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1. Preliminaries. Let G and 4 be a non-elementary finitely gener-
ated Fuchsian group of the second kind acting on the upper half complex
plane H and its limit set, respectively. The limit set 4 of G lies on the
extended real axis R which is the boundary of H. We say that G has
type (g; n; m) if we obtain S = H/G from a compact surface of genus g
by removing n (= 0) points and m (= 0) conformal discs. Put m,(4, 4) =
inf 3, diat (I,), where the infimum is taken over all coverings of 4 by
sequences {I} of intervals I, on R with the spherical diameter dia (I,)
less than a given number 6 > 0. Further, put m,4) = lim,., m,(6, 4),
which is called the ¢-dimensional Hausdorff measure of 4. We call
d(4) = inf {t > 0; m,(4) = 0} the Hausdorff dimension of 4 ([1], [3]).

The first purpose of this paper is to let the Hausdorff dimension
d(4) increase by deformations of G without altering the type (g; n; m).
This was essentially done by Beardon [4] when H/G is a punctured sur-
face and he also proved that the Hausdorff dimension of the limit set is
less than 1 for any finitely generated Fuchsian group of the second kind.
The second purpose is to show the existence of Fuchsian groups of type
(1;0; 1) or (0;0;3) such that the Hausdorff dimension of its limit set is
equal to an arbitrary number £ ¢ (0, 1).

2. Statement of the main theorem. Let

4 (a b> and M= (exp WV —1x/4 0_ >
b a 0 exp (—V —1n/4)

be Mobius transformations acting on the extended complex plane and
making the unit disec 4 invariant, where ¢ > b >1and a* — b =1. De-
note by ¢, ¢, ¢, and ¢; the isometric circles of the Mobius transforma-
tions A, A, MA*M™ and MAM™, respectively. We see that ¢, = M(c,),
¢, = M™(e,) and {e,, ci}:=, are mutually disjoint circles and that each of
these circles is orthogonal to the unit circle. Put D, = Ni,{ext (¢) N
ext (c})}, where ext(c) denotes the exterior of the circle ¢. Then the
Schottky group I generated by A and MAM™ is a Fuchsian group of
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type (1;0;1) acting on the unit disc 4 and having a fundamental domain
B=D,N4. Let {D,) be all of the equivalents of D, by I". Then D,
clusters to a perfect non-dence set A(I") on the unit circle. We call A(I")
the limit set of I". Now, let us consider the conjugate T'I'T of I", where

— -1 vV -1
T = (=2 —=1)"2 — 1,
(=2/-D < ! 1/_1>
is a Mobius transformation. Then T'I'T is a Fuchsian group acting on
the upper half complex plane H and is generated by k and ErE™", where
for x =a — b, h and E are defined by
0 — /-1 -1
h=T"'AT = , E=T'MT=1v2"" .
4 <O )\,“) v ( 1 —1)
Since a >b>1 and a*—b*=1, we have 0 <A<V 2 — 1. Clearly,
TI'T is determined by A e (0,12 — 1) and we put T7:I'T = I";. The
domain T-(B) = T"Y(D,) N H is a fundamental domain of the Fuchsian
group I'; and we see easily that T-'(D,) is bounded by four circles |z]| = \,
2] =27 |21 + A1 — A = 201 — AY)~! which are orthogonal to the
real axis R and are denoted by ¢,, ¢, ¢, C: respectively. Clearly

(2.1) EE) =c, and E'@c)=¢;.

Hence, for x e (0,12 — 1),I"; is a Fuchsian group of the second kind of
type (1; 0; 1) and with the limit set A(l";) = T-XA(I")). The first purpose
of this paper is to prove the following:

THEOREM 1. Under the above situation, d(A(;)) tends to 1 as \e
(0,2 —1) tends to V' 2 — 1.

In the following two sections § 3 and § 4, we prove some preparatory
lemmas for the proof of Theorem 1, which we give in §5. In §6, we
state an application of the theorem.

3. General Cantor sets. Let I be a closed interval on the real axis

R of the complex plane. We take k(= 2) disjoint closed intervals I(s,)
(t,=1,2, -+, k) in I and % disjoint closed intervals I(7,¢,) (3, =1,2, ---, k)
in I(3,) and proceed similarly. Then, after n steps, we obtain k" closed
intervals I(4,4, -+ 1,) (%, -+, %, = 1,2, ---, k) such that I(4,4, - - - 7, 1,4,) C
I3, -+ 4,) (440 =1,2, -+, k). We put

o k
(3.1) C=N U I --1,).

n=1ip,ereip=1

DEeFINITION 1. The set C constructed above is said to be a general
Cantor set if it satisfies the following conditions:
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(a) There exists a constant A €(0,1) such that
I3y 0y + v G tng) | Z AlL(G % o2 90)] (G =1,2, -+, k),
where |J| is the length of an interval J.
(b) There is constant B¢ (0, 1) such that
OI(1, %y« ++ 1,8)y I(3, %5 «++ 1,8)) = Bl L(3, %, + -+ 1,)] »
where s # t and p(J,, J,) = inf{|x — y|; x€J,, yeJ,}. Here a closed inter-

val I(4, %, ++ %) (%4, %+, 4, =1,2, -+, k) is said to be a fundamental
interval for the set C.

