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Introduction. In [1] it was shown that isoparametric hypersurfaces
in spheres with 4 distinet principal curvatures can be equivalently
described by isoparametric triple systems. These triple systems have a
“Peirce decomposition”

V:V11®V10®V1+2®V1_2®V22@V20

and every element in a Peirce space V; is a scalar multiple of a tripotent.
Moreover, it was proved that this property essentially characterizes iso-
parametric triple systems.

In this paper we investigate the Peirce decomposition relative to a
tripotent from a Peirce space V,;. We also begin the study of the fine
structure of V,, by introducing the subspaces @ and JV,,.

The results of this paper are used in [2] and [3] and lay the founda-
tions for subsequent publications.

The paper is organized as follows. In §1 we compute all the triple
products {uvw} where each element u, v, w lies in some Peirce space V,.
In §§2, 3 we compute the Peirce decompositions of V relative to tripotents
from V,, V,, and V,. Finally, in §4 we introduce the space Q c V,, and
show how it is connected to elements of the dual triple satisfying Jordan
composition rules. This space is also important for the investigation of
isoparametric triple systems of FKM-type, [2], §8.

For definitions and notations we refer to [1].

The authors would like to thank the University of Virginia for its
hospitality during the preparation of this paper.

1. Various triple products. In this section we consider an isopara-
metric triple V. We fix orthogonal tripotents (e, ¢,) and denote by V,;
the Peirce spaces relative to (e, ¢,). By [1, Remark 4.3. a] the elements
e = Me, + e,) and € = e, — ¢,), A = (V' 2)! are maximal tripotents of V.

1.1. In this subsection we compute the triple products where each
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factor lies in some Peirce space relative to (e, e,).

We recall that, besides the algebras o and * given by xoy = {xe,y} and
xxy = {we,y}, we have the algebras [] and [fl defined by z [y = {xey}
vy = {wéy).

We will prove the following two theorems simultaneously step by
step.

THEOREM 1.1. Let V= @V,; be the Peirce decomposition of the iso-
parametric triple V relative to (e, e,). Then for all u;, vi;, w,;€ V,; the
Jollowing identities hold:

1.1) fuvw} = 2({u, vyw + {u, wHv + v, wyw)

for all w,v, we V,, BV, and for all uw, v, we V,,PV,.

(1.2) {Uay + Ung, Vay + Vg, Wy} =0 .

(1.3) {Uiy + Uy, Vi + Vi, Weo} = 0.

(1.4) {Ugs, Vog, Wi} = 0.

(1.5) {tyy, vy, Wy} =0 .

(1.6) {Usy Voo, Wio} = Unyo(Vapowse) € Vi

a.m (U1, V1o, Wao} = Uy x(VyoxWy) € Vy

(1.8) {Uag, Vagy Wio} = Ugg0 (Va0 Wio) + Vapo (UnpoWyo) € Vi, DV, .
(1.9) {ts0y Vioy Wao} = Uyo* (V0¥ Wao) + V1o*(Uge*Wao) € Vi D Vo«
(1.10) {Uz0, Va0 Wiz} = U0 (Vp00Wy3) + Voo (UneoWsy) € Vi, PV«

(1.10a) {uzo, V20 w12}12 = 2<uzo, Vo) Wiy — Ugg*(Vao*¥Wip) — Vao*(Ugg*Wy,) -
(1.11) {Us0y Vo Wi} = Ugg*(Vyo*Wie) + Vio*(Ugo*Wyp) € Vi, DV .

(1.11a) {U10y Vioy Wishs = 2{Usq, Vio) Wiy — Usg2(V300Ws5) — V3o°(UsgoWy,) -

(1.12) {Uasy Yooy Wis} = [Va00 (Uso(UasoWis))]io € Vo

= U (V300Wia) + Vg0 (Uge0Wys) -
(1.13) {Uy1, V3o Wy} = [V10* (U *W10) o0 € Vi

= Uy *(Vyo*Wyg) + V(U *Wy,) -
(1.14) {Uosy Voy, Wio} = 2{Usy, Vos) Wi € V.
(1.15) {Uy, Vi1, Wi} = 2{Uyp, Vi)W € Vyy .«
(1.16) {Uy1, Vogy W} €V, .

(1.16a) ({uz, va, Wi} = —"28"(“1_1*(?)2;°wi2) + vpo(unrwg)) for e= % .



ISOPARAMETRIC HYPERSURFACES II 227

(1.17) {Ussy Vioy Wis} = V300(UsoWy,) + @ € Ve BV,
1.17a)  ({tos, 1oy WDt = ———Z—(uno(vw*wiz) + Vi (Ugpowyy))ie for €= % .
(1.18) {Ua1y Vaoy Wig} = Voo(Uy*wyy) + b€ Vi, @V, .
(1188) (s, Doy Wi = — 5 (U (Vo) + Vo (swi)is for &= .

(1.19) {Uns, V3o, Wis} = 2{Vs9, Wip)Upy + Ay + A€ V;, PV, DV, .
(1.20) {Uagy V1o, Wis} = 2{Vy, Wi)Ugy + Aoy + A € V,, DV, DV, -
(1.21)  {tno, Viay Wi} = 2{0, Wia)Ung — Vig*(Wiz*hso)

— Wik (VipxUy) + a + @ €V, RV PV PV -

(1.22) {Us0, Vi, Wi} = 2{Wiy, W) Usp — Vo (Wiz0Uyg) — Wip0o(V50Uy0)
+az+ ae VDV BV DV, .

(1.23) {tg0, v, Wi} E VL BV PV, BV, .
(1.232)  {uao, Vi, Wishy = — Uao*(Vi*Wis) — [VE*+(WirUs,) + Wik (Vi*Usno) ] -
(1.23b) {to, Uiz, Wik = — [Vi* (Wi Uo) + Wik (Vi¥U0) oo

= [vho(Wiousw) + Wio(Vhoum0)]k -
(1.24) {ts0, v, W) € Vo BV, BV, BV, .
(1.248)  {ws, vih, Wizhe = —Uso(Vhows) — [Viho(WioUy,) + Wio(vhouyw)], -
(1.24Db) {tso, Vi, Wik = —[Vho(Wioty) + Wro(Whou)]

= [vEx(wiru,) + wl_z*(”:é*uw)]w .

(1.25) {uiz, Vizy Wi} = <u52, Vi) Wi + <uiz, wiz>'viz + <'v§z, Wi) UG, -

(1.26) {us, vik, wi} = 8wk, viyws — wh [ (v [ wi)

— v 0@ Jwy) e Ve @V, BV, .
(1.26a) (s, i, Wilo = —upo(Vh*ws) — vho(ubh*ws) .
(1.26b) {ush, vE, Wil = —ub*x(Viows) — vh*(Ubows) .

_ - 1 _ _ -
(1.26¢) {u;;, Vh, Winhe = 3us, vhyws — E[ufz*(”f;*wm) — upe (vhowp) € Vi .

(1.27) {uz, Vs, wh) = 8 < un, vayws — wn [ (vg L] wi)
—up JuaJwi) e VEDV, DVy .
(1.27a) {us, va, Wil = uno(Wpxwi) + vio(up*wi) .

(1.27b) {us, vz, Wik = uprx(zowsh) + vox(uzows) .
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- - - 1. . _ — _
(1.27(:) {um, 'l)u, wl-;}n = 3<uu, ’l)m>w& - E[uu*(vu*w‘{;) + ulZO(vlzowl-E)] € Vﬂ M

(1.28) ({um, V209 wiz})fz = _’g‘[uxo*(vzoc’wfz) + 'Uzo°(u1o*wiz)]i2 .

For x,c V,, we put T(e, )%, =: T,. We note &, = .

THEOREM 1.2. Let V=@V,; be the Peirce decomposition of an
1soparametric triple relative to (e, e,). Then for all w, vi;, W, ;€ Vi
the following tdentities hold:

(1.29) Ugy0(VagoWyy) = — [Vg00 (UagoWyy)] s -

(1.30) Vag* Wy = Vgg0Wyp + VpgoWy,

(1.31) Up ¥ (V¥ W) = — [V (U *Wyo) ] -
(1.32) VypoWyy = Vyg*Wyy + Vyp* Wy, .

