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1. Introduction. Let (X, ^ μ) be an arbitrary positive measure
space and {φik(x): i, k = 1, 2, •••} an orthonormal system on this space.
We shall consider the double orthogonal series

(1.1) ΣΣαΛW,
i = l Jk = l

where {aik: ί,k=l,2, }is a double sequence of real numbers (coefficients),
for which

(1.2) ΣΣ<< - .

By the well-known Riesz-Fischer theorem there exists a function
f(x)eL2(X,^9μ) such that series (1.1) is the generalized Fourier series
of f(x) with respect to the system {φik(x)}. In particular, denoting by

m n

smn(%) = Σ Σ aikφik(x) (m, n = 1, 2, •)
i=l k=l

the rectangular partial sums of (1.1), we have

\[f(x) - smn{x)~\dμ{x)

Σ Σ + Σ ΣiWtk-+0 as min(m, n) -^ oo .
= l k=n+l i=TO + lfc = l )

Here and in the sequel the integrals are taken over the whole space X
By the above relation, the rectangular partial sums smn(x) of (1.1) converge
to f(x) in L2-metric.

It is a fundamental fact that condition (1.2) itself does not ensure
the pointwise convergence of smn(x) to f(x) almost everywhere on X (in
abbreviation: a.e.).

The extension of the famous Rademacher-Mensov theorem proved by
a number of authors (see, e.g. [1], [7] etc.) reads as follows: If

(1.3) Σ Σ <4[log(ί + l)]2[log(/b + I)]2 < - ,
ϊ = l k=l
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then the rectangular partial sums smn(x) converge to f(x) a.e. as
min(m, n) —> ©o. (The logarithms are to the base 2.)

Hence one can deduce, as a simple consequence, the following state-
ment: // 1 5g ix ^ i2 <̂  and 1 gj &! ^ ft2 ^ are £wo sequences of
integers, for which ip —> oo as p -> oo y &g —> oo as q —> oo9 and

( Σ aϊΛ[log(p + l)]2[log(g + I)]2 <

where i0 = ft0 = 0, ίfcew £/&e rectangular partial sums siptkq(x) of (1.1)
converge to f(x) a.e. as mm(p, q)-*°°. (The empty sums Σfei,-!+iΣfe*,_i+i»
with either ip_! = ip or kq_λ — kq if any, are defined to be equal to 0.)

The special case ip = 2P~1 and A9 = 2q~1 {p, q = 1, 2, ) is of particular
interest: //

ΣΣ( Σ

(1.4) Σ Σ α2

fc[log log(i + 3)]2[log log(fc + 3)]2 < oo ,
i = l fc = l

ίfee^ ίfee rectangular partial sums s2Pj2q(x) of (1.1) converge to f(x) a.e. as
mm(p, g) —• oo.

Denote by σmn(aj) the first arithmetic means of the rectangular partial
sums:

σmn(x) = m-'n-1 Σ Σ βifc(a?)
i = l k=l

= Σ Σ ( l - - ^ J ^ - ) ( 1 - -^ L ^)α«9'«(a') (m, » = 1, 2, )

The a.e. equiconvergence of the two double subsequences {s2?>,29(#): Ί>, q —
0,1, •••} and {σ2Pf2g(a?): p, g = 0, 1, •••} is no longer true, which is the
case for (ordinary) single orthogonal series (see, e.g. [2, p. 118]). In
spite of this fact, under condition (1.4) the means σmn(x) do converge to
f{x) a.e. as min(m, n) —> oo (see [5]).

2. The main results. Approximation by rectangular partial sums
and their means. Let {/c(m, n): m, n = 1, 2, •} and {λ(m, n): m,n —
1, 2, •••} be two double sequences of real numbers, λ(m, n) Φ 0 when
both m and n are large enough. We write

Kim, n) — o{X(m, n)}

if

Kim, n)/X(m, n) —> 0 as min (m, w) —• oo

and there exists a constant C such that

\ιc{m, n)\ ^ C|λ(m, w)| (m, n = 1,2, •)
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In the sequel C, Clf and C2 denote positive constants, not necessarily
the same at each occurrence. Furthermore, we set

z/10/c(m, n) — /c(m, n) — κ{m — 1, n) ,

Λ01tc(m, n) — /c(m9 n) — κ(m, n — 1) ,

and

Δaκ{m, n) = /c(m, n) — κ(m — 1, n) — ιz(my n — 1) + κ(m — 1, n — 1)

(m, n = 1, 2, κ(m, 0) = <0, w) = 0) .

In the introduction we have already mentioned that (1.3) and (1.4)
are sufficient conditions for the a.e. convergence of smn(x) and σmn(x) to
f(x)f respectively. Now the main point is that if we require the fulfil-
ment of a stronger condition instead of (1.3) or (1.4), then we can even
state an approximation rate for the deviations smn(x) — f{%) and omn{x) —
/(&), respectively. The results obtained can be considered as the exten-
sions of the corresponding theorems of [6], [8] and [4] from single
orthogonal series to double ones.