DEFINITION 2. The set & = {I*, L¥, ---, I}} is called a fundamental
system of a given general Cantor set C, if it satisfies the following
conditions:

(a) IF is a fundamental interval for C (1 < i < p).

b)) *NnIy=90 (i#J1=1,j=0p).

(¢) U.I*>C.

The following lemmas are known.

LEMMA 1 ([3], [6]). Let C be a general Cantor set constructed as in
(8.1). Then Max,o,,....ip< | L(4, %, « -+ 1,)| tends to 0 as n tends to co.

LEMMA 2 ([1], [38]). Let C be a general Cantor set and suppose that
M/(C) is defined as for m,C) with an additional restriction that the
covering {I,} is a fundamental system of C. Then

M,(C) =z m(C) = B'M,C) .

LEMMA 3 ([1], [3]). Let C be a general Cantor set constructed as in
@3.1). If, for all n=1,2, --- and all 4, -+, 4, =1, -+, k,

k
then d(C) = t.

4. A general Cantor set associated with A4(/";). Now we return to
the Fuchsian group I'; (A€ (0,172 — 1)) introduced in §2. We construct
a general Cantor set L, associated with the limit set A(I";) of I",. Let
G, be the set consisting of Mobius transformations
(i) v; = (hE)h , 1l=J7=N),

(ii) Yuw=GEYL, @L=J5j=N),
(iii) Vjiov = (REYRE™, 1Zj=N),
(iv) Vv = WETYRE, (1=j=<N),

4.1)
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together with an element 7,y,, = h, where N is an integer determined
later. We shall refer to these elements as being of types (i), (ii), (iii)
and (iv), respectively. Having defined G,, we define G, for all positive
integers n inductively by

G... ={UV;UeG, VeG}
and further, put
(4.2) L, =

s

U U(TZ) ’

k=1UeGy,

where I, is the open interval (—\, \) on the real axis R and I, denotes
the closure of I,, We see easily m(I,)c I, ED)NET) = @, (EI)U
E*INNL =@ and hE(I,)UhEI,)cI,. Hence, if Uc@G, and if V,
and V, in G, are distinct, then I, D VI, and UV(I)n UV, = @.
Let G be the set consisting of Mobius transformations k, hE and hE.
We define G* for all positive integers » inductively by G, = {UV; Ue
Gx, VeG). It is easily seen that {N;, Uves, UTD} € {Ni= Uvess UMD}
Recalling that I" = TI';T™ is a Schottky group and noting

(A U, U@D) = 400 T,

n=1Ue€ n

we see
(4.3) L,c{ATr)yn L} .
We prove the following which gives a useful estimate later.

LEMMA 4. Let J be any sub-interval of I, and let U eG = Ui, G-

Then
[J1/2 < |UDNUI) | = [T+ M)A — N)ATY2.

Furthermore, 1f VeG@G,, then
UV = U2 .
PrROOF. We can write UeG in the form
uv=V, - -V,V(V,eG,i1=1,2,---,m)

for a suitable n. For intervals (A, o), (— o0, —2\) etc. on the real axis R,
we see BT ((\, 0))T(V7, ), A7 (=00, =) C(—o0, —=A7"), E7H{(NT, «))C
(A 1), B((— o0, =) C(—=1,—N\), B(M ) CE7H(I) and E7H((— o0, —A7T))C
E(I). Using these and putting Q = E(I,) U E~(I;) U E*(I;), we have
V Q) c @ for any Ve@G,. Moreover, if Ve@G, is of type (iii), the
V= EV* for some V,eG, of type (i) and V' ((), «)) C E((\?, o)) C
(=@ + )1 —A)Y —1). Noting those facts, we see that, if V| is identi-
cal with & or is of type (i) or (ii), then U~'()e E*I;) and we have
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[U (o) >Nt > 1. If V, is of type (iii), then U™ () e Vi Q) (—oo,
—1)N E7'(I;) and thus we have U («) < —1. Similarly, if V, is of
type (iv), then U(c0)e Vi (@) (1, ) N E(I;) and therefore we have
U= () > 1. Hence in all cases we have |U ()| > 1. We now denote
by J = (a, B8) the interval on the real axis and put { = U™%(c). Then
we see

oo = (1@l 1veie)”
= (T/2A(E + WE = ME — ) —

In the case { > 1, we have
(4.4) [J1/2 = (12371 = M)A + N7 = [UDIUT) |
= (J12367'@ + M)A = M)

from the assumption Jc I,, In the case { < —1, a similar argument
gives the same inequalities and completes the proof of the first part of
our lemma.