(1.33) T(Uyyy V20)Wys = {Uygy Uy {Vsgy Vyp) W5 -
(1.33a) [T(wyyy ©2) T (g, Vo) + T(Wygy Von) T(Wyy, 00) 05

= 24y, W) Vs, Wep) W, .
(1.33b) [T(w,y, ®0) T(Uyy, Ves) + T(Wyyy Vo) T g1y Tog) + T(Uyyy Co) T(Wy, Vss)
4 Ty, Vo) T(W1y, Top) Wi = AUy, Wy1 ) {Vpgy Top) Wy, -
(1.34) Vo (Whotn) + Who(VioUn) = 2V, Wh)Us -
(1.35) Vi (Wi ) + Wik (Virun) = 2{Vh, Wi)Us; -
(1.36)  vio(WihoUs) + Wi (V520Us) + [Vie*(WixkUae) + Wixx(Via*Uso) o
= 2{W}p, Wis) Uy -
(1.37)  wiar(Wirthy) + Wik (Vi¥tye) + [Vio(Wizows) + Who(VioUw) i
= 2{W}y, W)Uy -
(1.38)  [ud*(vixws) + vix(uhrwp)lw = wiso(virws) + vike(uh*wy) .
(1.39)  [ude(whows) + viro(uown)] = Ui (Vikows) + vix(ufhows) .
(1.40)  [up*(verwsh) + viex(Uprxwh)lw = —Uno(Verwsh) — veo(Up*wh) .
(1.41)  [ugo(@aowh) + vio(ugowh)le = —ua(vaows) — vir (U ws) .

Proor. (1.1): Follows from [1, (2.6) and Corollary 5.2] applied to
c=¢e¢ and ¢c = e,

(1.2) to (1.11) except (1.10a): From [1, (2.7)] we know {u,, v, w,} =
(o, €, {00, €, Wo}} + {w,, €, {uo, ¢, w;}} for each minimal tripotent ¢ and all
Uy Vi, W € Vi(c). We put ¢ = ¢, and ¢ = ¢, apply the multiplication rules
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of [1, Theorem 5.7] and easily get (1.2) to (1.11) except (1.10a). (1.10a)
and (1.11a) will be proved later.

(1.12), (1.29), (1.30): From [1, (2.7)] we get {tsy Vany Wis} = Uy (Vagowss) +
Vpo (U0Wy,). We may assume (U, U,y = 1. Then u,, is a minimal tripotent
and v, € Ve, %), Wi, € Viy(e, uy) by [1, Theorem 5.11]. Now [1] (5.7)
Shows {uy,, Va9, Wis} € Ve, Uy). Using once more [1, Theorem 5.11] we get
{tsy, Vg, Wy} € Vo The multiplication rules for the algebra “o” show
U (VpgoWy,) € Vyp and Vp00(Ugow,,) € Vi, @ V3.  This implies (1.12) and (1.29).
Finally, (1.80) is the consequence of (1.12) for u, = e,.

(1.12), (1.31), (1.32): Interchange “1” and “2” in (1.12), (1.29), and
(1.30).

(1.14), (1.15): Follow by linearization of [1, (5.1)].

(1.16), (1.16a), (1.83) to (1.33b): Here (1.16) follows from [1, (5.3)].
(1.88) is just [1, (5.2)] and (1.33a), (1.33b) are linearizations of (1.33).
To verify (1.16a) we put w, = uj, vy = V5, W, = €, X, = ¢, in (1.33b)
and get 0 = {uy, vm, Wi} + Vao(Un*w,) + Un*(Vuow,,) + {ugn, ve, wi}. There-
fore 0 = e({un, va, wi} + e{un, Vi, Wi} + un*(Vzows) + vpo(ug*ws); this is
equivalent to (1.16a).

(1.17): Since v, wy, € Vy(e), U, € Vi(e,) we may apply [1, (2.8)] with
c=e and get {Uany Vioy Wiz} = V100Ugg, Wippe; + [V100(Wi50Us,) + Wip0(Vye0Us)], +
a,. By [1, (5.8)] we have wv,ou,, =0 and by [1, (5.12), (5.7)] we know
V300 (Wio0Us) € Voo C Vi(e)).  Therefore {uy, vy, Wi} = vi00(Usows,) + @, with
some a,€ Vy(e) =Vai@V,e@ Vs, But {{uy, vy, ws}, Vi DV, = (Wigy Uz
Vo, Vi @D Vi}) =0 by (1.8) whence (1.17), (1.17a) and (1.182) are proved
later.

(1.18): Follows from (1.17) by interchanging “1” and “2”.

(1.19), (1.34): We may assume Uy, %) = 1. Then u, is a minimal
tripotent of V with V,;= V (e, e,)= V,;(e,, u.,) by [1, Theorem 5.11]. There-
fore [1, (5.10), (5.11)] imply {v,,uUnW,.}=2{Vs, W) Usp+ @y, @ € Vi(uy). Since
Vi(us) = Viley), (1.19) follows. To verify (2.84) we note that by [1, (2.8)]
the Vi(e)-component of {uz, vi, wih} i8 [vho(Wioun) + who(viux)l,. Here
we may drop the subscript “0” since Vio(Vious) C Vi(e,). On the other
hand, (1.19) means that the V(e,)-component of {uz, v,,, w,,} is 2{v,y, W) Us.
This implies (1.34).

(1.20), (1.835): follow by symmetry from (1.19), (1.34).

(1.21), (1.36): We compute {us, v}, wi} according to [1, (2.9)] for ¢ =
€, and get {u’ZOy Ve, wfz} = 2<'U§2, 'wfz)uzo — Uy * (Vo % W)y — ’Uiz*(wiz*uzo)o -
Wi (Vig*Ugo)o+ o, @ € Vi(e). Because (v,xw,,), € Re, We have uyx(vixwi,), = 0
by [1, (5.8)]. Further, wixu,e V,, whence vi,*x(wi*uy), = Vi*(Wiyxuy) €
Vet @V Finally, {({us, vi, wi, €)= (s, vhows) =0 implies a, = aj+ay.
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This proves (1.21). It follows that the V,(e,)-component of {u,, v, wi}
equals 2%, WiUy — [Viex(WhxUs) + Wik (Via*Uy)]; on the other hand this
component is [vio(Wiouy,) + Who(Viouw)], by [1, (2.8)]. Since vio(wiouy,) €
Va @V, we can drop the subsecript “0” and get (1.36).

(1.22), (1.87): follow by interchanging “1” and “2”.

(1.23), (1.23a), (1.28b): By [1, (2.8)] the V,(e,)-component of {u,, v:;, wi}
is [vho(wipoty) + Wiro(Viiouy)],e The multiplication rules for the algebra
“0” show vio(Wiotsy) + Wio(Vizouy) € Re, D Re, D V,,; but the e,-component
is zero here because (Who(Wxowy), €y + {WHo(Vhouy), €0 = Vi, WioUyy —
{wg, Viou,ey = 0. By [1, (2.9)] the V,(e,)-component of {uy, v, wg} is
—Upo* (V5 W5) — VH*(W*Uy) — Wi*(Vih*Uy). The first summand lies in V,
the last two lie in V,,V,. This proves the assertions.

The corresponding equations (1.24), (1.24a), (1.24b) are shown by
interchanging “1” and “2”.

(1.25): This follows from [1. Lemma 5.4 and (2.13)].

(1.26) to (1.26¢), (1.38), (1.39): The first assertion follows from [1,
(2.14)]. Next we consider uf, vh, wgl, Uwy = (U, Vi, Wi}, UhHy =
— (Uag* (VE*Wis), Uns) — CVEF(Win*Uo), Uih) — {Win* (Vi*Uso), Uss) = { — Uspx(Vikxwi;) —
Vhx(UH* W), Uy Where we have used (1.23a) and {ubxvih, wixiy,y = 0.
Because ViV, Voi @V, and VixVicV, we only have to consider
[vh* (v * Vi)l But from (1.32) follows (vh*wy)y = viov,,. Moreover
V500, = 0, hence [uf*(viixws) + vi*(uhrwn)l = uko(Vikxws) + vio(Uh*wiy).
This proves (1.26a), (1.38) and, by interchanging “1” and ‘“2”, also (1.26b)
and (1.39). Finally, (1.26¢) follows by expanding the right hand side of
(1.26) and comparing with (1.26a) and (1.26b).

The analogous equations (1.27) to (1.27¢), (1.40), (1.41) are shown by
interchanging “1” and “2”.

