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APPROXIMATION BY PARTIAL SUMS AND CESARO MEANS
OF MULTIPLE ORTHOGONAL SERIES

FERENC MORICZ

(Received July 19, 1982)

1. Introduction. Let (X, .#, i) be an arbitrary positive measure
space and {@,(x):1,k=1,2 ---} an orthonormal system on this space.
We shall consider the double orthogonal series
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where {a: ¢, k=1, 2, - - -}is a double sequence of real numbers (coefficients),
for which
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By the well-known Riesz-Fischer theorem there exists a function
f(x)e LA X, &, p) such that series (1.1) is the generalized Fourier series
of f(x) with respect to the system {g,(x)}. In particular, denoting by

8mn(®) = 2, kzzlaimk(x) (mn=1,2--)

k2

the rectangular partial sums of (1.1), we have
2
@ = s @)
= {ﬁ‘. i + i‘. f‘,}aik—m as min(m, n) — oo .

i=1 k=n+1 i=m+1 k=1

Here and in the sequel the integrals are taken over the whole space X.
By the above relation, the rectangular partial sums s,,,(x) of (1.1) converge
to f(x) in L*-metric.

It is a fundamental fact that condition (1.2) itself does not ensure
the pointwise convergence of s,.(x) to f(x) almost everywhere on X (in
abbreviation: a.e.).

The extension of the famous Rademacher-Mensov theorem proved by
a number of authors (see, e.g. [1], [7] etc.) reads as follows: If

(1.3) 51 3% asllog(i + Lflog(k + F < o= ,

i=1 k=1
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then the rectangular partial sums s,,(x) converge to f(x) a.e. as
min(m, n) — o. (The logarithms are to the base 2.)

Hence one can deduce, as a simple consequence, the following state-
ment: If 154, 54,2 and 1Sk, 2k, £ -+ are two sequences of

integers, for which i,— oo as p— oo, k,— c as q¢— o, and
12:“1( > a?,,)[log(p + DJlog(g + D < oo,

i=iy 141 k=kg—1+1
where 1, =k, =0, then the rectangular partial sums s, ., (x) of (1.1)
converge to f(x) a.e. as min(p, g¢)—oc. (The empty sums >3z, >, ’,ggkq_ﬁ_l,
with either ¢, , = 4, or k,_, = k, if any, are defined to be equal to 0.)
The special case i, = 2**and k, = 2" (p,q¢ = 1, 2, - - -) is of particular
interest: If

oo ip

(L.4) 3\ 3 ahllog log(i + 3)F{log log(k + 3)}* < e ,

i=1

then the rectangular partial sums s, (x) of (1.1) converge to f(x) a.e. as
min(p, q) — oo.

Denote by o,,(x) the first arithmetic means of the rectangular partial
sums:

n

Tnn(®@) = m7 7 3 S 8,(0)

i=1 k=1

=35 (-2 )1 - 2 Daspu) mon=1,2,-).
' m "
The a.e. equiconvergence of the two double subsequences {s,, ,(2): p, ¢ =
0,1, ---} and {0y (x):p,¢=0,1,---} is no longer true, which is the
case for (ordinary) single orthogonal series (see, e.g. [2, p. 118]). In
spite of this fact, under condition (1.4) the means 0,,(x) do converge to
f(x) a.e. as min(m, n) — o (see [5]).

2. The main results. Approximation by rectangular partial sums
and their means. Let {¢(m,n):m,n =12 ---} and {M(m, n):m, n =
1,2, ---} be two double sequences of real numbers, A(m, n) # 0 when
both m and n are large enough. We write

k(m, n) = o{\(m, n)}
if
k(m, n)/N(m, n) -0 as min(m, n)—
and there exists a constant C such that
|k(m, n)| < C|an(m,n)] (m,n=12 ---).
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In the sequel C, C,, and C, denote positive constants, not necessarily
the same at each occurrence. Furthermore, we set

dyk(m, n) = k(m, n) — k(m — 1, n),
duk(m, n) = k(m, n) — k(m, n — 1),
and
4,6(m, n) = k(m,n) —e(m —1,n) —k(m,n — 1) + k(m — 1, n — 1)
(m,n=1,2, ---; k(m, 0) = k0, n) =0) .

