then

(14) A’Hf“erZ) = H(Z Mr*f!z)m“u’m?) = B'”f”u’m?)

Jor 0 >0 and 4/3<p =4 I{ we set W =C, F = LN, +;v) =7,
I' = Z and (4,F)(6) = 3, 4,(m)F(m)e(md), then we have

(15) ”(Z IZrFP)m”LP(TZ) = B’HFHLP(T?)



276 M. KANEKO

for ¢ > 0 and 4/3 < p < 4 by Theorem 1. On the other hand, if F(0) =
0, then there exists a sequence {K;} of operators such that

|, FOGO®W =5 @ FIOEOwD
and

”(Z lKrG mmnmﬂ) = Cr”G“LT(T?)
for 1 < 7 < o (see [16]). Therefore, we have
”FHLP(T‘~’> = Cpll(Z !ZTFIZ)I/ZHLP(TZ)

for 0 >0 and 4/3 < p <4, if F(0)=0. Combining this with (15), we
obtain the transplantation of (14) to the periodic case.

2. The transplantation from 7" to R*. Let )\ be an (52 X A)-
measurable function such that (-, ) is bounded for all YeI'. Then we
have defined the operators T= T, and T= T, in §1. At the same time,
we may consideg the operators defined by the dilations of x. We define
T, ¢>0, by (T.F)®8,7) = (T;..nF,)(0) for Fez[",C>(T"). Our aim
in this section is to prove the following theorems.

THEOREM 2. Assume that N s an (& X A )-measurable fumction
defined on R" X I'y and that \(-,7) s bounded and continuous a.e. im
R* for every veI'. Then we have (i) and (i) for T = T, and T.

(i) Assume that 0 < p,q < . If
| ToF | cocan,ar < Al F om0,
Jor all € >0 and Fez [, C(T"), and if

(1) A = liminf e WP -W 4 < oo,

e—0

then

” Tf”L'I(R”,g) é A”f”L”(R",VV)

Jor fe& (I, Cy(R"), where &I, Ce(R™) is the class of all fe& [,
T(R™) such that U supp f(-, 7) is bounded, where the union runs over
all vel.

(ii) Assume that 0 < p =< o0 and 0 < q < oo, If
10 e @ [[(TE)G, )ls >t} < {AL [ Fllzsan,n)*

Jor t >0, >0 and Fe&z [, C(T"), and if the comstants A, satisfy
1), then

Hxe R ||[(TF)(x, )| >t < {At7| £ llomn,}°
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Jor all t > 0 and f e &, Cy(R™).

If &, Co(R™) is dense in L*(R", &), and if f; — f in L*(R*, &)
as j — co implies (Tf;)(x, ¥) — (T'f)(x, 7) (dx X dy(7))-a.e. as j — oo, then
the conclusions of Theorem 2 are true for every f e L?(R", ).

We introduce some notations to state the next theorem.

For a multi-index a = (a,, -+, @,) With non-negative integers a;, we
define the operators R, and B, as follows. First, for scalar valued
functions f e S”(R") and FeC~(T"), define

Rf)@) = |, (—ilele)F@e@)de
and »
(B.F)©) =3 (—ilm |='m)*F(m)e(md) .

For fee(’, ¥ (R"), we define R,f by (B.f)x, ¥) = (R.fr)(x). In the
same manner, for FeZ (I, C~(T"), we define R, F by (R,F)@6,) =
(BF)(0). )
We denote by &(R") the space of all f e .&”(R") such that 0 ¢ suppf,
which is dense in the Hardy class H?(R") of Fefferman and Stein [8].

THEOREM 3. Let \ be an (_52 X A")-measurable function on R*xI
such that \(-,7) is bounded and continuous a.e. for every YelI'. Then
we have (i) and (ii) for T = T; and T..

(i) Assume that 0 <p=<1land 0<q=< . If

| ZF im0 S A, 5, | BuFllan,

Jor all € >0 and all Fe &z (I", C*(T")), and if the constants A, satisfy (1),
then

1T arcwnr S A 5| Baf liao,

Jor fe&z ', AR").
(ii) Assume that 0 < p=<=1land 0 <qg< oo, If

0@; 1(TF)O, e > B < {487 3 )| BF s,

for £t>0,e>0 and Fez[,C*(T"), and if the constants A, satisfy
the condition (1), then

e B (T, o> 8] < {46 3 || Buf lzouws,n]
for t >0 and fez I, H(R).