(1.28): In [1, (1.10)] we put w = W, U = Uy, ¥ = Vy, T = €;, apply
to e, and form the scalar product with of,. We get 0 = (wi*Vy, U 00%5) +
CWia*Uggy Vagoie) + (EWizy {Uoy Vagy T} + (Uio* Vi, WXL + {UyOWhs, Voo* sy +
(Ugo0 Va0, Wi @) 4 ({Usg, Vaoy Wi}, EF0) + (W00 Wiay Uso*@e) — 6{WSa, o) {Us00 V30, €5)-
Here the last term vanishes because {e,e,v,} =0, and the fourth and sixth
term vanish because V,oV,,CV,, VixVy,yCV,, and VoV C Re, + Re,,
Vix Vi C Re, + Re,. Finally, the first and the fifth summand vanish since
V¥ Vie C Vi, Vo VioC V. The remaining summands give (1.28).

(1.10a): It is easy to see, using (1.10) and [1, Theorem 5.7], that
{Us0, Voo, Wi} is orthogonal to Viz¢. We therefore have {({uy, vy, Wi}, Ty =
Wiz, ®oy Uao}y V20) = 2{Wh, i) WVagy Uggy — {Lia*(Wia ¥Ugo) + Wik (Xha*Uso), Voo bY
(1.21). From this the assertion easily follows.

(1.11a): Follows from (1.10a) by interchanging “1” and “2”.
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(1.17a): With the aid of [1, (2.14), Lemma 5.4 and Theorem 5.7] we
compute ({uy,, v, Wik}, i) = {whvivio}, Uy = — (wis (0 [Jvy0) + v (wh [ vse),
Ugp) = —NVE V30, W 0 Uge) — MW [ V50, Vi 0 Uy = —1/2{0E % v,, Wi o Ugp) —
1/2{whH*v,,, vVioU,y. Now the assertion follows for ¢ = +. The case e=
— 1is treated analogously.

(1.18a): Follows from (1.17a) by interchanging “1” and “2”.

This finishes the proof of the theorems.

1.2. In this subsection we derive more identities which will be useful
later.

LEMMA 1.3. For all v;;€ V,;; we have
(a) 2<’U10, vxo>'vlo°v12 = '010°T('010)7712 + T('v1o)(vxo°'v12),
(b) 2<’020, Vao) Vao*V1s = Voo T(V30)015 + T(030)(V30%0y5).

ProoF. (a) By (1.1) we know {v,0,0,0} = 6{wy, V;pyv,, and from [1,
Theorem 5.7] we get v,,0v,, = 2{w,,, Vioye,. In [1, (1.8)] we put x = v,,
u = e, and apply to v,. We then derive v,;0T(V.0)V;, + T(V10)(V10001) + 2{V10y
Vi V109V1e + 2{Vyq, V10 V100V1, — 6{Wy, V1) V100¥,, = 0. Hence the assertion.

(b) follows by interchanging “1” and “2” in (a).

LemmA 1.4. For all v,;€ V,;; we have

(a) 2<v10y ’010>'1712 = {’Uwy V10y 7712} + 2’!)100(’010*’012),

(b) 2<'v10, '010>7712 = {’vm, V10, 1)12} + 2'010*('010"'012);

(€)  2{Vy, V20)V12 = {Vo, Vaoy Viz} + 2000%(Va50010),

(d) 2<’”20, 'Uzo>7712 = {vzoy (2 7}12} + 2’0200(1)20*7)12),

(e) 2(”10, 'Uxo>'012 = {17101)107712}12 + 20,°(04,°0,,),

(f) 2<’020’ Voo Vg = {'Uzo'vzovm}m + 2050% (V3o *Vs5).

Proor. (a) and (b): In [1, (1.9)] we put x =2, u = e, v + ¢, and
apply to (LD Then we get 2/0100(’010*,012) + 2’010*(’0100’0,2)+{’010'l110'l)12} + {vlov101712} +
2{Vyq, Vio)V1s — 6{Vy, Vo9V, = 0 where we have used v,0v,, = 2{Wy, Viye,
from [1, Theorem 5.7], 7,, = 0 from [1, Lemma 5.1}, and v,*v,, = 0 from
[1, Theorem 5.7]. This gives

(x) 4wy, 7)10>1712 = 20,00 (V10*V15) + 2050%(V,00;,) + {vlovm’um} + {1710'0107710} .
From (1.11a) we get {v,,0,00,:} = 2{0,0,0)T1; — 20,00 (¥,00V,,). But v,p0v, € Vi
by [1, Theorem 5.7] whenee v,,0(0,00%;,) = V,0x(Vy0v;,) by [1, (5.16)]. This
implies (b) and (b) together with (x) gives (a). The assertions (¢) and
(d) follow by interchanging 1 and 2 in (a) and (b), and (e) and (f) are
immediate consequences of (b) and (d).

1.3. In [1, 5.2] we introduced the notion of a triple of JC-type.
Yet in each isoparametric triple we consider the subspace of V,; consisting
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of elements which satisfy the Jordan composition rules. To be more
precise, we define

JVy:i= {xlo eV xVy,C Vzo} y JVyi= {xzo € Vi %00 Vi, C Vi)
JVii= {26 Vig; £,,0 Ve C Vi px Vi T Vi)

First, we note that some of the composition rules derived in Theorem
1.1 can obviously be improved if one or two of the factors has Jordan
composition. Such rules are (1.8)-(1.13).

LemMA 1.5. (a) JV,=JViDJIJVy; where JVL=JdV ,NVa={xe Vy;
2o Vi C Va, xx V' C Vil

() (V"e) cJ Vg, (V&) cJVH.

(¢) If Vii=0="Vy, then (V')i(e) = JV5, (V')(€) = J V.

Proor. (a) From [1, (5.13)] we know a0 V,,C Vi@V, and VipxV,,C
V'@ Vy. This implies JV,,=(JV,,N VH)DI V,,N V). Further, 25, e JV,,N
2 iff 0= <xiz°V20, V1—2£> = <Vzo, w1;°V1_25> and 0 = <xiz* Vlo, V1_2€> = <V1or
x5+ Vy which by [1, (5.11)], is equivalent to %0 V; © V; and a5,x Vit C Vi
(b) follows immediately from [1, Lemma 5.5 and Lemma 5.6], which,
together with (a), also imply (e).

REMARK. (a) In general, (V') (e) @ (V')(é) & JV,, as one can see by
looking at the isoparametric triple V = Mat(2, ; C), see [1, 1.15] for details.

(b) We point out that, by definition, for elements of JV,; the mul-
tiplication rules [1, (5.11), (5.13)] are sharpened: xfoyne Vi, 2h*ynze Vi,
X550Ys0 € Vi, X5*Y1 € Vs if one of the elements lies in JV;.

Before proceeding we recall that a subspace U of the isoparametric
triple V is a subsystem if {u,u,u,} € U for all u,€ U. Further, a formal
FKM-triple is a triple system whose triple product is as in [1, 1.5b], but
does not necessarily satisfy (ISO 4).

THEOREM 1.6. If VyodV,cCJV, and VxJV,CJV,, then JV,, is a
subsystem of V and the restriction of the triple product of V to JV,, is
the dual of a formal FKM-triple, given by

PJ' = T(en xéj))lJVm
where x°, -+, 2™, m + dimV,, is an orthonormal basis of V.
PrOOF. First we prove that JV,, is a subsystem. From (1.25) follows
IV, IV, JVy}CcJVE and it is therefore enough to show: xzeJVy,
yeJVy imply {zxy}eJV;. But this follows directly from (1.26), (1.27)

and the assumption.
Let veJV,. We compute {vvv} according to [1, (2.9)], ¢ = e, and
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note {vvv}, = 0. We get {vvv} = 6{v, v)v — 3vo(vov),. But (vov),€ V,, and
thus (wow), = >, {vov, " )x{” implies (vvv) = 9<w, vIv — 3[{w, v)v +
S, {P,v, v)P,v] which shows the second assertion.

2. Peirce decomposition relative to ¢, and ¢,. In this section, we
investigate the Peirce decomposition relative to e,,. Of course, all results
are also valid (with the obvious changes) for e,

2.1. Recall, by (1.1) each element of V,, with length 1 is a minimal
tripotent. Throughout this section we fix e, € V,, with (e, ¢;,») = 1 and
investigate the Peirce spaces of ¢, Note that (e, e,) is a pair of
orthogonal tripotents. We point out that throughout this section we
may everywhere replace ¢, by u,€ V, = Re, P Vi(e) and e, by upe V, =
Re, D Vi(e,).