In the introduction we have already mentioned that (1.3) and (1.4)
are sufficient conditions for the a.e. convergence of s,.(x) and o,,(x) to
f(x), respectively. Now the main point is that if we require the fulfil-
ment of a stronger condition instead of (1.3) or (1.4), then we can even
state an approximation rate for the deviations s,,(x) — f(z) and o,,.(x) —
f(x), respectively. The results obtained can be considered as the exten-
sions of the corresponding theorems of [6], [8] and [4] from single
orthogonal series to double ones.

Before stating our main results, let us introduce one more notation.
Let a >1 be a given number and denote by 4, the class of those

nondecreasing sequences {A(m):m = 1,2, ---} of positive numbers, for
which
(2.1) 1<C =a2mem) =6 < a

for all m large enough, say for m = m, where m, may depend on {\(m)}.
For example, M(m) = m[log(m + 1)]?[log log(m + 3)]* is in 4, if v, >0
and « > 2", while 7, and 7, are arbitrary numbers.

THEOREM 1. If

(2.2) S aneNm <
where both {\(1)} and {\,(k)} belong to A,, then
(2.3) Opn(@) — f(@) = 0,{AT"(m) + N (n)} a.e.,

and there exists a function g(x)€ LY X, Z, ) such that
(2.4) min{h(m), M(0)}| Opo(2) — f(2)] < 9(®) a.e. (m,n=1,2 --).

For single orthogonal series a similar theorem with A\,(7) =47, 0 <
v < 1, was proved by Leindler [6].

Assuming that (m, n) tends restrictedly to o, one can obtain essen-
tially the same rate of approximation under a weaker assumption.
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THEOREM 2. If

(2.5) 3 3. atnmax(i, k) < o,

where {M(m)} € A,, then for every 6 > 1 we have

(2.6) max |[0,,(®) — f(@)] = 0,{A7'(m)} a.e.,
n;0~lsn/m<0

and there exists a function gx)e L X, Z, () such that
@7 NMm) max lo,(2)—~ fl@)]|=g@) ae (m=12"--).

It is a trivial observation that (2.6) implies that

3 (5a@) — F(@) = 0o, H(m)} ae.

k=1

-1
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provided 67! < n/m < 6. The following theorem indicates that the mean
value of s, (x) — f(x) is of o, {\n"'(m)}, not because of the cancellation of
positive and negative terms, but because the indices (4, k) for which
|s;p(x) — f(x)| is not small are sparse.

THEOREM 3. If condition (2.5) 1is satisfied with {\N(m)}e 4, and
{mX7Y(m)} is nmondecreasing, then for every 6 > 1 we have

(28) m 3 3 [sul@) — F@F = 0,0 () ae.

If (2.5) is satisfied with {(M(m)}e A5 and {mA~*(m)} is mondecreasing,
then for every 6 > 1

(2:9) w307 3 [sa@) = F@F = 0,0 m)} ae.

Furthermore, there exists a function h(x)e LY(X, Z, p) such that the
left-hand sides of (2.8) and (2.9) both multiplied dby N(m) do mot exceed
h(x) a.e. (m=1,2,--.).

Here and in the sequel by >)/:,-,, we mean that the summation is
extended over all integers k, for which 7' < k/t £ 6.

We note that for single orthogonal series a similar theorem with
Am) = m?, 0 < v < 1/2, was proved by Sunouchi [8].

We make four further remarks.

1° Following Alexits [3], this type of approximation is called strong
approximation. In particular, from (2.8) and (2.9) it follows that

w3y S, 5@ — f@)] = 0.07(m) ae.
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and

m 01
(2.10) m_lé o :0—x¢|3"°(x) — f@)| = 0,{n7(m)} a.e.,
respectively.