In the above theorem, the constant K may be an arbitrary integer,
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but K should be larger than (n — 1){(1/p) — 1}, if H?(R") is under con-
sideration.

Our proofs depend strongly upon the following simple lemma, which
we obtain by representing (T,f)(x) as the limit of the Riemann sums
of the integrand. The proof is found in [13, p.p. 154-155], [14] and [23,
p. 266].

LEMMA 1. Assume that N is a scalar valued function on ﬁ", which
is bounded and continuous a.e. Let fe P (R"). If F, is defined by
F.(6) = > f.(0 + m), where the summation is taken over all me Z" and
fi(x) = e f(e"'x), then

(Tof)(@) = lim {Tyer (" Fo))(en) .

LEMMA 2. Let N be an (52 X A7)-measurable function defined on
R* x I" such that \(-,7) is bounded and continuous a.e. for all ver.
If fee T, ZR") and if F, is defined by F.(0,7) =D, (.0 + m) =
S e f((@ + m)fe, ), then we have

(2) N Tf || omn, oy = lirrslj)nf el TE(S"FS) Ilzacrn, )
and
(3) e e R [[(Tf)(x, -)|l= > t}]

< lim inf e {0 € Q; [{T(e"F}0, -) |5 > 1}

for all t > 0.

ProoF. Let {e(4)} be an arbitrary sequence of positive numbers such
that ¢(j) - 0 as j — o. By the definition of (Tf)(z, ) and Lemma 1,

(T, ) = Um (TG Fup)He(z, 7) -

Therefore, ||(Tf)(, )| is bounded by the inferior limit of || {T. ()" F. )}
(e(9)x, -)|ls as j— . Let X be the characteristic function of @". Since

X(e(g)x) — 1 as j— oo,
(4) (T, )= lir?inf I{T. 5@ Fui)le@)a, -) laX(e(@)z) -
When q # «, integrating the ¢-th powers of both sides of (4), using

Fatou’s lemma and then changing the variables on the right hand side,
we see that || 7'f (%4 1S bounded by

liz inf 6(5) {1 Tuco (63" Futa) 1si0n. ) -

Therefore, (2) is obtained. When q = o, it is evident from (4). Further-
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more, (4) implies

{xe R |(Tf)x, )|ls >t
clim inf (& & B [[{Tun(e(@) Fun)Ye()m, -) | <Xe@)m) > 8

for all ¢ > 0. The last set is equal to
() ™0 € Q"; ||{Teis€(G)" Fep)(0, )lw > t} .
Therefore, (8) is obtained.

ProOF OF THEOREM 2. Let fe &I, C(R")) and F,(0,7)=3e"f((6+
m)le, 7¥). Assume the hypothesis of (i). Then
(5) e™/|| Te(snFs) lzoan, o) = €A, || €"F, || zo(xn, o0

for all ¢ > 0. Since ¢"F,(8,7) = f(/e, ¥) for sufficiently small ¢ > 0 and
0eqQ, ||e"F,||oan, ) = €?|| f|lzomn,», for such e. Therefore, the right
hand side of (5) equals e"¥?~WDIA || f|lzr&n, . Applying this estimate
to (2), we obtain the conclusion of (i). Now assume the hypothesis of
(ii). Then

e {0 e Q% IHTLEFINO, )5 > B} < e {AL | F.||ioan o)

for t > 0. Since |[e"F,||io(r2,.y = 2| f||Lrn, ) for sufficiently small e,
the right hand side of the above inequality is bounded by

[sn((l/p)—(l/q))AEt-—l ”f “men’y)]q .
This, together with (3), implies the conclusion of (ii).

PrROOF OF THEOREM 3. Let fe&(", ¥(R") and define F. as in
Lemma 2. Since R,fe&e [, AR"), Free ', C*(T")) may be defined
by F&6, ) = 3¢ (R.f)(@ + m)/e, 7). Comparing the Fourier coefficients
of both sides, we easily find that
(6) Fx0,7) = (B.F)0,") .