LEMMA 2.1. The Peirce spaces of e, have the following decomposition

(2.1) Vilexn) = (Ve @ Vi) N Vilew)) D (Voo © Reo) D Voo s
(2.2) Vi(ew) = (Ve @ Vie) N Vi) B Vi
Further,

(2.3) Vilen) CV,, @V, .

Proor. By (1.8) and (1.10) we know T(e,o)( Ve @ V.,) € Vo D V., hence
V@V = (VD Vi) N Vilew) D (Vi D Vi) N Vilew). By (1.1) we have
(Vo © Rey) BV, Vile) and by (1.2) we get V,, C Vi(ey). Altogether,
this proves (2.1) and (2.2). Finally, we apply [1, Lemma 2.7] for ¢ = ¢,
and y = ¢, and get Vi(e,) C Vi(e,) =V, PV, This proves (2.3).

Obviously, in Lemma 2.1 the unpleasant parts of the Peirce space
of e, are (V,, D Vi) N Vyley,) and (V,, P V,) N Vi(ew). We will have a closer
look at these spaces.

LEMMA 2.2. Assume z,€ V,,. Then

(@) 2,6 Vi(en) = %2, = 0 = 0z, € Vi

(b) 2, € Viles) = €302, = 0 = ex(e*2,,) = 2y
(€) 2,€ V(o) = 2 € Viyey).

Proor. (a) We compute T'(ey)?,, according to [1, (2.9)] for ¢ = ¢,
and get
( * ) T<620)z12 = @, + 22, — 2620*(620*212)

since e,*2; = (x*%:,) and (en*ey), = (€)o = 0. Here ey,x(ey*2,) € V,, and
a,€ V,, because T(ey)z,€ Vi, +V, by (1.10). Therefore the condition
2, € Viy(ey) is equivalent to [T(e,)?,) = 0 and ey *(eyx*2,,) = 0. But since
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T(ey, €,) is symmetrie, T(e,, €,)°2, = 0 if and only if T'(e,, €,)2,, = 0. Hence
21, € Vy(ey) = ex*2, = 0 and [T(ey)2:],, = 0. For the first equivalence it
therefore remains to show that e,*z, = 0 implies [T(e;)2,,).0 = @ = 0. To
do this we apply Lemma 1.3.(b) and get 0 = ¢,xT(e,)z,,. Using the ex-
pression (x) for T(e,)z, we see 0 = eyxa,. By [1, (5.16)] this implies 0 =
€,000,, and from (1.8) we derive T(e,)a, = 0. But now we get {a,, a,y =
gy + 2815, Gpy = {T(€y)215, Moy = {5, T(ex)aoy = 0, hence a, = 0. The second
equivalence follows from (1.30).

(b) By (1.10) the condition z, € V,(ey,) is equivalent to T(e,, €)%, =
0; hence equivalent to T'(e,, ¢,)z;, = 0. The last assertion follows from (x).

(e) Since e, € Viley), e, € Viy(e,) we have z,, = {ee.2,,} € Vi(ey) by [1,
2.7}

LEmMMA 2.3. Assume z,€ V,,. Then
(a) 2, € V. (ezo) = 6y *¥Ryy = 0= {320 22z12}
(b) z,€V, o(€) = €302, = 0 = {ezo uzm}
(e) =z,€ Vi(ew) = {Vn; Vzh, zm} cV. 2(€)-

ProOF. By Lemma 2.2.(a) we know 2z, € V,(ey) = {exe,2,,} = 0. Since
V. = Ve, ®,) for every z,€ V,, with |2,| =1 and since the condition
2, € V,(ey) does not depend on e,, the first equivalence implies z,, € V,(e,) =
{ex V2 = 0. The remaining assertions are proven analogously.

COROLLARY 2.4. e,xV,, = {€,V V) (as vector spaces).

PrROOF. Of course, e,*V,C{eyxVuVi} V. Now assume z,e V,
such that {z,, e,*xV,,» =0. Then 0= {(e,*2,,, V) implies e,*z,,=0. Hence
{ex VuR} = 0 by Lemma 2.3 which again implies <z, {€, V., Vy}> =0 and
so proves the corollary.

LEMMA 2.5. (a) e, (V. @DV (V, DV N Va(ex).

(b) 0 ey0 Vi, C Vi N Viles).

() For mye Vy and wy, Y € Vi, we have 0 = X*(Xy0Y,0) and {20y,
Too* W) = 0.

ProoF. (a) Set X=V,PV, By (1.8) and (1.10) we know T'(ey,e,)
(XN Vi(exn) = 0. Since X O (X N Vien) = X N View), this implies T(ey, e,)
(X N Vyex)) CX N Vyley), hence (a).

By [1, Theorem 5.9 and (5.3)] we already know 0 +# ey,o V,, C V,,. Now
(b) follows from (a). ‘

(¢) We may assume x, = e,. Then e,;oy,€ V. N Vy(e,) by (b) and
0 = e,*(ey,0¥,) by Lemma 2.2.(a). The remaining assertion is now obvious.

LEMMA 2.6. Assume 2,€ V. Then
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(@) € Vilen) = €502, = 0 = gy*2,, = 0.
(b) 210 € Vy(ls) = €:°(620°%10) = 210 = €30%(€20%2,5) = %y

PROOF. (a) 2, € Vi(ey) = 0 = ey0(€,°%2,) = €502, = 0 by (1.8), since
T(esy, €,) is symmetric. By [1, (5.16)] the last condition is equivalent to
ex*2y, = 0.

(b) The first equivalence follows from (1.8). By (1.30) and (1, (5.16)]
we have €,°(€,°%21)) = —€5°(€x*21) + €x*(e*2y). Therefore e,o(e,°2,) = 2,
implies e, x(€,*21,) = 2.

LEMMA 2.7. If ye V,, N Vi(en) with {y,y> =1, then y is a minimal
tripotent such that V,, PV, C V,(y).

ProoF. By [1, (2.6)] we know that y is a minimal tripotent. Let
xeVy i=1,2, with {x,2) =1. Then x is a minimal tripotent with
y e Vy(x) by (1.14), (1.15). Thus [1, Lemma 4.5.(a)] implies x € V,(¥), hence
the lemma.

COROLLARY 2.8. If Vi, N Ve, # 0, then Vi(ey) C V.

ProoF. By assumption there is a ye V,, N Vi(e,) with {(y, y) = 1.
Now [1, Lemma 2.7.(b)] implies Vj(e,)C Vy(¥) N Vi(e,). But by Lemma 2.7
we have Vy(y) N Vi(e,) C V.

2.2. In §2.1 we investigated those parts of the Peirce spaces of ¢,
which lie in a Peirce space V,;. We now look at those parts which do
not split.

LEMMA 2.9. For xe€V we have
et =0=2e V, DV;D(V, N View) DV N Vilew) P (Vi © Rey) -

ProOF. The multiplication rules for the algebra “x” show e, x(V,, @
Ve @ (Vo © Rey)) = 0. Also, e+ (Vi N Vilew) = 0 = e,x(Vio N Vifey)) by
Lemma 2.2.(a) and Lemma 2.6.(a).

Assume now e,xx = 0. Since ey*xe, = 2e,, e€,*e, = 2¢,, we know
(x, e,y = 0 = {x, ey. By the conclusions above we may therefore assume
ze V,PV, Then we have 0=¢,xx,,=e,*x,, since eyxe, € V,y, eyxx,€ V,,
and 0=e¢,*x. Hence x,¢€ Vy(e,) and z,€ Ve, by Lemma 2.2.(a) and
Lemma 2.6.(a).

LEMMA 2.10. Set
Aley) = (Ve @ Vi) N Vilen)O( Vi N Vilew)) »
B(ey) = (V. D V) N Vi(e:n)OD(Vio N Viley)) -
Then
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(@) ex+A(ey) = B(e,), e,*Bley,) = Aley),

(b) e*(Vie N Vilew) =V N Vo(ezo)’ ex* (Vi N Vi(ew) =V N Va(ezo),

(e) T(ey, e,)| Aley) P Bley) is a vector space automorphism,

d) (VN V,(e) D (VN Vy(ey) i8 contained in the eigenspace of
T(ey, €.)* for the eigenvalue 1.