Before stating our main results, let us introduce one more notation.
Let a > 1 be a given number and denote by Λa the class of those
nondecreasing sequences {λ(m): m — 1, 2, •} of positive numbers, for
which

(2.1) 1 < C, ^ λ(2w+1)/λ(2m) ^ C2 < a

for all m large enough, say for m ^ m0, where m0 may depend on {λ(m)}.
For example, λ(m) = mri[log(m + l)]r2[log log(m + 3)p is in Λa if 7X > 0
and a > 2n, while 72 and 73 are arbitrary numbers.

THEOREM

(2.2)

where both {λ

(2.3)

1.

•i(*

if

)} and

ΣΣαUΪ(i)λi(fc)

{λ2(fc)} belong to Λ2,

— f(x) = Oa ίλΓ^W) --1- λ2-'( a.e. ,

and there exists a function g{x) 6 L\X, JΓ9 μ) such that

(2.4) minium), λ2(^)} | σmn{x) - f(x) \ ̂  g(x) a.e. (m, n = 1, 2, .) .

For single orthogonal series a similar theorem with λ^i) = ir, 0 <
7 < 1, was proved by Leindler [6].

Assuming that (m, n) tends restrictedly to oo f one can obtain essen-
tially the same rate of approximation under a weaker assumption.
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THEOREM 2. If

(2.5) Σ Σ f t W m a χ ( i k)) < °° J
i=i k=ί

where {λ(m)} e Λ2, then for every θ > 1 we have

(2.6) m a x \σmn(x) - f(x)\ = oa{χ-\m)} a.e.,

and there exists a function g{x) e L2(X, ^ μ) such that

(2.7) λ(m) max \σmn(x) - f(x)\ ^ ff(αj) a.e. (m = 1, 2, ..) .

It is a trivial observation that (2.6) implies that

m-'n-1 Σ Σ (sik(x) - /(a?)) = ox{\-\m)} a.e. ,
ΐ = l fc = l

provided ^ - 1 ^ w/m ^ ^. The following theorem indicates that the mean
value of sik(x) — f(x) is of o^X^im)}, not because of the cancellation of
positive and negative terms, but because the indices (i, k) for which
\sik(x) — f(x)\ is not small are sparse.

THEOREM 3. // condition (2.5) is satisfied with {X(m)}eΛ2 and
{mX~\m)} is nondecreasing, then for every θ > 1 we have

(2.8) m - 2 Σ Σ [«*(&) - f(x)Y = o,{X-2(m)} α.β.

1/(2.5) is satisfied with {λ(m)}eΛvτ ΛTMZ {mλ"2(m)} is nondecr easing y

then for every θ > 1

(2.9) m - Σ i " 1 Σ [«*»(»)-/(»)]' = o.{λ-2(m)} α.e.

Furthermore, there exists a function h(x) e L\X, J^~, μ) such that the
left-hand sides of (2.8) and (2.9) both multiplied by X\m) do not exceed
h(x) a.e. (m = 1, 2, •)•

Here and in the sequel by Σί^- 1 * w e mean that the summation is
extended over all integers k, for which θ'1 ^ k/i <̂  θ.

We note that for single orthogonal series a similar theorem with
λ(m) = mr, 0 < 7 < 1/2, was proved by Sunouchi [8].

We make four further remarks.
1° Following Alexits [3], this type of approximation is called strong

approximation. In particular, from (2.8) and (2.9) it follows that

m - 2 Σ Σ \sίk(x) - /(a?)I = ox{χ-\m)} a.e.
i i kθ-H
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and

(2.10) m"1 ± i-1 Σ I sίk(x) - f(x) I = ox{X~\m)} a.e. ,
ΐ = l k=θ 1 ϊ

respectively.

For example, the latter relation can be shown by making use of the
Cauchy inequality in the following setting:

-'t^jίj-Λi-^lsaix) - /(aO|)J

( m θi \ / m θί \

Σ Σί-MίΣ Σ ΐ-Wx)-/(*)]')
^(θ- θ-1 + ^m- 1 Σ i-1 Σ [βα(α ) - /(x)]2.

Now if we apply (2.9), then we obtain (2.10).
2° Slightly modifying the proof of Theorem 3, one can conclude

the following result, too, which corresponds to the special case λ(m) = 1.

THEOREM 4. If condition (1.2) is satisfied and the Cesάro means
σmn(x) converge to f(x) a.e. as min(m, n)—> ©o, then for every Θ > 1 the
left-hand side of (2.9) is ox{l} a.e. and does not exceed a function h(x) e
L\X,jημ) a.e. (m = 1, 2, •••).

For single orthogonal series the corresponding theorem was proved
by Borgen [4].

3° It is an open question whether statement (2.9) can be strength-
ened into the following stronger one:

max [sik(x) - f(x)]2\ - ox{\-\m)} a.e.