Since ||e"F(0, )|l» = 2| (Raf)(0 + m)fe, -)|| and 0 < p £ 1,

(1) 6" Feltsinn S 5| Bl XO + m)fe, )20 = & | Buf [uao,
Now, assume the conditions of (i). Then
e || T (" F) || corn,n < 5_"/qAﬁa§‘K|| Re"F.) |l zocan,or) -

By (6) and (7), the right hand side of the last inequality is bounded by
grtwm-wi g e | Rof llzown, -  Applying the inequality just obtained
to (2), we get the conclusion of (i). Next assume the conditions of (ii).
Then, for a given ¢t > 0,
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e {0eQ |[{T.("F))0, e >t < E‘"{Ast‘1 | Roe"F,) Hmm,m}q .

lal=K

By (6) and (7), the last term is bounded by
l:e"“”’”"“’"” At |R. f””mn,m]" )
la|sK

This estimate and (3) imply (ii).

3. The Littlewood-Paley g*-function. We discuss two types of the
classical Littlewood-Paley g*-functions, one of which is defined in the
upper-half plane H and the other in the unit dise D.

We use the following notations. Let ¢ and @ be analytic in H and
D, respectively. Assume 2<q < o and @ > 1 — (1/g) = 1/¢’, and define

@@ = [ |{[" wisl + w19 — s + i)ivas) " ay "
and
@20 =[ [ {[” @ = nn = re@pi0eo — oy razfoear [
The norms of ¢ and @ are defined by
1, = sup {|” 6@ + iv)rda}
and

o1, = sup {{” |0re0)ras}

respectively. The set of all ¢ such that ||¢]|, < oo is denoted by H*(H),
and H?(D) is also defined in the same manner.
The following theorem on G}, is known (Sunouchi [24], Zygmund

[27], Flett [9] and Kaneko [18]).
THEOREM A. If 0< p < o and a > max({l/p, 1/¢'}, then

(1) |Gxe®@lrary = Aupp,o |21l -
Ifo<p<2 1/p) + A/g) > 1 and a = 1/p, then

(2) {0 € Q; (GX.2)(0) > t}] = (4,7 2]],)°
Jor all t > 0.

We will show that the following theorem on g}, can be directly
obtained from (1) and (2) by applying the theorems in §2.

THEOREM 4. Assume ¢ c H*(H).
(i) If0< p< = and a > max{l/p, 1/q'}, then
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“g:,ﬁﬁ”LP(R) é At’x,p,q “¢”p .
(ii) Ifo<p<2,1/p)+ 1/g) >1 and a = 1/p, then

H{x € R; (9%.8)(@) > t}]| = (45,27 [ 8]],)”
Jor all t > 0.

This theorem is partially established by Waterman [26], Sunouchi
[25], Stein [21] and Fefferman [7].
To investigate the relation between g} .4 and G} @, we define @ by

@00 = | | "{{” 2mrwisl + w10/ - s) s} 2mray [,

where r = exp(—2ny) and @ is analytic in D. Then we have
(3) C(Gz,9)0) = (£0)(0) = C(GZ,.2)0) ,

where the constants C, and C, are independent of & and 6. We shall
postpone the proof of (3) until the end of this section.

Let 'y ={1,2}, ', = (— o0, o) and I'; = (0, o), and let (I', #;v) be
the product measure space of (I';, 43 v;) (4 =1,2,3), where v, is the
counting measure and v, and v, are the Lebesgue measures on I", and I,
respectively. Set & = L»"(I", #;v). On the other hand, let _#;=
{@,I';} (4=1,2,3) and each y; be the probability measure on each I;.
In this case, %7 coincides with all the scalars, so that L?(R, &)- and
L*(T, &7)-norms are the usual L?(R)- and L?(T)-norms, respectively. We
define A by

2mig exp(—2migs — 2xw|&|yYfy/(s| + )} (G =1),
—2r|&| exp(—2migs — 2rm|&|yY)y/(s] + )} (1 =2),
where ¥ = (4, s, y) and we denote T, by T.
For a real valued function f € S(R), f denotes the Hilbert transform
of f and we denote the Poisson integrals of f and f over H by u and v,
respectively. If we set ¢ = u + 4v, then ¢ is analytic in H and |¢'(x +
1y)| = [Pu(x, y)|, and further (T'f)(x, j, s, ¥) is equal to {y/(|s| + ¥)}"ou(x —
s, y)/ox, if j =1, and to {y/(|s| + y)}*ou(x — s, ¥)[0y, if j = 2. Therefore,