PROOF. Since ¢, e V,(e,) We have e, xA(e,) C Vi(e,). Further, {e,*a,
) = @, ex*x,) = 0 for a e Aley), @, € VioN Viley). Therefore e, xA(e,)C
B(ey,). Similarly one proves e,xB(e,) C A(e,). Hence T'(e,, ¢,) leaves in-
variant A(e,,)PB(e,). Moreover, the restriction of T'(e,, €,) to A(e,)PB(ey)
is injective by Lemma 2.9. This proves (a) and (c). To prove (b) we
first note e,*(V,, N Vy(es) C Ve N Vi(ew) and ex*(Vi, N Vilew)) C Vi N Vilew);
this follows from e, *(V,(en) © Re;) C View), Viex Vi C Vi, €% Vi(en) C Vilew)
and V,*xV,cV,. The assertion is now a consequence of (c). Finally,
(d) is just a restatement of parts of Lemma 2.2.(b) and Lemma 2.6.(b).

2.8. The Peirce spaces relative to e, are much easier to handle if
e, lies in JV,, = {x,,€ Vy; 2,6 Vi, C Vo).

LEMMA 2.11. Assume e, e JV,, then (a)
(2-4) V12 = [ V12 N Vo(ezo)] @ [V12 N Vz(ezo)] ’
(2.5) Vlo = [ Vi N Vo(32o)] @ [Vw N Vz(e2o)] ’

(b) 2, € Vi(e) = 2, = eyx(ey*2,,) = 21, € Vy(ew),

(€) exoViyy=ViuN Vy(en) # 0, ex Vyy = Vi, N Viley) # 0,

(d) 2y € Viles) = ex*(ex*2y) = 2y,

(e) dim VN Vyley) = dimVy, N Vi(ew) = dimV,, NV, (ey),

(f) VN Ve # 0,

(g) Vi(ew) TV

(h) m, = dimV,, = dimV,, =m,, in particular, dimV > 4m,.

Proor. (a) follows from (1.8) and (1.10).

(b) From Corollary 1.4.(f) we conclude 2z, € V,(ey) = 21, = €;0%(€5*2y,).
We already know z,c V(ey) = 7, € V,(ey). Assume therefore zZ, € V,(ey).
Then 0 = €,*Z,; = (€4 °%1,)~ + €302, = €502, by Lemma 2.2.(a), (1.30) and
e,° V. C V,, which holds by assumption. Hence T(ey)2,, = 2e,0(e°%,,) = 0.

(¢) By (2.5), Lemma 2.6 and Lemma 2.10 we have e,x V,; = ¢,,*((V,, N
Vi) D (Vo N Vi(ew)) = €xx(Vie N V() = Vi N Vi(ew). Using (b) and
[1, (5.16)] we see eV, =V, N Viy(ex). By [1, Theorem 5.9] both spaces
are nonzero.

(d) Let z,¢c V,(ex). Then e,x(ey*2,) = 2, by Lemma 2.6. Assume
NOW 2, = €y*(0*%,0). We know Vi, = (Vi N Vylew) D (Vi N Viley)) by (2.5)
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and we have A(e,) =V, N Vy(en). We decompose z, = a, + a,, a, € Ale,),
a,€ ViuN Viley) and get 2z, = e,*(e*2,) = €x*(ex*a,) € A(e,) by Lemma 2.6
and Lemma 2.10.(a). Hence the assertion.

(e) The first equality is a consequence of Lemma 2.10.(a), the second
follows from (b).

(f) follows from (e) and (g) follows from (f) and Corollary 3.10.

(h) By (e) and [1, Corollary 5.5] we have m, = dimV}, = (1/2)dimV,, =
dimV,, N Vy(ey) < dimV,, < dim (V,, + V;;) = m,. The remaining statement
just means 2(m, + m, + 1) > 4m,.

COROLLARY 2.12. If e, e JV,, then
Vi = €0 Vi D e* Vy,  (orthogonal sum) .

2.4. In this section we compute the Peirce spaces relative to the
pair (e, e,) of orthogonal tripotents. As above we denote by V,; the
Peirce spaces relative to (e, e,).

LEMMA 2.13. The Peirce spaces of (e, e,) have the following descrip-
tion:

(@) Vule, €0) =V,

(b) V(e €x) + Vale, €x) =V + Vi

(€) Ve, en) = (Vi D V) N Viley),

(d) Vm(eu 620) = (V12 @Vm) n V2(320)-

PrROOF. (a) By definition V (e, e,) = Re, ®Vi(e,) = V...

(b) By [1, Corollary 5.2] we have Vy(e, e,) + Vyle, €x) = Vi(e).

(), (d) By 1, Corollary 5.2] we know V(e €x) = [Vie) N Vilen)] ©
V,. The assertions now follow from (2.1) and (2.2).

LEMMA 2.14. Assume e, €JV,. Then the Peirce space of (e,, ey) have
the following decomposition

(@) Ve, en) =V,

(b) V(e €x) C Vi, Vigles, ) = (Vi @D Vi) © Visley, €x),

(e) Vile, en) = [ViN Ve D[V N Vi(ew)ls

d) V12‘(91; ) = [ Vie N Vi(e)] D [V N Vilen)]

ProoF. (a) is Lemma 2.13.(a) and (b) follows from Lemma 2.11.(g).
Finally (¢) and (d) are easy consequences of (2.4) and (2.5).

3. Peirce decomposition relative to e¢,c V,. In this section we
consider Peirce decompositions relative to maximal and minimal tripotents
contained in V.

3.1. In this subsection we consider the Peirce decomposition relative
to a tripotent ehe V5. Of course, the analogous results are valid for
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tripotents e; € V.

Recall, by (1.25) every element of V; with length 1 is a maximal
tripotent. Throughout this subsection, we fix an element e}, e V}; with
{ef, ey = 1. We also recall that e = \(e, + ¢,) and é = (e, — €,), A =
(' 2)7, are maximal tripotents of V.

LEMMA 3.1. The Peirce spaces of e, have the following decomposition

Vier) = [Vi@®Va® Vi @V @ (V')ile, )] N Vilel) @ (Vi © Reft) @ RE
Vi(e) = [Va@Va OV D Vu @ (V)ule, €)1 N Viler) D (V')i(e) D Re .
PrROOF. We have (V;;© Re;;) @ Ré C Vi (e;) by (1.25) and [1, Lemma
5.4]. Now, T(eh)u = 3u for ue Re @ (V')j(e) by [1, (2.10), Lemma 5.15]
and (1.26). Hence T(e};) leaves invariant Vi, @V, DV, D (V')yle, €). This
proves the lemma.
In general, we cannot say more. However, as in §2, the situation

is much nicer, if ef; fulfills the Jordan composition rules. From 1.3 we
recall JV,, = JV;;, @ JV;; where J V5, = {y5; € Vi o Vg C© Vi, Ui Vi C Vi)

THEOREM 3.2. Assume e, eJV. Then (a)
3.1 Viler) = [Vilel) N (Vi @ V)] D [(V')ule, €) N Vileh)]
DIViO Re] DV, DV,y
(3.2)  Vileh) = [Viled) N (Vi @ V)] D [(Vale, &) N Vile)] D (V')ile) -

(b) The map Vi(ef) N (V, PVy) — Viler) N (Vi D Vi), 2, P 2 — @
— X, 18 a vector space 1S0Morphism.
(C) dim Vu = dim V22 =dim V1(61+2) N (Vu @ V22) =dim Va(&t) n (Vu @ sz),
dimV; N Vi(eh) = dim Vg, dim Vi N Vi(eh) = m, — dim V73,
(d) The map JVi — End(V,, D V,): 25 — T(e, x1,) induces a represen-
tation of the Clifford algebra over the Euclidean space (JV§, (-, <)).
PrROOF. For u e V,(e) we compute T'(e};)u according to [1, (2.14)] and get
(%) T(et)u = 3u — 2e; [ (e [ w) -
We always have e (] (u; + uz) C V. Also, the assumption about e
implies ¢4 (Vo Vi@ Vi, Therefore T(ei)( Vi P V) Vo@D Vs Fur-
thermore, 2¢f; [ (e (] (un + un)) = efn*(ehxun) + enolehxun) + ehx(efhous) +
eho(ehoun) = Uy +un+ eho(eh+un) +ehx(ehous), where we have used uz*V,, =
0, uz°oV, =0, (1.34) and (1.35). We know ejo(es*uy) € Va, efhx(ehous) € Vi,
Hence (x) implies
Ui + Uz € Vileh) = en*(enotn) = —uy, eno(enrin) = — Uz
Ui+ Uz € Vilen) = enx(enoun) = un, eiro(eb*un) = s .
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This shows (b) for xe Vi Vs. Now T(ei)e = 8¢ and T(e;)é = é implies
(b) in general.