Our conjecture is that the answer lies in the negative.
4° It is also an open question whether one can deduce the following

strong approximation type result starting with Theorem 1: If condition
(2.2) is satisfied with λ^m) = λ2(m) = λ(m) e Λ2 and {mX'^m)} is nonde-
creasing, then the relation

m-'n-1 Σ Σ [8ik(x) - Ax)f = o,{λ-2(m) + λ"2(w)} a.e.

i = l fc=l

holds true.

3. Approximation by special partial sums and their means. We fix
an (ordinary) nondecreasing sequence Q = {Qr: r = 1, 2, •} of finite sets
in N2 = {(i, k): i, k = 1, 2, • •} such that
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U Qr = N* .
r=l

In this section our goal is to study the approximation properties, while
using the sums

sΛQ; x) = Σ aikφih{χ) (r = l, 2, - . ) .
(i,k)eQr

These sums can be regarded as a single sequence of certain partial sums
of (1.1), which are generated by Q.

The most important special cases are those when the Qr are either
rectangles or (quarter) circles in N2:

( i ) The case

Qr = {(i, Jc) e N 2 : i ^ mr a n d k ^ nr} (r = 1, 2, •) ,

where 1 ^ Wi 5̂  m2 ^ and 1 <; nλ ^ w2 ^ are two sequences of
integers, both tending to +ooy provides a single subsequence {smrt7lr(x):
r = 1, 2, •} of the double sequence {smrι(ίc): m, w = 1, 2, •} of the
rectangular partial sums. In particular, the case mr — nr — r (r = 1, 2, •)
gives the so-called square partial sums srr(x) of (1.1).

(ii) The case

Qr = {(if ft) e iV2: i2 + Jc2^ r2} (r = 1, 2, - •)

provides for the spherical partial sums of (1.1).
Denote by σr(Q; x) the first arithmetic means of the partial sums

sr(Q; x):

σr(Q; x) = r"1 Σ sP(Q; x)
(0 = 1

where we set Qo = 0 .
The results of [6], [8] and [4] pertaining to single orthogonal series

can be extended to this case as follows.

THEOREM 5. If

(3.1) Σ f Σ a*ih)\\r) < - ,
r=l \(i,fc)eρr\ρr_1 /

where {X(r)}eΛ2, then

σr(Q; x) - f(x) = ox{X-\r)} a.e. ,

and there exists a function g(x) e L2(X, ^ μ) such that

λ(r) I σr(Q; x) - f{x) \ ̂  g(x) α.e. (r = 1, 2, - )
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THEOHEM 6. / / condition (3.1) is satisfied with {\(r)}eΛvτ
{rλ~2(r)} is nondecreasing, then

(3.2) r~ι Σ [sP(Q; x) - f(x)f = ox{X-\r)} a.e. ,

and there exists a function h(x) e L\X, J^~, μ) such that

[8P(Q; x) - f(x)Y ^ h(x) a.e. (r = 1, 2, - -) .

For the special case of square partial sums condition (3.1) is equi-
valent to condition (2.5), because in this case (i, k) e Qr\Qr-i is equivalent
to the fact that max(i, k) = r (r = 1, 2, -).

COROLLARY. // condition (2.5) is satisfied with {\(m)}e Λvτ and
(mλ"2(m)} is nondecreasing, then

(3.3) m"1 Σ [su(x) - /(^)]2 = ox{X-2(m)} a.e. ,
i = l

α^d ί/iere exists a function h(x) e L\Xf ^ μ) such that

\\mymr1 Σ [su(x) ~ f(x)Y ^ h{x) ax. (m = 1, 2, . -) .
i = l

It is instructive to compare conclusions (3.3) and (2.9) (formally
writing θ = 1 in Theorem 3, one gets weaker statements).

THEOREM 7. 2/ condition (1.2) is satisfied and σr(Q; x) converges to

f{x) a.e., then the left-hand side of (3.2) is ox{l) a.e. and does not exceed

a function h(x) e L\X, ^ 7 /Ό a.e. (r = 1, 2, •)•

4. Proof of Theorem 1. The statement of Theorem 1 will be an
immediate consequence of the following four lemmas.

LEMMA 1. 1/ {λ(m)} e Λ29 then

(4.1) Σ λ - ^ ) ^ C\-\2p) ,

(4.2) Σ λ2(2m)2-2 r o ^ Cλ2(2!>)2-2ί>

and

(4.3) Σ λ2(2w) ^ Cλ2(2p) (p = 0 , 1 , -)
m=0

/^ particular, (4.1) implies that
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(4.4) Σ λ"2(2») < oo ,
m=0

while (4.2) implies that

(4.5) Σ X2(m)m~3 ^ Cλ2(ί)i"2 (i = 1, 2, ) .

PROOF. It can be done in routine ways. The left inequality in (2.1)
yields (4.1) and (4.3), while the right inequality in (2.1) yields (4.2).
We do not enter into details. •

In the following lemmas we only assume that {λ^m)} and {X2(n)} are
nondecreasing sequences of positive numbers, possessing one or two
properties of (4.1)-(4.5).