Finally, we have AER(I) = (M1 —A)(1 + )7, M1 + M1 — \)7),
h(I) = (=A% \%) and since A€ (0,1 2 — 1),

Max |V(I))] < 22°(1 — AH™.

VeGy

Applying (4.4) with J = V(I;) we get |UV(I)| < |U,)|/2, which is the
second part of our lemma. q.e.d.

By using Lemma 4, we show the following.

LEMMA 5. The set L, in (4.2) is a general Cantor set on the real
axis.

PROOF. Let I =1, and v,(I;) = I(j) for 7;€G, 1 < j<4N+1) in
(4.1). We can take k = 4N + 1 disjoint clo§ed intervals I(z) 1 = 1,2, - - -,
k) in I and % disjoint closed intervals v,v;(I;) = I(z, 5) (4 =1,2, -+, k) in
I(3) for v,v;€@G,. Proceeding similarly, we have inductively

{(UVI); VeGy} = (I(4,4, -+ 4,9 1 < § < k}

for Ue@G,. Then, applying the first inequality of Lemma 4 to J = V(1))
(VeG,) and UeG, we have |UV(I,)| = A|U,)| for the constant A =
Miny.q, |V(I)|/2. The set I\Uyeq, V(I;) consists of a finite number of
open arcs J,. If V,, V, are distinct elements of G,, then there exists a
subare J of I; lying between V,(I;) and V(I,) with |J|/2 = Min |J;|/2 > 0.
As U(J) lies between UV,(I) and UV,(I,), Lemma 4 implies

(U VI, UVD) 2 |UW)| z [ U2 = BIUUT,)|
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for B = Min, |J;|/2. Thus, by Definition 1 we see that L, is a general
Cantor set. g.e.d.

Next we show the following lemma.

LEMMA 6. Let k be any integer greater than 1 and let a,, a,, - -+, a,
and s be the positive numbers satisfying 0 < a; <a <1 (1=7=k) and
0<s=£a,+a,+ ---+a,<1. Then

al +a; + - +ar =1,
where
r=1—-1-s)1—a)".

PROOF. Let x€(0,1) be a number uniquely determined by af +

a4+ --- +af =1. The inequality y* —1 < t(y — 1) holds for y = 0 and

0st<1l. Taking y=a;andt=1—2, we have a};* — 1= (a; — 1)1 —
2) < (a — 1)1 — x), which shows

g, ={1-1—-21—-a)aj, A5k .
Hence we have s < >k a0, = {1 — (1 — )1 — a)}. qg.e.d.
5. Proof of Theorem 1. Now we are going to prove Theorem 1.
As we have seen in (4.4) and in Lemma 5, the set L; in (4.2) is a
general Cantor set contained in A(";)) N I,. So it is sufficient to show

that the Hausdorff dimension d(L;) of L; tends to 1 as A tends to
V2 —1. Put

F = I‘\VLGJGI vy,
and
Y = I\{h(I,) UREI,) U hE"(I),)} .
Then FO Y and
(5.1) F\Y = hEI) U hE_l(T‘)\Ha V(I
={FNhEI)}U{FN sz"(Z)} :
Now we have
F N (hEY(IL)\REY(Y) = (hl‘ﬂ)"(fz)\yle_!;]l VI\(RE)(Y)

= WEMT\Y\Y VT .

If we denote by {—2, A} the set consisting of two points —X\ and A\ on
the real axis, then the right hand side of the above is equal to
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(RER(I,) U hE(TL) U RE~I)} U (RE)*({—, M\U (I
= (E*(T) UGB (2 MY VT
This, together with the inclusion F > (RE)Y(Y), gives
m,(F N (RE)(T)) = m((RE)XY)) + m((RE)*I,) N F),

where m,(S) denotes the Lebesgue measure on the real axis. A similar
equality holds with 2E replaced by hRE~'. Using these two equalities
for n =1,2 ---) N—1 and (5.1), we have

m(F) = m(¥) + 5, m(bEMT) + m(BE(T) N F)

+ 3 m(REHY) + m(GEHT) 0 F).