By (x) we also have T(ef;)VzC V; and again (x) implies (V’)3(e) C
Vi(e) since ef; [](V')3(e) = 0 by [1, Lemma 5.15].

For we V,,@V, we have efow = efxwe V,, PV, by (1.30), (1.82) and
e, € JV,,. Hence eho(ehow) =eho(eh*w) = ehx(ehxw) = eh+(ehow) and T(eh)w =
3w — 2eho(ehow) — 25x(epxw) = w by (%), (1.86) and (1.87). Altogether,
we have proven (a).

(e) The projection maps Vi (es) N (VP V) — Vi, 1=1, 2, are injective
by (b). Hence dim (Vi(eh) N (VoD V) < dimV,;,. But dim(V,PV,) =
2dim(V,(e) N (V. @®Vy) by (b) whence dim V), = dim Vi(ef) N (Vy DV =
dimV,. Finally, m, + 1 = dimV,(e};,) = dimV,, + dim (V; N V,(eh)) =
dimV,, + m, = dim (Vg N Vy(eh)).

(d) Assume y;;eJV; with |yh| = 1. Then V,, PV, C V(¥ by (a),
Ty, e)(V, D Vi) C Vi @ Vi as shown above, and (x) prove y3; [ (¥ [Ju) =
u for V,,DV,.

3.2. In this subsection we consider the Peirce decomposition relative
to a minimal tripotent ¢e V,,. By applying [1, Lemma 4.5] we get

LemMMA 8.8. V, DV, V.(e) for every minimal tripotent c€ V,,.

We use this lemma to prove the following characterization of minimal
tripotents in V..

LEMMA 3.4. An element ¢ = ct@c €V, 18 a minimal tripotent if
and only if {c*,c¢*y =1/2 ={c",¢™) and ctec™ = 0.

PROOF. Assume ce V,, is a minimal tripotent. Then coc = T(c)e, =
2¢, by Lemma 3.3. We compute coc according to [1, (5.10)] and get
coc = 2¢toc™ + 2{c, cYe, + (¢, Cye,. Since c¢toc e VPV, by [1, (5.11)] we
have ¢toc™ =0 and 0 = (¢, ¢) = {c*, ¢™) — {¢7,¢™). Since 1 = {c*, ™) +
{¢~, ¢~ this implies (¢, ¢*) = 1/2.

Assume now ctoc” = 0 and {c‘, ¢) = 1/2. Then also ¢*x¢~ = 0 by [1,
(5.20)]. Hence c¢*[Je  =0=¢" [f] ¢~. Now we compute {cce} according
to (1.26), (1.27) and get {ccc} = {c*c*c'} + 3{ctcte™} + 3{c ¢ ¢t} + {cc ¢} =
3c*, etyet + Ket, ethem + e, e Het + 8{c™, ¢ )e” = be.

COROLLARY 8.5. For ce V,, the following are equivalent:

(a) ¢ 18 a minimal tripotent,

(b) € is a minimal tripotent,

(e¢) T(x, x,)c is a minimal tripotent for every pair x, eV, x,€V,
with |x;| = 1.
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PROOF. The equivalence of (a) and (b) follows from Lemma 3.4, and
this equivalence implies the equivalence of (a) and (c¢) since V,, = V. (x,, «,)
by [1, Theorem 5.11].

COROLLARY 3.6. Let ef,e Vy, |e] = 1 and e € Vileh), |ez| = 1. Then
c:= ne(l + en) 18 a minimal tripotent.

PrRoOF. By Lemma 3.4 we only have to check efce; = 0. But e;€
Vi(ei,) implies 3e;; = {ef, e, e} = e, — 2ei[1(ei:[Jen) by (1.26). Therefore
et [1(ef; [ ez) = 0 and, consequently, also e;[Je; = 0. From [1, (5.11)]
it follows ejoe; = 0 and the corollary is proven.

LEMMA 38.7. Let ce V,, be a minimal tripotent. Then € e V(c) and
(e, €) 18 a pair of orthogonal tripotents.

PROOF. We have ¢, ¢,€ V,(¢c) by Lemma 3.3. But then ¢ = {¢e.c}e
Vy(e) follows from [1, (2.5)].

THEOREM 3.8. Let ¢ be a minimal tripotent of JV,. Then ¢ is a
tripotent orthogonal to ¢ and we have

(@) Vie) =V.@ V@[ VN V()] D [(VieD Vi) N Vile)], Vile) = [V
Vi@l D [(Vi D Vi) N Vile)]-

®) VN Vue) =V,NVue) for p=0,2.

() VenVye,t)={2eV,y 2%, c")=0=(27,¢7),c 02" =0=c oz"}

= [ 1J§ n V12(C; E)] @ [V1_2 n Vm(c, C_)]
with Vi N V(e €) = Vi, ©).

@ Ve=[VenVule, )] D[V.N V@D [V Vile)].

(e) VunVy@) =[V.N V)] O[V.N Vile, &)l

(f) Let ue V@ Vy, then

e Vyie)=ue V)= {cteu} = 1A/2)u .

PROOF. The first statement is clear by Lemma 3.7. Assume now
ze V, with (%, ¢*> =0 =<2",¢"). We compute T(c)z by using ¢" [ Jec =
0=c"[Jec, the formulas (1.26) and (1.27): T(c)z = T(c*)z* + T(cH)z~ +
2{cte 2} +2{ctec 2z} + T(c)z"+ T(c)z~=1/2)2t+ (8/2)z~— 2¢* [J (¢t [J27) —
2P @Y e) — 27 I et + 3/2)zF — 2¢7 [ (e [ 2%) + (1/2)2".
Because c¢*, ¢~ e JV,, this formula implies T(c)ze V,,, We already know
Vu®V,V,(c). Therefore we get (a).

(b) The expression above for T(c)z shows T(c)z = T(¢)z which implies
(b).

(¢) For ze Vi vAvith #:,¢) =0 we have T(c)z =22 = T@)z =c" ]
(ctde)+e O e "D He) + e e Heh)] = 0 = ¢ [
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(ctd2z) + ¢ Ij (e” |j 2N =0=c"J@ ec) + ¢ ﬁl (z~ ﬁ c¢t). Since
¢tz e Vi®Vz we get ¢t [ (¢t [Jz")e Vi, similarly ¢ [ [] zH) e
. Therefore the last equation implies ¢* [J(c*[127)=0=c¢"[] (c” EI z"),

which is equivalent to ¢ [ ]2z27=0=c¢" Ifl z*. Because ¢toz” € V,, ¢tx2" e V;
we have ¢*oz~ = 0, and in the same way ¢ oz* = 0. On the other hand,
the conditions ¢*o2~=0=¢ oz* imply c*ljz‘=0=c+ﬂz‘=c" Oet=c" lfl 2,
which shows ze V(¢ ¢). Obviously, V,N V(e €) is invariant under
T(e,, ¢,), which implies the second equation of (¢). Finally, for z°e V3,
Ve, €) we have T'(c, ¢)z = T(c*, ¢")z* — T(c™, ¢7)z*, which for ¢ = + equals
(1/2)zt — (3/2)z* = —z* and for ¢ = — equals (8/2)z~ — (1/2)z~ = z".

(d) and (e) are obvious.

(f) Since V' 2¢°eJV;, is a maximal tripotent we have V,, @V, C
V.0 2¢*) by (8.1). Therefore T(c))u = (1/2)u. Because T(c)u = T(c*)u +
T(c)u + 2{ctc u} this shows T(c)u = 2u < 2{ctc u} = u = T(@)u = 0.

We finish this section by establishing the Peirce decomposition relative
to (e, ©).

THEOREM 3.9. Let ¢ be a minimal tripotent of JV,,. Then the Peirce
spaces relative to (¢, €) have the following description:
(@) Vule,e) VN V@), Vaule, )T Vi N Vile).
(b) Vlo(c) ) = [( Vi @ Vi) N Vo(a)] @ [Vlz N V@) @Vu(C, 6)]7
Vzo(c, ¢) = [( Vi @ V) N Vo(c)] @ [V1z N Ve @VZZ(C, 5)]
(c) Vm(c, 6) = Vu @ V22 @ [V12 N Vm(c, 27-.)]