LEMMA 2. Under condition (2.2) with such {λi(m)} and {X2(n)} that
satisfy (4.1), we have

fix) - 82pf2,(a0 = ox{XT\2,p) + λ2"
1(29)} a.e. ,

and there exists g(x) e L2 such that

), X2(2q)}\f(x) - s2P,2q(x)\ ^ g(x) a.e. (p, q = 0, 1, . . . ) .

PROOF. Without loss of generality we may suppose that au = alk = 0

«,Λ = l f 2 f .-•). By (2.2),

Σ Σ λ2

1(2wι)λK2Λ) (Γ Σ Γ Σ 1 α Λ 9 Λ (aj)ΊV(») < °° >
m=0 n=0 J L i = 2 m + l k=2n+l -I

whence B. Levi's theorem implies that
2W + 1 2^+!

(4.6) λ!(2m)λ2(2n) Σ Σ auc<Pik(%) -* 0 a.e. as max(m, n) -> oo .
ϊ = 2 m + l Λ=2W + 1

Furthermore, defining

flfί(«): = Σ Σ λ2

1(2-)λ2

2(2") Γ 'Σ! 2 Σ
m = 0 n=0 L i = 2 m + 1 A;=2n

we have g^x) e L2. It is clear that

(4.7) λ1(2")λ2(2n) Σ Σ aikφik(x)
i=2 m +l

a.e.

Now considering the representation

/(*) - «,„,„(*) = { Σ i Σ + ι + j Σ + i E}oa9>«(*)
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Σ Σ + Σ Σ Σ Σ atkφik(χ))
m=0 n=q m=p n=0) \ ί = 2 m + 1 je=2n+1 /

and making use of (4.1), (4.6) and (4.7), we can obtain both assertions
of Lemma 2. •

LEMMA 3. Under condition (2.2) with such {λχ(m)} and {X2(n)} that
satisfy (4.2) and (4.4), we have

S2PAX) — 02PAX) = ox{Xϊ\2p) + λ2~
1(29)} a.e. ,

and there exists g(x) e U such that

min{λ1(2p), X2(2q)}\s2Pt2q(x) - σ2pt2<,(x)\ ^ g(x) a.e. (p, ^ = 0,1, •) .

P R O O F . We may again suppose t h a t an = alk = 0 (i, fc = 1, 2, •)•
We begin wi th t h e representat ion

(4.8) s2P>2g(α0 — σ2

We treat Ag}(ίc) in detail. Using the Cauchy inequality,

Σ Σ Σ îΛfi - Vf^W
n=0 i=2 Λ=2^+l 2 P \ 2* / U

9-1 Γ 2P 2W + ! /,' 1 / JU 1 \ Ί2 9-1

^ Σ λi(2 ) Σ Σ -Hr^l1 - - ^ ^ H ^ ) Σ λr2(2").
n=0 Li=2 fc=2«+l 2 P \ 2 9 / J n=0

By (4.4), here the second factor is bounded in q. We set
oo oo Γ2P 2n + ι _ 1 / λ, 1 \ Π2

flK*): = Σλϊ(2')Σλί(2") Σ Σ J V L ( 1 - -ίL=-LK9>«(*)
P=0 n=0 Li=2 fc=2«+l 2 P \ 2 ? / J

The termwise integrated series is

oo oo 2P 2^+! Γ 1 / 7- 1 \Ί2

Σ xϊ(2') Σ λi(2") Σ Σ -HrHi - A ^ J L ) «**
j>=0 n=0 i=2 Λ=2«+lL 2 P \ 2Q ' J

p=o

the last inequality is due to (2.2) and (4.2). Thus B. Levi's theorem
implies that g2(x) e U and
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Γ 2P 2^+1 - _ 1 / fc __ 1 \ Ί2
Λ VOP\ V Λ 2(9n)\ V1 V —i 1 — -- --1^7 ω (rλ > 0

a.e. as p —> °° .

Taking (4.9) into account, we obtain that

lϊXx) = OJXTW a.e.

and

λx(2*) sup A%(x) ^ Cft(aj) a.e. (p - 0, 1, ) .

We can similarly deduce that

sup Afq(x) = oa;{λ2-
1(2ί)} a.e.

and

λ2(2*) sup A%(x) ^ 9s(x) a.e. (q = 0, 1, -.) ,

where βr3(cc) 6 ZΛ

LEMMA 4. Under condition (2.2) with such {λ^m)} α îd {λ2(^)}
satisfy (4.4) α^d (4.5), we

(4.10) Mpq(x): = m a x m a x | o mn(α?) - σ2P)2g(x) \

and there exists g(x) e L2 such that

min {^(2*), X2(2«)}Mpq(x) ̂  g(x) a.e. (p, q = 0, 1, - -) .