(4) (9% ) @) = (T, )]s -

For a real valued periodic function F e C*(T), let F denote the con-
jugate function of F, and U and V the Poisson integrals of F and F
over D, respectively. If weset ® =U + ¢V and write 2 = pe(z) € D, then

ULz, o) + 47*0*| Uo(z, o)} + {| V(z, O) I + 47°0°| Vi(z, 0) [}
= 8n*0*| @' (pe(7)) *

)"(5, v) =
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where U, = oU/or, U, = dU[dp, V. =0V[or and V, = dV/dp. By the def-
inition of T., (T.F)(, 7, s, ) is equal to {y/(|s]| + ¥)}cU.(6 — es, 1), if
=1, and to {y/(|s| + ¥)}*(—2rr)eU,(0 — es, r%), if j =2, where r =
exp(—2ny). Replacing U by V in the above argument, then we obtain
a similar relation for (7.F)(, 7, s, y). Therefore,

(5) |(T.F)0, )= < 2(z0)o) < |[(T.F), )| + I(T.F)G, s
for all ¢ > 0. We remark

2 Fll oy + | Fllzver) 0<p=1),
Coll Fll zoeny A<pE o).

PROOF OF THEOREM 4. For FeC=(T), T.F (¢ > 0) are estimated by
(1), (2), (8), (6) and (6). Applying Theorems 2 and 3 to these estimates,
we obtain those for Tf, where fe SA4(R), if 0 < p =<1, and feCy(R),
if 1 <p<oco. If ¢ is the Poisson integral of f + if, then the above
estimates together with (4) give those of g7, in terms of the L?(R)-
norms of f and f, which are bounded by C|4|,. If ¢;— ¢ in H?(H)
as j — oo, then ¢j(x + 1y) — ¢'(x + 1y) for all x + iy H as j— -, and
then (g¥,4)(x) is bounded by the inferior limit of (gX.4,)(x) as j— co.
Therefore, the conclusions of Theorem 4 hold for all ¢ € H?(H).

(6) lell, =

Fefferman [7] was the first to succeed in proving the critical case
a = 1/p. His result is that, if 1 < p < 2 and a = 1/p, then

(7) {x e R; (93 f)(@) >t} = (At_IHfHLP(R))p
Jor any t > 0, where

@@ = "] @il + wy=irue — 5, ) rdsdy}”
and w 18 the Poisson integral of f. He has considered this in the -
dimensional case.
We now consider the converse transplantation of (7). Let T = T,
be the same as above and feCy(R). If ¢ is the Poisson integral of
f + if, then

(8) (92)(@) = (92:8)@) = [(TH®, )=

by (4), but, in this case, we have & = L>**(I", _#;v). Therefore, the
weak type estimate for Tf is obtained from (7) and (8). Applying
Theorem 1 to this estimate, we obtain that for 7F = T.F for Fe &~
Let @ be an algebraic polynomial such that @#(0) = 0. Put F(6) = Re @(e(0))
and F(6) = Im &(e(d)). Then (GX.0)(6) is bounded by a constant multiple
of {|(TF)®, )|ls + [(TF)@O, -)||s} by (3) and (5). Therefore, we have
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(9) {0 € @; (GZ:.2)(0) > t}| = (4t 2]],)”

forall t >0, if 1<p<2and a=1/p. If we define 9,(z) as the j-th
partial sum of @(z) = > ¢,z e H?(D), then @ =lim@; in H?(D), ?'(z) =
lim @}(z) for ze D and |0(0)| < ||@]|,. Therefore, (9) holds for @ ¢ H?(D).
This is just (2) in the case of ¢ =2 and 1 < p < 2.

We now return to the proof of (3). By simple computations, we
have

10) A=n)/l—ren)=2A-"/A+7m 21T 0<r=3/4),

(11) =7 +2r(z| 2|1 —re(z)| = {1 — 7) + 2x|7[}/(2r)
and
12) 1—r=ny Q2= r <1, r = exp(—2ny)) .