For example, the latter relation can be shown by making use of the
Cauchy inequality in the following setting:
m 41
(73 35 i su(@) = F@)D) |

k=6—1

=m(%, 35 )&, 8, b - f@T)

i=1 k=014 i=1k=6—
m A3
S@ =07+ w30 3] @) — F@F

Now if we apply (2.9), then we obtain (2.10).
2° Slightly modifying the proof of Theorem 3, one can conclude
the following result, too, which corresponds to the special case A(m) = 1.

THEOREM 4. If condition (1.2) is satisfied and the Cesdro means
O nn() converge to f(x) a.e. as min(m, n) — oo, then for every 6 > 1 the
left-hand side of (2.9) 18 0.{1} a.e. and does mot exceed a function h(x)e
L(X, Z, 1) ae. (m=1,2,---).

For single orthogonal series the corresponding theorem was proved
by Borgen [4].

38° It is an open question whether statement (2.9) can be strength-
ened into the following stronger one:

m2 3 max [s@) — F@F} = 0.(0m) ace.

i=1 \k:0—1<k/i<0

Our conjecture is that the answer lies in the negative.

4° Tt is also an open question whether one can deduce the following
strong approximation type result starting with Theorem 1: If condition
(2.2) is satisfied with A\, (m) = N\(m) = M(m)e 4, and {mA~*(m)} is nonde-
creasing, then the relation

w33 [s4(a) — f@)F = 0,007 (m) + M7m)} ae.

holds true.

3. Approximation by special partial sums and their means. We fix
an (ordinary) nondecreasing sequence Q = {Q,:r =1, 2, ---} of finite sets
in N*={(4,k):4,k=1,2, ---} such that
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g@=w.

In this section our goal is to study the approximation properties, while
using the sums

M&xﬁ%g%mmﬁm (r=12---).

These sums can be regarded as a single sequence of certain partial sums
of (1.1), which are generated by Q.

The most important special cases are those when the @, are either
rectangles or (quarter) circles in N

(i) The case

Q,={G,keN2i=<m, and k=mn} (r=12--+),

where 1<m, <m, < --- and 1 <0, <n, < --- are two sequences of
integers, both tending to +co, provides a single subsequence {s,_ ., (x):
=12, ---} of the double sequence {s,,(x):m,n =12, ---} of the
rectangular partial sums. In particular, the case m,=n,=7(r=1,2, ---)
gives the so-called square partial sums s,,.(x) of (1.1).
(ii) The case
Q ={@keN:?+ <7} (r=12 )

provides for the spherical partial sums of (1.1).
Denote by 0,(Q; ) the first arithmetic means of the partial sums

5,(Q; x):
0.(Q;x) = 7 ‘:%SP@ )

( 1) E zk¢zk(x) (7 - 1 2 )
=1 (1,k) €Qp\Qpmy

where we set @, =
The results of [6], [8] and [4] pertaining to single orthogonal series
can be extended to this case as follows.

THEOREM 5. If

(3.1) 3(,

r

zk)7\:2("') < oo,

where {\(r)} € 4,, then
0.(@; ) — f(@) = o,{(A7 (1)} a.e.,
and there exists a function g(x)e LN X, Z, 1) such that
M)|0.(Q; @) — f(@)] < g(@) ae. (r=1,2,--).
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THEOHEM 6. If condition (3.1) is satisfied with {M(»)}€ Asx and
{rN"%(r)} is nondecreasing, then

(3.2) — g; [5,(Q; @) — F@) = 0.(M%(»)} ave. ,
and there exists a function h(x)e LNX, Z, pt) such that
N(r)r= pz_; [5,(Q; @) — @) < h(®) ae. (r=12 --).

For the special case of square partial sums condition (8.1) is equi-
valent to condition (2.5), because in this case (7, k) € @,\@,_, is equivalent
to the fact that max(i, k) =7r (r=1,2, ---).