PROOF. Our starting point is that

(4.11) Mpq(x)£ max max \σmn(x) - σm,2Q(x)
2P^m^2P + ί 2 ^ ^ 2 9 + 1

+ max \σ2p,n(x) — o2Vt2q{x)\ = : Mfti

Owing to the identity

\ / ^ m n ®m&Q ^2P,n "•" @2'P,2<1 — / i / ι
i=2P + l fe=29 +

and to the Cauchy inequality we have that
2P + 1 2^ + 1

Σ K<
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In order to show that

λ1(2p)λ2(29)Mi1

g

)(a;) -> 0 a.e. as max(p, q) -> oo

and

X&'WWXx) ^ glx)

ί
oo oo \ 1/2

Σ Σ mn\l(m)Xl(n)[Jnσmn(x)Y a . e . (p,q = 0,1, •••)
m=2 τι=2 )

involving that gA(x) e L2, we use the representation

(4.13) Jnσmn(x) = Σ Σ ( * ~ 1 ) ( f - 1 ] ααytt(a?) (m, n ^ 2)
i=2 fc=2(m — l ) m ( w l )w

and apply again B. Levi's theorem:

\gl(x)dμ(x) = f Σ
J m=2 n=2

Σ Σ (
i=2 *=2 ( m —

^ Σ Σ λ l ( m j λ ^ } Σ Σ «2<4
m = 2 n=2 mV i=2 k=2

= Σ Σ αϊ^^Σ Σ λ l ( m ί λ ^ ) <
ί

the last inequality follows from (2.2) and (4.5).
To handle M™(x), we use the identity

(4.,14)

and the

(4,.15) i

representation

m 2?
A Π (γ\ _ V Y
J10 m,2^\**// X i |X j

* . ,

(m

* - σ*

i-1
- l)ra

kΦikift) ( m ^ 2, g ^ 0) .

By (4.14) and the Cauchy inequality,

Γ 7lf(2)/,yΛ]2 <r OP V Γ// /T Γ'ϊΛl2 < 9 p V \ V >2Γ9n>l

Γ m 2W + 1 * 1 / Γ. 1 \ "12 q-1 )

x [ Σ _ Σ + I _ jT ( i - j ί ^ Γ

L ) α ^ ί f c ( ^ ) J Σoλ2-
2(2TC)| .

Due to (4.4), the last factor on the right-hand side is again bounded in
q. We are going to show that

λi(2p) sup Mp

2

q\x) —> 0 a.e. as p —> oo

and
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V(2») sup M™(x) £ Cgs(x) a.e. (p = 0,1, •) ,

where

0ϊ(»): = Σ Σ mλϊ(m)λϊ(2")
OT=2 n=0

To this effect,

\gl(x)dμ(x) = Σ Σ mλϊ(m)λϊ(2 )
J 2 0m=2 n=0

- l / A; - 1 \T
- l)m\ " ~~2?~/J

m 2

^ Σ Σ λϊ(m)λί(2") Σ Σ i2m-8ί4
m=2 n=0 ι=2 fc=2w+l

^ Σ λKm)m-3 Σ Σ i%(k)a2

ik
m=2 ί=2 Λ=2

= ΣΣalki
2xl(k)Σλ2χ(m)m-3 < oo ,

i=2 fc=2 m=ί

the last inequality is by (2.2) and (4.5).

In the same way, one can find that

λ2(29) sup M™(x) -> 0 a.e. as q -> oo
p^O

and

λ,(2 ) sup M?i(x) ^ gQ(x) a.e. (q = 0,1, - •)
3>^0

with a suitable firβ(α;) e ZΛ Π

5. Proof of Theorem 2. The proof is based on Lemma 1 and the
following three lemmas, corresponding to Lemmas 2-4.

In this section we again assume that {λ(m)} is a nondecreasing se-
quence of positive numbers, possessing only some properties of (4.1)-(4.6).

LEMMA 5. Under condition (2.5) with such a {λ(m)} that satisfies
(4.3), we have

f(x) - s2pt2p(x) = ox{X~\2p)} a.e. ,

and there exists g{x) 6 U such that

λ(2p)|/(a0 - s2Pt2P(x)\ ^ g(x) a.e. (p = 0, 1, •) .
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PROOF. We set

p=0

After integrating,

[gKx)dμ(x) = Σλ 2 (2 p )

= Σλβ(2')jgk Σ+ i+ ̂  Σ}<4 = /! + !,, say .

Simple calculations give:
oo 2.P oo

and

where we used (2.5) and (4.3). An application of B. Levi's theorem
provides the statements of Lemma 5. •

LEMMA 6. Under condition (2.5) with such a {λ(m)} that satisfies
(4.2), we have

S2P>2P(X) - σ2Pf2p(x) = ox{χ-\2p)} ax. ,

and there exists g(x) e If such that

λ(2p)I s2pt2p(x) — σ2vt2p{x)\ ^ g(x) α.e. (p = 0 , 1 , •) .