Proor. We start with (¢). By applying Theorem 3.8.(a) for ¢ and
¢ we get Ve, o) = Vi) N Vy(@) =V, DV, D X where

X=[Va.nVye) @ (Vi@ V) N V()N [Vi, N V@) D (Ve D Vi) N Vi(2)]

Let a = a,, + a,, + a,e€ X. Then a, + ay,e Vy(c), whence a, + a, € Vi(©)
by Theorem 3.8.(f). Therefore 0 = {a, a,, + @y) = {Ay + Gz, Gy + Ay, i.€.,
Oy + Ay =0 and X =V,N V,(e)N Vz(a) = VN Vm(c, C).

(a) We know ee V,(V' 2¢*) = Vii(e, €) @ Re~, whence {ecta}e Ve, €)
for xe Vy(e,©) by [1, (6.5),(5.12)]. We also know V(e ¢)C Vi) ©
Ve, ©). Therefore x = x,, + @) + @, and {ec™x} = c* Jai + ¢ o +
et [ (e, + 2,). By [1, (2.10)] we get ¢t [ = 3{ct, xi)e. Further, by
Lemma 1.5, ¢* [J25e Vi @D Vs and c¢* [ (@, + %) € Vi@V, Therefore
{ectx} € Viy(e, ©) implies ¢* [ (2, + %) = 0 by (¢), which in turn forces
%, + 2, to vanish by Theorem 3.2.(d).

(b) follows from (a) and (c).

4. The fine structure of V,. In this section we introduce a certain
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subspace of V;,@ V. This subspace measures how far V,, differs from
JV,. TFor triples of FKM-type (which are considered in [2]) this subspace
is an “obstruction” to the uniqueness of the Clifford sphere ([2, §8]).

4.1. One of the methods in [4] for showing that a given isoparametric
triple system of FKM-type is not homogeneous is to show that the
dimension of V{(c) =N{ker[T(c, y)|Vy(c)]; ¥ € V,(c)} varies with the minimal
tripotent ¢, i.e., is not constant. We also saw that VJ(¢c) has nice pro-
perties in general. Hence it is reasonable to study the similarly defined
space 3,.r, ker [T(c, 9)| Vi(o)].

Since we are dealing with an Euclidean space it is equivalent to
consider

(4.1) Qo) := (ve;mker [T, )|V, (c)])l

where ¢ is a minimal tripotent and 1 is the orthogonal complement in

Vi(e).

LEMMA 4.1. (a) Q(c) = Vy(e) NN{V.(»); y € Vilo), ly| =1},
(b) Qe) = Q(d) for de Vi(e) with |d| = 1.

Proor. (a) We have Q(c) = N {(ker[T(ec, y)|V.(c)])*; v € Vi(c)}. Since
ker T(e, y) = ker T(c, sy) for any sc R-{0} we may assume that the inter-
section is taken over y e Vi (¢) with |y| =1. Then (¢, y) are orthogonal
tripotents and [1, (5.2), (5.3)] for (¢, ¥) = (e, e,) show (ker[T(c, ¥) |V (c)])* =
Vi) N V,(y). Hence (a).

(b) We know Vi(c) = Vi(d) and Vi(c) N Vi(y) = Vi(d) N Vi(y) for ye

Vie) by [1, Corollary 2.18.(b)].

We specialize ¢ to ¢, and get the following descrlptlon of Q(e,) rela-

tive to our standard Peirce decomposition:

THEOREM 4.2. The following conditions are equivalent:
(a) xeQe)
(b) zeV, and x+V,, = 0.

Proor. Assume xeQ(e). Thenze Vo= V,(e,)N V,(e,) and 2+ V,,=0 by
Lemma 2.3. On the other hand, if xe V, and 2+« V,, = 0 then x € V,(e,) N
Ve, for every e,e V, with |e,| =1 by Lemma 38.8. Also, x ¢ V,(¥y)
for y,€ V,, ¥, =1 by [1, (5.1)]. Assume now y € V,(¢) and |y| = 1. Then
Y = 8%y + t2,, With 8+ ¢* =1 and |2,| =1 = |2,|. Further, we have
Ta = s'T(@w)x + t*T(20)% + 25T (2,0, 2,0)® = 206 + 25t {2,2,,@} since x ¢
Vi(2s) N Vy(2y). Because {z,2,@} =0 by Lemma 2.3 it follows that ze
V(y), whence x c Q(e,).
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We have the following equivalent description for x ¢ Q(e,):

LEMMA 4.3. For xe V,, the following are equivalent:

(1) 2xVyu =0, (2) 2x(Vyu+V,) =0, (3) {xVy: Vi) =0, 4) z+xV,C
Vies (5) {xVy Vm} C Vi (6) {z, Vix V20> =0, (7 <x7 {Vm Ve Vzo}> =0, (8
<Z’7_; Vo Vzo> =0, (9) <z, {Vm Vu Vzo}> =0, (10) - Vi C Vi (11) {E Vi V20}C Vies
(12) mo V=0, 13) wo(Vy + Vi) =0, (14) {9E Vu Vm} =0, (15 « eQ(31)°

ProorF. (1) = (3): Lemma 2.3. (1)=(2): [1, (6.5)]. Q)= 4): [1,
(56.13), (6.7]. (3)=(5): (1.12) and (1.17). @A)=(6):[1, (6.7)]. (8) = (7):
(1.12). (6) = (8): [1, (5.16)]. The equivalence of (8)-(14) follows from the
equivalence of (1)-(7) by interchanging 1 and 2. Finally, (15) = (2) by
Theorem 4.2 and [1, (5.5)].

COROLLARY 4.4. (a) Q(e) = Q(ey),

) Q(x) = Qe) for all x, € V, with |a,| =1,

(e) xu*Q(ex) = Q(ez) fO’I‘ all x,, € Vu, 2, # 0.

PrROOF. (a) By Theorem 4.2 and Lemma 4.3 we know Qe)C V.,
Qle,) CcV, and, for xe V,, 2 Qe) =2+ Vy,y = 0=%ZoV,, = 0 =T € Q(e,).

(b) This is an immediate consequence of Lemma 4.3.

(¢) We may assume |z,,| =1 and have z,xQ(¢,) = z,*Q(x,) = Q(e,)
by (b) and (a).

4.2. We now define
(42) Q:= Q(eu ez) = Q<91) n Q(ez) .

REMARK. It is important to notice that for x e @ all properties of
Lemma 4.3 hold. In particular, we know by Theorem 4.2 and Lemma
4.3 that

(4.3) Q@={geVy,:gxVy=0=goV,}

={ge Vi 0=4g, Vix Voot Vigoe Vil ={g € Vip; g 1 (Voo + Vo) C Vio}
Moreover, Corollary 4.4 implies
4.4) Q=Q"dDQ where @ =QnNV;.

LEMMA 4.5. (a) z5*xQ° = Q° for all x;¢€ Vi, a; # 0.

() If Vi#0 or Vi # 0 then dim Q" = dim @~

PROOF. (a) From Corollary 4.4 we know z;;+Q(e,) = Q(e,) and x;;+Q(e,) =
Q(e,), whence z;+*Q = Q. But x5+ V5 = V3, and the assertion follows.

(b) follows immediately from (a).

Note that we may define Q@ = Q’(e; é) for the dual triple V'. The
following result interrelates @ and JV,; from §1.3.
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THEOREM 4.6. Q@ =JV,, @ JV, and Q@ N (V)i =JV, @ N(V); =
IV

ProoF. We use [1, Lemma 5.14 and Corollary 5.18]. Since Q' =
{ge Vi 9x(Va +Vy) = 0 = go(V; + Vm)} we have [Q,]+ =Q'N (Ve =
{9e Va®Vu; 9[AViE=0=9[Vs}. For geQ n(V)} and all aze Vy
this implies 0 = 2x;; [ (v [ 9) = 2n0@nogzn) + Tu*(@5ogn) + Tu*(@a*dyw) +
X+ (Xzogs0) + 050 (X5*0s0) +Xzo(®5005). The multiplication rules for algebras
“o” and “»” ([1, Theorem 5.7]) imply x5*(xz095) € Vii+ Vi, Tu*(@5*0,) € Vi +
V207 T*(®005) € Vi+ Vet V20+ Vl-;y x1_2°(x1—2*gzo) € V20~ Also o (Xp005)= <(l71_2,
%129 by (1.84) and @5;0(z00x) € Vi by (1.36). Hence 0 = [2x5; [] (v [19)]z =
{5, Tnygn. Sinee this is valid for every xz;e Vi, and since V; #0 by [1,
Corollary 5.5], we have proved @ N(V'); ={ge Vy; 9 ClVi=0=g] Vil
From (1.30) it follows that v, [] %5 = M0yoth — Ve*2h) = — AV o &) =
AMVaoin)e AN 0y [J 05 = MUao%5 + Vi*T5) = VpoTi = M0yo%),, for every
vy € V. Therefore g,,€ Q N (V) = oo Ve C Vg = g0 €J Vy. In the same
way one proves Q@ N (Vg = J V.