COROLLARY. If condition (2.5) is satisfied with {\N(m)}e Adsz and
{mx"%(m)} is nondecreasing, then

(3.3) m~ 3 s4(@) — f@F = o0 (m)) ace. ,
and there exists a function h(x)e LNX, Z, p) such that
A(m)m ! g; [5.2) — f@) < h@) ae. (m=12, --.).

It is instructive to compare conclusions (3.3) and (2.9) (formally
writing # = 1 in Theorem 3, one gets weaker statements).

THEOREM 7. If condition (1.2) is satisfied and 0,(Q; x) converges to
f(x) a.e., then the left-hand side of (8.2) is o0,{1} a.e. and does not exceed
a function h(x)e LNX, Z, 1) a.e. (r =1,2, ---).

4. Proof of Theorem 1. The statement of Theorem 1 will be an
immediate consequence of the following four lemmas.

LEMMA 1. If {M(m)} € 4,, then

(4.1) SCiEm £ O

(4.2) 3 A(2M27 < ON(29)2

and

3) S S ovE) =01,
In particular, (4.1) implies that
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(4.4) SAHE < oo
while (4.2) implies that
(4.5) iv(m)m-a SONGE)E? (1=1,2, ---).

PROOF. It can be done in routine ways. The left inequality in (2.1)
yields (4.1) and (4.8), while the right inequality in (2.1) yields (4.2).
We do not enter into details. O

In the following lemmas we only assume that {\,(m)} and {\,(n)} are
nondecreasing sequences of positive numbers, possessing one or two
properties of (4.1)-(4.5).

LEMMA 2. Under condition (2.2) with such {M(m)} and {\(n)} that
satisfy (4.1), we have

F@) — 8wu(®) = 0,{M7'(2%) + N (27} a.e.,
and there exists g(x) € L* such that

min {A,(27), M2} f(@) — 8o, 00(®)| < 9(2) a.e. (D, q=0,1,---).

ProOF. Without loss of generality we may suppose that a,, = a,, = 0
(t,k=1,2, --+). By (2.2),

550 ([ S 5 upa [ape < =,

m=0 n=0 1=2M+1 k=2"+1

whence B. Levi’s theorem implies that

om+1 on+1

(4.6) (2™ (2™ S Z alk¢lk(ac)—>0 a.e. as max(m, n) — o .

i=2M+1 k=2%

Furthermore, defining

am+1  gn+tl

g = 3 e[S S awra@) [,

=2M41 f=2"+1

we have g,(x)e L*. It is clear that

gm+1 on+1

S 2 aaPa@) | = o) a.e.

i=oM+41 k=2m+1
(m,n=0,1,-.--).

(4.7) A(27)N(27)

Now considering the representation

2

S (@) — 8p,00(x) = {Z i + i i}a‘ikq)ik(x)

i=1 k=29+1 i=2P+1 k=1
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=E2+3 23S T o)

m=0n=¢  m=p n=0) \j_oMi; p=gnt;

and making use of (4.1), (4.6) and (4.7), we can obtain both assertions
of Lemma 2. O

LEMMA 3. Under condition (2.2) with such {n(m)} and {\(n)} that
satisfy (4.2) and (4.4), we have

839,00(X) — Oyp 20(®) = 0, (A (27) + X727} a.e.,
and there exists g(x) € L* such that
min{)‘u(zp), 7\'2(2‘1)”321’,2‘1(“’) - o'zp,zq(x)] é g(x) a.e. (p, q = 0, 1; °° ‘) .

ProOOF. We may again suppose that a,=4a,, =0 (1,k=1,2, --.).
We begin with the representation
(48) 321’,24(97) - 0'21’,24(x)

2P 29 . . _
:_—;1‘21[7/2’,1(1_ k 2q1>+ kqu:latk¢ik(x)

=: AN(x) + AR(x) .