P R O O F . We set

: = Σ ^\2p)[s2P)2p(x) - σ2Pt2p(x)γ
p=0

and use representation (4.8) for p — q. After integrating,

2 P ) 2 P ( ^ ) - σ2Pj2P(x)Jdμ(x)

i . , l UrϊH1 -±fλ) + V->" s 2(/

Here
oo 2P 2P Γ : 1 / J. 1 \Ί2

Ji: = Σ λ2(2») Σ Σ - ^ i - ί 1 - - ^ - ^ ) αϊ4

P=o f=ι k=i L 2 ' v 2" IJ
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oo 2P 2P

j-̂ a 71 At \Δ )& 2LJ 2-ι \ * — •*•/ aw
P=o ΐ=2 k=i

= Σ Σαί*(i - I)2

 2 ^ Σ χ ( ί k λ
2(2p)2-2p < oo ,

the last inequality follows from (2.5) and (4.2).
An analogous estimate is valid for J4. •

LEMMA 7. Under condition (2.5) with such a {λ(m)} that satisfies
(4.2), for every θ > 1 we have

Mp(x): = max max |<7mn(ίc) — o2Pf2P{x)\ = oβ{λ"1(2p)} ax.

and there exists g{x) e U such that

\(2p)Mp(x) ^ g(x) ax. (p = 0, 1, -) .

PROOF. It is clear that

Mp(x) ^ max max \σmn(x) — σ2Pt2P(x)\

+ max max \σmn(x) - σ2Pt2P(x)\ =:Mp

1)(x) + Mp

2)(x) .

We treat here, say Mj?\x). The treatment of M£\x) is quite similar.
Now we estimate M$\x) in the same manner as we estimated Mpq(x)

in the proof of Lemma 4 (cf. (4.11)):

Mp

2)(x) ^ max max \σmn(x) — σmt2P(x)
2P<£2P+1 2P<£θ2P+1

+ max I σ2Pιn(x) - σ2P,2P(x) I = : M^\x) + Ml*\x) + M™(x).
2P<^02P+1

Representation (4.12) and the Cauchy inequality make it possible to
conclude that

[ 2 P+1 02P+1 ~\2

Σ Σ \*nσmjίx)\\
m=2P+l n=2P+l J2P+1 (92P+1

^ (2tf - 1)22" Σ Σ
m=2P+l n=2P+l

Setting

2 ^ 2

E ( f ) Σ Σ
p=0 m=2P+l 2P

we shall show that gQ(x)eL2. By (4.13),
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\gl(x)dμ(x)

Θ2V+1 m n

Σ ΣΣ 2

2 P + 1 02P + 1 m Λ

Σ Σ
P

^ Σ ( ) Σ Σ Σ Σ «
p=0 m=2P + l n=2P+l ΐ=2 fc=2

oo 2 P + 1 <?2P+!

^ (20 - 1) Σ λ2(2')2-4l> Σ Σ i2h2a2

ik
p=0 i=2 fc=2

= (2(9 - 1) Σ Σ a\ki*F Σ λ2(2p)2-4ί> .
ϊ=2 *=2 P + ^ H r 1 * )

Denote by p,, = po(i, k, θ) the integer, for which

2P» < max(i, -̂'A;) ^

Then, by (4.2),

(5.2) Σ λ2(2p)2-4jl =
P + ^ ^ i f c J > = J > 0

^ 2-2P0 Σ λ2(2p)2"2ί) ^ Cλ2(2P0)2-4ί>0

^ 16C6»V(max(ί, &))(max(i, A;))"4.

To sum up the reasonings above, we can see that

[g\(x)dμ{x) ^ C Σ Σ α?fcλ
2(max(i, /c))< oo .

J i=2 fc=2

From (5.1) and the definition of gQ(x) it immediately follows that

M™(x) = ox{λ-1(2p)} a.e .

and

λ(2^)i^2^(α;) ^ Λ(aj) a.e. (p = 0,1, . . . ) .

Now we proceed with the estimation of M{p2)(x). Applying represen-
tation (4.14) and the Gauchy inequality:

2P+1

(5.3) [MΓ(χ)V ^ 2" Σ [A^A^Y
m=2P+l

Setting
oo 2 P + 1

9ίo(x): = Σ 2i>λ2(2») Σ [A«σmAx)Y ,
p=0 m=2P+l

we have by (4.15)

S oo 2P + 1 m 2 P Γ Λ _ 1 / t—-1 \ Ί 2

ô(χ)ώM«) = Σ2"λ2(2'') Σ Σ Σ - ^ - i - V 4
P=O m=2P+i i=2 A;=iL(m — l ) m \ 2P /J
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oo

ί>=0

oo

Σ
2>=0

oo

Σ
i=2

c:

Δ

λ !

oo

Σ
oo

Σ

;(2'

oo

Σ

')2-2"

> * 2
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2P + 1 m 2P y2

2P + 1 2P

x 1 x i v a ^
ί=2 fc=l

X^ *\ 2/Q3>\Λ—2j)
x j Λι \£t )£*

PS:max(ϊ/2,fc)

:(max(i, ft))< 00 .Σ
i=2

From here and (5.3) we get that

M?\x) = ox{\-\2p)} a.e.

and

x(2*)M™(x) ^ gίo(x) a.e. (p = 0,1, . •) .