As both Y and I, are symmetric with respect to the imaginary axis, we
have m,((hRE)¥(Y)) = m,(hE)*Y)) and we see that a similar equality
holds with I, replaced by Y. Thus

(5.2) my(F) < m(Y) + 2- :E: m((RE)(Y)) + 2m,(RE)" (L)) .

We first estimate m,(Y). Put e= (A + N> —8>0. Then

(5.8) m(Y) =201 —A) — (T 4+ A)A =27 =1 = N)A 4+ W)™
=21 - M) e<e.

Next we estimate m,(hE)(Y)). Put

(5.4) (RE)(z) = (a2 + b)(ee + d)™ , audy — bee, = 1.

We easily see hE(E(IL)) = E\LDE(I;) and also have (hE)"(E(Ix))DR\II
inductively. Hence we can deduce that the pole of (hE)*(z) lies in E(I)).
This implies that |d,| > A|e,|. Therefore we have the following estimate

5.5  mGEHY) = | loz+ dl7dz S (4] = Me)m(Y) .
Next we compute ¢, and d,. For real numbers a,, b, ¢, d, in (5.4), we
have
(ak+1 bk+l> — (ak bk>]/—2—_1< A A )
Corr s ce dy -\t AT
By an elementary computation, we have

¢ = (0* — ¢)f{(p — OV 2)4)7,
dy = {p*™ — ¢** + Mot — ¢)H(p — OOV 2,
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where p={—-OA+A) =V A+ AP —-8y2 and g={—-O+N")+
VA + 2 —8)2. From p+r<g+Ar<0 and [pl=0N+21"+
VeE)2>V2 >lgl=0+ A1 —1Ve)/2> N, we see

(5.6) |p—qlldil — nlee) = 27{|p¥(p + N) — ¢*g + M| — [p* — ¢*}
= 27|pl(|p] —x = 1) + [g]*(xv + 1 — |g])}
>27|pMpl = » =D} .

Since |p| — |g| =V'¢ and —x + A= Ve + 4, we have

G 5 (4]~ Me)

< S 24p| = lgIpl(pl = — 1)

= 2(lp| = lg¥(pl = » = D™(p! — )7

=2{(Ve +4—2+1¢€)2 e +1V eV8 + ¢)2)
<Wet4d+2—-Veye™

< 167,

Furthermore, we have from (5.6)
(5.8) m,(REY(I) < /2
for N sufficiently large. Hence (5.2), (5.8), (5.5), (5.7) and (5.8) imply
m(F) £ 26 + 32e%.
Since F' = L\Upyeq, V(I)), we have
| UT)| = m(UE) + 3, [TV

for any element Uec @ and also have

(5.9) S IUVIIUD) =1 = mUE) U .

As F is a union of open intervals, we have from Lemma 4 that, if
X > 1/5, then

m(UENIUIT) |1 £ A + MM = M'my(F)/2 < dmy(F)

From this inequality and (5.9), we have

(5.10) SIUVDIUD)IM 21 — dmy(F) .
We take the numbers a,a, ---,a, in Lemma 6 to be the ratios

UV || UT)|™?, UeG, VeG, Putting a = 1/2 and s =1 — 4m,(F) in
Lemma 4 and noting Lemmas 1, 2 and 8 we have
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a(A(Iy) = d(L;) = 1 — 8(2¢ + 16¢'*)
from (5.10). Thus the proof of Theorem 1 is complete.

6. Applications. Let M, A, h, E and {c,, c;}:-, be as those previously
described in §2. The group I generated by A and MAM™ is a Fuchsian
group acting on the unit disec and is of type (1;0;1). Put W, = Ea!
and W, = E*h. Then the group G freely generated by W,, W, has type
(0;0;8). The fundamental system of A(I") coincides with that of A(G).
It is easily seen that d(4(I")) = d(4(@)) by Lemma 2. Applying Theorem
4 stated in [2] and [5] and Theorem 1 in the present paper, we have the
following whose proof may be omitted.

THEOREM 2. Assume 0 <t < 1. Then there are Fuchsian groups G
of types (0;0;3) and (1;0;1) with d(A(@)) = t.

As a direct result of this theorem, we have the following.

COROLLARY 1. There exist two distinct Fuchsian groups G, and G,
with d(A(G,)) = d(A(G,)) and with the same fundamental regions.

Using the continuity argument in [5], we also have the following.

COROLLARY 2. Let I' be a Fuchsian group of type (g;0;m) with
29 — 24+ m >0, m>0. Then there is a quasiconformal mapping w, of
the extended complex plane onto itself such that d(A(w L w™) >1— ¢ for
any small positive number e.
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