We treat A%(x) in detail. Using the Cauchy inequality,

2Zp| El i—1 (1 _k ;, 1)“1):@11;(@‘:\2

iz k=2m+1 2P

1

49 [4p@rs|S

n=0

sSve[E S (1 - 2o Dapuw| Sy

i=2 p=gn+1 2P

By (4.4), here the second factor is bounded in g. We set

i=2 p=2n+1 2P

g@: = Sue S S S o1 - 2D |

The termwise integrated series is

IIM8

Sy S 1- o),

i=2 p=2"+1 27

= S ME 8 S (0 - nal,
=3 i @i — D) ) 2M(@7) < o,

the last inequality is due to (2.2) and (4.2). Thus B. Levi’s theorem
implies that g,(x) e L* and
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ven Exe S 21— Ao D@ [ -0

i=2 g=2n+1 2P
a.e. as pP—oo.
Taking (4.9) into account, we obtain that
sup Af)(x) = 0, (\'(2%)} a.e.

and
M(27) sup A)(x) < Cgi(w) ae. (»=0,1,--).
We can similarly deduce that
sup A%)(x) = 0,{A(27)} a.e.
and
(27 sup A% (w) < g4(x) a.e. (¢=0,1,---),
where g, (x) € L. ]

LEMMA 4. Under condition (2.2) with such {\(m)} and {\,(n)} that
satisfy (4.4) and (4.5), we have

(4.10) M, (): =, max = max 1 Oma(®) — O30 20(2))|

= 0,{(\(2%) + A2} a.e.,
and there exists g(x)€ L* such that
min {\,(27), M(2)}M,(2) < g(x) a.e. (p,g=0,1,--:).
PrROOF. Our starting point is that

(4.11) M, (r) < max max |0, () — 0, (%)

2P<m=2Ptl 2g<n<og+l

— O ,,(x) + Oyp, gq(x) + inasf IO' 2'1(m) — Oy, 2‘1(9:)'

. MAX [04,,(0) — (@) | = 1 Mya(2) + My3(e) + My(x)

2¢<n<29+1

Owing to the identity

n

(4-12) Omn = Omype — Ogp,p T+ Opp g = Z Z+1A110ik

1=2P+1 k=29

and to the Cauchy inequality we have that

2pT1 29+1

(MR @] = 27 Z 2. [duoa@)] .

=2P+1 k=29
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In order to show that
M(2PIN(2) M (x) - 0 a.e. as max(p, q) — o
and
M(22N(29) M7 (%) = 94(%)

P= {3 S mamN e, @F] ae a=0,1,--)

m=2 n=2

involving that g,x)e L?, we use the representation

3y _(E=Dk—-1
(4.13) 4,0, (@) = 3, > m — Dm(n = DuePs@ (mnz2)

and apply again B. Levi’s theorem:

Ji@an@) = 35 5 manimnson 3 5 = Dk = g,

i=2 k=2 ('m, - 1)2m2(n - 1)27%2 lk

< i i M(m)ai(n) & Z Z’szz 2

m=2 n=2 min® i=2 k=

= 33 ek S, S, MIN®) oo,
m’n®

=2 =2 m=1i n=k

the last inequality follows from (2.2) and (4.5).
To handle M2(x), we use the identity

(4.14) Ot — Ogpoq = 2 440 m

1=2P+1

and the representation

(4.15) 4,00u(@) = 5, (1 - £ aupu@) mz2,920).

By (4.14) and the Cauchy inequality,

9p+1 2P+l (q—1
[ME@TF <2 3, [4e0nu@) S22 5 (S
m=2P+1 m=2P+1\n=0

JEE 0l (k0w

i=2 p=v1 (M — 1)m\ 27

Due to (4.4), the last factor on the right-hand side is again bounded in
q. We are going to show that

M(27) sup MP(x) -0 a.e. as p— oo
qz0

and
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M(2°) sup Mi(x) = Cgs(x) ae. (p=0,1,---),
q2
where

giw): = 3 3 mamne)

m=2 n=0

ljg‘ Z;;+1 (WZ : ll)fm, (1 - ; 1>a”‘¢ﬂ°(x):r ’