Similar inequalities can be obtained for M^\x)f too.

6. Proof of Theorem 3. First we present two lemmas.

LEMMA 8. // {λ(m)} e Λ2, then

(6.1) mX~\m) —> oo as m —• oo

and

(6.2) p" 2 Σ mλ"2(m) ^ Cλ-2(p) (p = 1, 2, - •) .
l

1/ {λ(m)} e iίvj t

(6.3) mX~\m) —> oo as m

(6.4) p" 1 Σ λ-2(m) ^ Cλ"2(p) (p = 1, 2, -)
m = l

PROOF. AS a matter of fact, the right inequality in (2.1) already
implies (6.1)-(6.4). It is not so hard to show this and therefore it is
omitted. •

LEMMA 9. (a) Under condition (2.5) with such a {λ(m)} that
satisfies (4.5), (6.1) and {mX~\m)} is nondecreasing, for every θ > 1 we
have

(6.5) m-2 Σ Σ x [8ik(x) - σik(x)Y = ojλ"2(m)} a.e. ,

ίfeβre exists h{x) e L1 such that
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m βi

X2(m)m-2 Σ Σ [βΛ(x) - σik{x)Y ^ h(x) a.e. (m = 1, 2, •) .

(b) Under condition (2.5) m£ft such a {λ(m)} ίftαί satisfies (4.5),
(6.3) αwd {mλ~2(m)} is nondecreasing, /or ever?/ 0 > 1 we

(6.6) m-1 Σ ί"1 Σ [««*(&) - σtk(x)]* = oz{λ-2(m)} α.e. ,

and there exists h(x) e L1 sucΛ that
m θi

X\m)m~ι Σ i'1 Σ [βΛ(x) - σi4W]2 ^ Λ(x) α.β. (m = 1, 2, •) .

PROOF. Our first aim is to show that the function h(x) defined by

h(χ): - Σλ2(m)m"2 Σ [«•„(») ~
is in L ι. To this end, we consider the term wise integrated series and
use the representation corresponding to (4.8):

S oo Gm m n Γ -t / T. 1 \ ^ 1 Ί 2

h{x)dμ{x) = Σ λ2(m)m-2 Σ Σ Σ -(1 - -0—±) + A n i . αjm=i »=«-••• ί=i fc=i L m \ % I n Λ

^ 2(1, + I.) .
By (2.5) and (4.5),

oo / 9 m m τ ι Γ 1 / λ. 1 \ "12

I.: = Σ X\m)m-> Σ Σ Σ -^^-(l - A ^ l ) α?4
m=l n=ί~1m i=l fc=l L m \ Tί, / J

^ (0 - ^-χ + 1 ) Σ λ 2 ( m ) m - 3 Σ Σ ( i - 1)2<4
m=l i=2 fc = l

i - I)2 Σ λ2(m)m"8 < oo ,
i=2 fc=l

where the last sum can be treated similarly to (5.2). In the same way,
we get that

J6: = Σ λ2(m)m"2 Σ Σ Σ (& - l)2^"2α2

fc
θ 1 fcm = l

2lk(k - I)
i = l fc=2 m:max(ΐ,0-lA;)^m

Now it remains to apply the well-known Kronecker lemma (see, e.g.
[2, p. 72]), while taking into account (6.1) and (6.3), respectively. •

After these prerequisities we can complete the proof of Theorem 3
as follows. By Theorem 2, in case {λ(m)} e Λ2 and θ > 1, the differences
0ik(%) — f(χ) a r e °f t h e order of magnitude ox{X~\i)} a.e. and X(i)\σik(x) —
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f(x)\ is majorized by some g(x)eL2 a.e., provided θ~ι <Ξ, k/i ^ θ. Con-
sequently,

(6.7) ^ Σ J ^ ) - Kx)]2 = ^""C*)} a e

Forming again the first arithmetic mean, this time with respect to i, we
find that

m θi

(6.8) m"1 Σ i"1 _Σχ [^Λ(α) - Z(^)]2

= m-1 Σ ox{λ"2(i)} = ox{\-\m)} a.e. ,

but here we have to assume the fulfilment of (6.4), i.e. that {λ(m)}e

In the case when only {λ(m)}eΛ2, by (6.2) and (6.7),
m θi

m

- oJX'Hm)} a.e.

Now putting (6.5) and (6.9) together, we find (2.8); and putting
(6.6) and (6.8) together, we find (2.9).