Divide the integral in the definition of (G} ,0)(#) with respect to »
into two integrals one of which is the integral over (0, 1/4) and the other
is that over (1/4,1). We prove that the former is bounded by the latter.
Since 1 — » = |1 — re(7)],

LA @ = mit = re@ e |@reo — opivae ) ar
< S:“{Sl_/;l @' (re(6 — 7)) ["'dr} Y,

Since the inner integral increases as » 1, the last term does not exceed
a constant multiple of

1/4

Y/zﬂl/z/ Q- ’I')/Il - ’I'e(T)l)aquQ;(,rew _ T))]q’df}q/q'dr ’
where (10) has been used. Therefore,

13 @y =c| {[" @ -1 - re@piomeo - oy ar.

1
1/4

On the other hand, restricting the domains of integration with respect
to s and ¥ in (£0)@) to (—1/2,1/2) and (0, (log 2)/r), respectively, and
putting » = exp(—2ny), we have

1 1/2 , , , a/q’
w @oroz | || smwiicl + ) 10wed — o) act ar .
Using the fact that 1 — » < 27y and the second inequality in (11), we

easily prove that y/(|z|+y)= 1 — r)/@x|1 — re(z)]|). Therefore, the
right hand side of (14) is bounded from below by a constant multiple of
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Szu{sf/z((l — )/|1 — re(r))* | @' (re(d — 7)) |"dz }wq'dr )

This and (13) imply (G},0)(6) < C(Z ?)(0).

Now we prove the second part of (8). We write the inner integral
in the definition of (£ ®)(8) by I. Divide I into the integrals over (m —
1/2, m + 1/2) (me Z) and denote them by I,, respectively. Then

(15) L= " 2er@iQm + ol + 9 |0re@ — D)1dz
Since |m + 7| = |m|/2 (m =0, 7] < 1/2),
I < 2wrey/(m] + 20) | |0(re(@ — D)l (m #0) .

Since aq’ > 1 and 3., {2y/(|m| + 2y)}** is bounded by both 3., Qy/|m|)*¥
and twice the integral of {2y/(s + 2%)}** over (0, ) with respect to
8, Dm0 {2y/(|m|+2y)}** is bounded by a constant multiple of min {y*?, y}=
¥(y), say. Therefore,
(16) S 1.2 C|" rpw) 0 e — o)Ivdz .

m+* -1/2
If we consider the two cases 0 <y <1 and 1 < y < o separately, then
r7%y(y) < Cly/(|t] + ¥)}** is easily obtained. Therefore, the right hand
side of (16) is bounded by a constant multiple of

() | rwmie] + g |0re@ — D)|ds .

When m = 0, it is evident from (15) that I, is bounded by a constant
multiple of (17). Therefore, I = > I,, does not exceed a constant multiple
of (17). (Z®)%0) is the integral of I¥? over (0,1) with respect to 7.
Divide it into the integrals over (1/2"**,1/2") (»r =0,1, ---) and denote
them by J,, respectively. By (12) and (11), »/(|z] + ¥) £ 2(1 — 7)/|1 —
re(t)] for 1/2<r < 1. Since 7% <1,J, is bounded by a constant
multiple of

Si/z{sl_/;((l — ”I‘)/Il — re(T) l)aq’]@’('re(g _ T))]q'dz' }q/q'dr ’

and so J, =< C(G},0)%(0). Now consider the case m = 0. Applying the
inequality »~"*y/(|z| + y)}@ <20~ oA (/2" <r<1/2") to (17), we get
, 1/2m 1/2 a/q’
J, < C2-mawe —lfs’g {S 10/(re(0 — o)lrde} " dr .
2

1/2n+1 -1

Since the inner integral is an increasing function of 7, the right hand
side increases, when the domain of the integration with respect to = is
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replaced by (1/2, 3/4). Since (10) holds for 1/2 < » < 3/4, J, is bounded
by C2-mewe'-1® times

Sjﬁ:{gm/z((l = 7)/|1 — re(T)[)* |@'(re(6 — 1)) ["'df}wq’dr ’

-1

and so J, < C2 ™We—(Gx @)%(@). Therefore,
(Z0)(0) = 3,7, < CGLOY0) -
This completes the proof of (3).