8

To this effect,
(@@ = 5, 3 mamnie)
3 22“‘[ i—1 (1 _ k"1>]2a§,,

i=2 k=27+1 (M — l)m\ 27
m on+1

N(mIN(2Y) X, 3 vm el

0 i1=2 =2%+1

M(mym= 3, S i)l

2 1=2 =2
o

3 atithik) 3 Mmym= < oo

k=

X

A
Ms
Mg

3
[
»
3
Il

I\
Ms

I
Ms ]

o
I
o
o

the last inequality is by (2.2) and (4.5).
In the same way, one can find that
Ao(29) igPM;?(x)—eo a.e. as q—
and

Mo(27) sup My (w) < go(x) a.e. (¢=0,1,---)
20

with a suitable g,(x)e L.

5. Proof of Theorem 2. The proof is based on Lemma 1 and the

following three lemmas, corresponding to Lemmas 2-4.

In this section we again assume that {\(m)} is a nondecreasing se-
quence of positive numbers, possessing only some properties of (4.1)-(4.6).

LEMMA 5. Under condition (2.5) with such a {M(m)} that satisfies

(4.3), we hawve

F(@) — sp,m(x) = 0,{N"H2")} a.e.,
and there exists g(x) € L*? such that
M2 [ f(@) — s oo(®)| < g(®) a.e. (p=0,1,---).
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Proor. We set
Gi@): = SNEF@) ~ sow@] -

After integrating,
Sg?<w>d#<w> = @) S[f@c) ~ suu(@)fdps(a)

Simple calculations give:

L = 3v(@) é > a
=53 a 3 v@) s S an < e

and
L=< C3 S aini(max(i, k) < oo,
1=2 k=1
An application of B. Levi’s theorem

where we used (2.5) and (4.3).
|

provides the statements of Lemma 5.
LEMMA 6. Under condition (2.5) with such a {Mm)} that satisfies

(4.2), we have
Sop 2P(x) - azp,zp(x) = oz{h—l(zp)} a.e. ,

and there exists g(x)€ L* such that

M2P) | 321‘,2?(97) - 02P,2P(x)| =9@x) ae (p=0, 1,--4).

PrOOF. We set
@) = 3 M(2)5,5(@) — o (@)
and use representation (4.8) for p = q. After integrating,
[or@aste) = S3@) [[ 50,00 = 0,06a) [apetar)
=SS SN s A e s a4 1.

i=1 k=1 g

Here

.:él:. ( —k;1>]2a§k

= 3 A%(2°)
p=0
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Ms

A¥(2P)27% E Z (t — 1)ai

b
]
)

Il
Ms

S -1 S M@ < e,
k=1

p:2P2max(i,k)

s
|
©

the last inequality follows from (2.5) and (4.2).
An analogous estimate is valid for I,. |

LEMMA 7. Under condition (2.5) with such a {Mm)} that satisfies
(4.2), for every 6 > 1 we have

M,(x): = max MaxX |0, (&) — 0w »(x)| = 0, {N7(27°)} a.e.
2P<m=<2Pt! f—lm<n<lm

and there exists g(x)e€ L* such that
MM (x) < g(x) a.e. (p=0,1,---).
Proor. It is clear that

My() = max = max [0,.(%) — Ou,(%)]
2P<mgeP+l —12P<pn 2P

+ max max |G..(&) — 0p @) =: MP(x) + MP(x) .
2P<m=<2P+1l 2P<n<gep+l
We treat here, say MP(x). The treatment of M{"(x) is quite similar.
Now we estimate M{®(x) in the same manner as we estimated M, (x)
in the proof of Lemma 4 (cf. (4.11)):

MP(x) £ max max |0,,(x) — 0,(x)
2P<m=2Ptl 2P<ngh2Pp+1

— Oy, n(x) + Oy, 21‘(97” + <m-2'3§ |0'm,21’(x) — O3, 21’(x)|

+  max |0p,.(%) — O ()| =: My (x) + M3 (x) + M7 (x) .
2P<ns62P+1
Representation (4.12) and the Cauchy inequality make it possible to
conclude that

61 mpers] S % 0.01]