COROLLARY 4.7. Q" = JVy = {gi:€ Vi; giho Vo C Vi, g1x Vo C Vio}
Q- =JV,= {91—2 € VI’O; 9e*V,, C V1'o, g0 Vy C Vzlo}-
ProOOF. Obviously, V"=V and @” = Q. Hence Q@+ =Q" N (V") =
J V5 and similarly, @ = JVy. By definition, JVy = {9 € Va; 95 1V C
Vi). Hence, because V, =V, BV, DV, PV, the relation ¢4 [ 1 (Vi P
Va) C Vi, is trivial and with (1.30), (1.32) we get g5 [ vy, = Mghovy, +
g% Vo) = MN(263 © Vs0) + M(Gi2° V) = MG 0 Voo)e + 2N(932 © Vao)so and gt v, =
)"(glto'vm + g5xv5) = M205*v,,) + 7\1(91-2*”10) = N(gg*vw)l_z + 2)"(91-;*’010)20- Hence
JVo={ge Vi goV,y Vi, gxV,yC V). The second assertion is shown
similarly.

COROLLARY 4.8. @ =0 or @ =0.

Proor. If Q@ #0 we may assume Q N (V') =JV, #0. Then
Corollary 2.12 and (4.3) imply @ = 0.

COROLLARY 4.9. (a) Q* and V,, are orthogonal subspaces of V3,
(b) Q and Vi, are orthogonal subspaces of V.

4.3. In addition to our considerations in §3.1 we consider here the
Peirce decomposition of a maximal tripotent g e Q*.

THEOREM 4.10. Assume ge Q' with {g9,9> =1. Then

(@) Vig)=RéD[(Vi® VD Vad V) N Vi(@IDPI Ve N Vi(9)IDI VEORy],
Vi(9)=Re@[(ViD VD Val® Vo) N Vi(@)IDBI[ Vi Vi(9)].
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(b) Denote by V, = Re, BV;,. PV,, =Vy(e.) and V, = Re, DV, PV, =
Vie). The map

(V1®V2) N Vi) — (V, @Vz) NVig): 2, Dwx,—x — x,

18 @ vector space isomorphism.
(¢) The following imequality holds: m, < m,.

PRrOOF. Because of (4.3) and Lemma 4.3 we have goV,,C V3, gxV,, =
0,9xV,c Vg and goV,, = 0. Using this and [1, (5.5)] we compute for
x, € Vi@V 20 [0(9g Ow) = go(gxx) + gx(g*x,) = go(g*x,) + 2,; in the last
step we have used (1.85) and (1.87). Note that the first summand lies in
Vs @V, Analogously, for x,€ V5@V, it follows 2¢g[1(g[]x,)=g*(gox,) +
go(gow,) = gx(gox,) + x,. Here the first summand lies in V; @V,. Since
T(g)(@, + x,) = 3(x, + x,) — 29 [1(g [ (2, + x,)) by [1, (2.14)]. We see that
Vi®V, PV, is T(g)-invariant; therefore V; is also T(g)-invariant and
(a) follows from Lemma 3.1.

To prove (b) we first remark that we need only consider z,¢ V; P
V. since ee Vi(g) and éec V,(g). In this case the formulas above show
r+ 2,V =g @@ +2,)=0=2,=—go(g*x,) and 2, = —gx(gox,).
And similarly «, + z,€ Vi(9) = 9 (0 (¢ O (&, + @) = x, + &, = x, = go(g*x,)
and x, = g*(gow,).

Now (b) easily follows. Finally, by [1, Corollary 5.5 and Theorem
2.2.(c)] we get m,+1 =dim(Vi+Vy) +1=dimVig) N (V.PV) <
dimV,(g9) = m, + 1.

We have the obvious but important

COROLLARY 4.11. m, < m,=Q = 0.

REMARK. There are examples of isoparametric triple systems with
m, = m, and @ +#* 0 (see [3, Theorem 5.17]). But @ = 0 by Corollary 4.8.

The last step in the proof of Theorem 4.10 shows

COROLLARY 4.12. Let geQ*%,<g,9) =1. Then m, =m, iff Vyg) C
ViV DV D Ve

4.4. In this subsection we consider the relations between Q¢ and
JV;. For the following theorem we recall that we are still working
with a fixed pair of orthogonal tripotents (e, ¢,). Actually @ = Q(e, ¢,),
V. = Ve, e). We also recall from [3] that V is called of algebra type
relative to (e, e,) if Vyy =0=7V,.

THEOREM 4.13. Assume Q° # 0 and JV;, # 0. Then either V is of

algebra type relative to (e, e,) or Q and JV, are orthogonal subspaces
of Vi.
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Proor. Let weJVi={ve Vi;»[JViCVi+Vzs} and g Qt={ge V5,
g1 (Vy, 4+ V) Ve, Wemayassume |v]|=|¢|=1. Weknow Vi C Vy(e) =
Re PV and Vo Vie). Weput A:= T(q, e)|V.(e) and B:= T(v, e) |V (e).
Then T(V,(e), ¢)|V.(e) is a cubic space, whence by [1, Lemma 3.7] we
have B’A + AB* + BAB = 2{q,v)B+ A. If V is not of algebra type
then V,,# 0 by [1, Corollary 5.10], and we have B*4Av,,=v (v [ (¢ [Jvy)) €

w ABy = q[ (w0 wvw) e Ve, BAB=2v [ (g @vw) e Vi + Va,
Bv,, = v[]v,€ Vyand Av, = ¢[1v,e€ Vi for all v,e V,,. Therefore 0=
2{q, v)Bv,. If 0 = Bv,, = v[ v, then {vov,} = 3v, — 20 (v v, = 2v,;
but {vvv,} = v, by (38.1). Therefore Bv, = 0 and {q, v)> = 0 follows.

COROLLARY 4.14. Q' NJV,#0=Q =JV,# 0=V 1is of algebra
type.

By the above results we know that JV,, and @ are either equal or
orthogonal. In the second case we know nothing about V,,© (JV,, P Q).
What we may say if V,=JV,P Q is contained in the next theorem.
It uses the notation of an FKM-triple. For a definition see [2].

THEOREM 4.15. Assume V, = Q(V)P JV,,.

(a) W:=V, DV, is a subsystem of V.

b Ify, - -, Yn is an orthonormal basis of JV3, then for we W
we have (with y,:= &)

www} = 3w, wyw + 3 @, Cw, wy; Ow ).
(¢) W is a formal FKM-triple with m,(W) = dim J V3.

ProOF. (a) Since {u,v,,w,}c W for + =1,2 by (1.1) we only have
to consider a triple product of type {u,v.wy} (the case {u,v,w,} follows
by symmetry). The formula (1.9) says {4, 0,0W,0} = Uy o* (V1% Wey) + V1o% (Uyox W,y ).
By (4.8) we have Q(V)* = (V;xVy + Vipo Vo)t = J V.. Hence v,xw,, and
U, ¥ Wy lie in Vi, and therefore u, x(voxw,,) + Vio*(Uy*xWy,) lies in V.

(b) Since WcV,(e) we may apply [1, (2.16)] and get {www} =
8w ] (w[]w); here the element a, disappears since we already know
{www}e Vi(e). By [1, (2.12)] we have w Jw = {w, wye + (w [ Jw),. We
will show (w[Jw),ecRePJVi. We have (w[Jw), = 20w, []wy)s +
(Wi ] wig)s 4+ (Wyo L1 Wy)s. The first summand lies in Vi and is orthogonal
to @, hence it is in V{;. The second and third summands lie in Re, P Re,.
Hence their 3-component relative to ¢ is ({w,, [Jw,, €) + {wa [ Wy, €))e=
(L/2)(Kwig, W10) — ooy Wo)E, because wy,[]€=(1/2)w,, and wy,[1€= — (1/2)w,,.
This shows (w[Jw);e Re@P JV,, whence w [ Jw = {w, whe + D7 {w [
w, y;>y;. Therefore {www) = 3[(w, wyw + 270 (y; [ w, wdy; [ wl.
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(¢) follows from (b) and Theorem 3.2.(d).
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