4. The lacunary partial means of the integral of f(&)e(xg). Let
H'(R) be the set of the real parts of the functions which are the boundary
values of functions in H'(H). This is identified with the Hardy class H*
discussed in [8]. For fe H'(R), the norm || f|;x of f is defined as
I £ Izt + 1| Fllziwy, Where f is the Hilbert transform of f. In this section,
we will prove the following theorem by using (ii) of Theorem 3.

THEOREM 5. Let R(k) >0 and Rk +1)/REk)=Za,>1 (k=1,2,--+),
and define S*f for fe H'(R) by

(7@ =swp||  Foes)de] .

lel<Rr

Then
(1) Ha e R; (S*f)@) >t} = At7 | f |l
for all t > 0, where the constant A depends only on «,.

From this theorem, the following corollary is obtained by routine
methods (cf. de Guzméan [11, §3.3]).

COROLLARY. Under the same conditions as in Theorem 5, the follow-
wng relation holds for all & with 0 <6 <1 and for all measurable set
E of finite measure.

[ s p@rds]" = @ - o741 B1=>7 £l

where A is the same constant as in (1).

Both Theorem 5 and the corollary imply that, if fe H'(R), then the
lacunary partial means of the integral of f(g)e(xf) converge to f(x) for
almost all z ¢ R.

To prove Theorem 5, some comments are needed on the lacunary
partial sums of the Fourier series of power series type. For a power
series @(z) = e, c.2™ € HY(D), let (S,0)(0) = Sn_,cae(mb). It is stated
in [28, p. 231, Th. (4.4)] that, if a sequence {n(k)} satisfies
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(2) nk+ k) za>1 (k=12--),

then (S, ,®)(0) — 0(e(0)) a.e. as k— . Using the fact that the singular
integral operators for #*-valued functions are of weak type (1,1), and
following carefully the proof of Theorem (4.4) in Zygmund’s book, we
have

(3) [{0 € @; Slklpl(Smk)@)(ﬂ)l >t = A2,
for any ¢ > 0 and any sequence {n(k)} satisfying (2), where the constant
A, does not depend on {n(k)} but only on a.

ProOOF OF THEOREM 5. Our aim is to deduce (1) from (3). Let a =
(o, + 1)/2 and B = max{a, 2/(a, — 1)}. For a given ¢ > 0, we write
K = K(¢) = min{k; 8 < [e7'R(k)]}, n(k) = [e"R(K + k — 2)]
(k=2,8,---),n(1) =1 and n(0) = 0, where [-] denotes the integral part
of the number in the bracket. Then n(k + 1)/nk) = a>1k=1,2, ---).
Let F be a real valued function in C*(T) and let @ be the Poisson

integral of F + ¢F. Then @ e HY(D) and, by (3), the following relation
is obtained.

(4) {6 € @; S‘)}DKSn(mF)w)l >t = At (| Flloeny + HF,“LHT))
for all ¢ > 0, where S,,,F denotes the n(k)-th partial sum of the Fourier

series of F. Let X be the characteristic function of the set {¢ ¢ ﬁ; lg] =1}
and define \ by

Mg k) = XE/R(E)  (ceR, k=1,2,---).

Defining T = T, as in §1 and the corresponding operators T, ¢ >0, as
in §2, we see that (T.F)(9, k) is equal to the [¢"*R(k)]-th partial sum of
the Fourier series of F and so

(T.F)0, k) = (Spu_xsnF)0) k=K K+1,--)
and
I(TEF)(ﬁ,k)Iéggl(snf")(ﬁ)l k=1,---,K—1).

These relations and (4) together imply that
{0 € Q; sup |(Z.F)(©, )| > 8}] £ At (| Fllen, + [| Fllon)

for all ¢ > 0 and all ¢ > 0. Therefore,
[{x € R; SEP [(Tf), k)| >t} = At f 21wy + ”fN”Ll(m)

for all ¢ > 0 and fe S4(R) by (ii) of Theorem 3. The right hand side
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is equal to A't™|| f||mw and

(TH@ k) = ez .

Thus, we get the theorem by the density of 4(R) in HY(R).
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