=2P+1 n=2P+1
9p+1  gop+1

= (20 - 1)22p Z Z [Aua‘mn(x)]2

m=2P+1 n=2P

Setting

2P+l  gop+1

gi(x): = 2“ 2K2) S, S [4u0m@)],

m=2P+1 n=2P+1

we shall show that g,(x) e L*. By (4.13),
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|oi@)du)

o 2p+1  gop+l g g o 2
—_ 2293 2(Q? (@—1)(1‘;_1) 2
pz= x (2 )m z21;+1 nzﬂ;+1 1% kz—;(m bl l)zm (n 1)2n2a"‘
2p+1 62+l m

SN2 3 3 35 ikl
p=0 m=2P+1 n=2P+1 i=2 k=2
2p+1 gop+1

=(@20-1) 2 A(27)27 Z 5_‘, v'la,

= (20 —1) Z Z a,,,'z,zlc2 P AH(2P)27 .

i=2 k=2 :2P+lzmax (4,0 k)
Denote by p, = p(t, k, ) the integer, for which
27 < max(i, 07'k) < 2rott |
Then, by (4.2),

(5.2) > N(27)2 = 3% x(en)et

p:2P+lzmax(s,0—1k) »=p)

< 270 3 227272 < CAY(Rm)240
P=D

=< 16Co*\*(max(¢, k))(max(i, k)™ .

To sum up the reasonings above, we can see that

Sg«x)d;z(x) < ¢3S e (max(i, k) < oo .

=2 k=2
From (5.1) and the definition of g,(x) it immediately follows that
M (x) = 0,{\71(2°)} a.e.
and
M2)MH(x) < go(x) a.e. (p=0,1,---).
Now we proceed with the estimation of M (x). Applying represen-
tation (4.14) and the Cauchy inequality:
p+1

(5.3) [MP(@)] = 27 22. [410 w,0(2)] .

m=2P+1
Setting

0 op+1
g%o(x): = Z 2°0\'(27) Z [Aloo'm,zl’(x)]2 ’
p=0 m=2P+1
we have by (4.15)

2p+1

[d@ap@ = Soven 5, S5 A= (1-Eo )T,

m=gP+1 iz k=1 (M — 1)m\ or
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2p+1

<Sone) S iiL
p=0 m=2P+1 i=2 k=1 MM*

op+1 9p

< S22 S S il

=0 i=2 k=1

=S Sant % )2

i=2 k=1 p:2P>max(i/2,k)
< C3 S, at\i(max(i, k) < oo .
From here and (5.3) we get that
M () = o,{\7'(2?)} a.e.
and
M2)MPP () < gi(v) ae. (p=0,1,---).
Similar inequalities can be obtained for M{®(x), too. O
6. Proof of Theorem 3. First we present two lemmas.

LEMMA 8. If {\(m)}€ 4,, then

(6.1) ' mxi(m) — o as m— oo

and

6.2) P 3 mAHm) S OV p) (p=1,2, ).
If {\(m)} € As5, then

(6.3) mrx (m) — o as m—

and

(6.4) P SNHm) S OnHp) (P =1,2, 1) -

PROOF. As a matter of fact, the right inequality in (2.1) already
implies (6.1)-(6.4). It is not so hard to show this and therefore it is

omitted. O

LEMMA 9. (a) Under condition (2.5) with such a {n(m)} that
satisfies (4.5), (6.1) and {mr~'(m)} is mondecreasing, for every 6 > 1 we
have

(6.5) m= 3y 3 [54(®) — 0u@)] = 0.0 m)} ae.

and there exists h(x)e€ L' such that
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Nmm= 3 3 [su@) — 0u@] S b ae. (m=1,2, ).

(b) Under condition (2.5) with such a {\(m)} that satisfies (4.5),
(6.3) and {mA~*(m)} is nondecreasing, for every 6 > 1 we have

(6.6) w307 5 [su(@) = 0u@F = 0.07m)} e,

and there exists h(x)e€ L' such that

Nmym~t 3 it S [s(e) — 0u@F S h@) gl (m=1,2 ).