It is quite obvious that

m - 1 Σ i-1 Σ [σik(x) - f(x)]2 ^(θ- θ~ι + V)g\x) a . e . ( m = 1, 2, •) .
i=i k=θ~H

7. Proofs of Theorems 5-7. We set

f 1 1 / 2

Λ = Σ <4
Uί.*)eer\βr-i )

and
r1 Σ α^iΛsO if Ar Φ 0 ,

Φr(a0 = « » β ^
IQΛQJ- 1 ' 2 Σ <pa(fi) if

where by | QA^r-i I we denote the number of the lattice points (ί,k)e
N2 contained in Qr\Qr-i (r = 1, 2, •)•

It is obvious that {Φr(x): r = 1, 2, •} is an (ordinary) single ortho-
normal system and by (3.1)

Σ A2λ2(r) < - .
r=l

Thus, we can apply the relevant generalizations of the results of [6]
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and [8] in order to conclude Theorems 5 and 6.
If merely condition (1.2) is satisfied, then

and by applying the result of [4] we obtain Theorem 7.

8. Extension to multiparameter case. Let Nd be the set of d-tuples
Jc = (klt , kd) with positive integers for coordinates, where d is a fixed
positive integer. Let {φk(x): k e Nd} be an orthonormal system on the
measure space (X, ^ 7 /0 We consider the d-multiple orthogonal series

(1.1') kS*akψk{x) = Jϊ'' | > Λ
where {ak: k e Nd} is a d-multiple sequence of real numbers, for which

(1.20 Σdal < - .

By the Riesz-Pischer theorem there exists a function f(x) e L\X, ^ 7 A1)
such that the rectangular partial sums of (1.1') defined by

Σ Σ αrf>*(aθ (neNd)
* i k l

converge to f(x) in L2-metric:

\[sn(x) — f(%)]2dμ(x) -> 0 as min n5

Denote by σn(x) the first arithmetic means of the rectangular partial
sums:

= Σ Σ Π ( l - ^ -

Given two d-multiple sequence {κ(n):neNd} and {X(n):neNd} of
real numbers, the relation

is defined by the requirements that

κ(n)/X(n) —> 0 as min

(including the assumption that X(n) Φ 0 if each nό is large enough) and

\ιc(n)\ ^ C | λ ( n ) | (neNd) .
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Now, the extensions of Theorems 1-4 read as follows.

THEOREM 1'. / /

d

Σ <4 Π M(&i) < °° >

where each {Xj(kj): k5 = 1, 2, •} belongs to Λ2,1 ^ j ^ d,

and ίftere exists a function g(x) e L2(X, ^ 7 /i) sucfe ίfeaί

min {λ/%)} I σn{x) — f{x) \ ̂  g(x) a.e. (n e Nd) .

THEOREM 2'. / /

(2.5') ^Σ^Iλ^majA;,.) < oo ,

where {λ(^): nλ = 1, 2, •} e Λ2, then for every Θ > 1 we have

(2.6') max max \on{x) — f(x)\ = o j λ " 1 ^ ) } a.e. ,

and there exists a function g(x) e L2(X, ^*, μ) such that the left-hand side
of (2.6') multiplied by λ(^) does not exceed g{x) a.e. (nλ = 1, 2, •)•

THEOREM 3'. If condition (2.5') is satisfied with {Xin^eΛz and
{t&iλ'Xtti)} is nondecreasing, then for every θ > 1 we have

n-l θk1 θkx

(2.8') W Γ ' Σ Σ ••• Σ [β*(aθ - /(x)]2 = oJλ-2(Wl)} o.e.
fcl A ^ l f c fc ί 1 f e

// (2.5') is satisfied with {λ(wx)} e ^ / F »^d {n^κr\nύ} is nondecreasing,

(2.9') w ^ Σ f t Γ ^ " 1 ' Σ ••• Σ [sk(x) - f(x)Y = o.ix-^nj) a.e.
k l k θ - i k k β - ^ k

Furthermore, there exists a function h(x) eLι(X, «^7 μ) such that
the left-hand sides of (2.8') and (2.9') both multiplied by λ2(%) do not
exceed h(x) a.e. (n± = 1, 2, •)•

THEOREM 4'. J/ condition (1.2') is satisfied and on{x) converges to
f{x) a.e. as min^,-^ % —> ©o, then for every θ > 1 £/&e left-hand side of
(2.9') is ojl} α.e. αtid does not exceed a function h{x) 6 U(X, J^~, μ) a.e.
( ^ = 1,2, •••).

The proofs can be carried out in a similar manner to those of
Theorems 1-4, only the technical details will become somewhat more
complicated.
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Quite analogously, one can extend Theorems 5-7 from d = 2 to general
d, too. Let Q = {Qr: r = 1, 2, •} be a nondecreasing sequence of finite
sets in iVd, whose union is Nd. If we write

sr(Q; x) =

*r(Q; «) = r-1 Σ β,(Q; a?)

( - j 2 ^ ) Σ O»9>»(!C) (r = l,2, •• ;Qo= 0) ,

and

(3.1') Σ ( Σ al)\%r) < co ,

then Theorems 5-7 in the form as they are stated in Section 3 remain
valid for arbitrary d ^ 1.
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