PrROOF. Our first aim is to show that the function h(x) defined by

Wa): = SNm S [5.,(2) — G (@)

is in L'. To this end, we consider the termwise integrated series and
use the representation corresponding to (4.8):

gi[i_l(l— k;l) k;l}aik

1 k=1 m

Sh(x)dp(x) =3 )\.“‘(m)m‘zn;ﬁ‘,lm 1
S22+ 1) .
By (2.5) and (4.5),

I: = i‘, A(mym™ nZ [i —1 (1 _k ; 1 >:ra3,,

n=0"1m i=1 =1 m

S@—-607+ 1)2 A(mym= 3, Z (t — 1)ai

i=2 k=1

=0—-0"+1 Z Z an(t — 1 3, N(m)m™ < oo,

m:max(i,0~k)sm
where the last sum can be treated similarly to (5.2). In the same way,

we get that
0o Gm m n
I: = 2_,17\,2(m)m_2 621 EZ:‘, 1)*n"%a,

zk(k — 1y > AN(mym™® < oo .

m:max(i,0—1k)<m

||Mg

<60 — 0 + 1) 2”,
Now it remains to apply the well-known Kronecker lemma (see, e.g.
[2, p. 72]), while taking into account (6.1) and (6.3), respectively. O

After these prerequisities we can complete the proof of Theorem 3
as follows. By Theorem 2, in case {\(m)}e 4, and 6 > 1, the differences
o4(x) — f(x) are of the order of magnitude o,{\7'(4)} a.e. and \(7)|0 (%) —
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f(x)| is majorized by some g(x)e L* a.e., provided 6! < k/i < 6. Con-
sequently,

(6.7 i 35 [04(@) — f@F = 0.0} ae.

=0—1

Forming again the first arithmetic mean, this time with respect to i, we
find that

m 61
(6.8) m™ 317 3 [ou®) — f@)]

i=1 k=0—14

= m™ 3 0,070} = 0,n7(m)} ace.

i=1

but here we have to assume the fulfilment of (6.4), i.e. that {\n(m)}e
Asz.
In the case when only {M(m)}e 4,, by (6.2) and (6.7),
m 61
(6.9) m™ 3 th[au,(x) — f@)]

i=1 k=0—"
=m ﬁ 0 {INY(4)} = 0K (m)} a.e.
=1
Now putting (6.5) and (6.9) together, we find (2.8); and putting

(6.6) and (6.8) together, we find (2.9).
It is quite obvious that

m 2
m 30 3 [04@) — f@PF S 0 — 0% + Dgie) ae. (m=1,3 ).
i=1 =6—1
7. Proofs of Theorems 5-7. We set
1/2
= 2
4, = {(t.k)EQ,\Qf—la”‘}
and
A7Y 3 auaPal) if A, #0,
D, (a) = (4,k) €@ \Qp—y
[Qr\Qr—ll—1/2 Z ¢ik(x) if Ar = 0 ’
(4,k) €Q\Qp—

where by |Q,\Q,_,| we denote the number of the lattice points (¢, k)€
N? contained in Q\Q,_, (r=1,2, ---).

It is obvious that {@,(x):r =1, 2, ---} is an (ordinary) single ortho-
normal system and by (3.1)

}; ADN(P) < oo .

Thus, we can apply the relevant generalizations of the results of [6]
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and [8] in order to conclude Theorems 5 and 6.
If merely condition (1.2) is satisfied, then

S 4 < oo
r=1
and by applying the result of [4] we obtain Theorem T7.

8. Extension to multiparameter case. Let N be the set of d-tuples
k = (k, -+, k;) with positive integers for coordinates, where d is a fixed
positive integer. Let {@,(x): ke N°} be an orthonormal system on the
measure space (X, Z, ¢). We consider the d-multiple orthogonal series

(1.1 keZN‘d @, P() =k§ . ‘k%flkpw.ka¢k1.--~,kd(x) ’
where {a,: k € N¢} is a d-multiple sequence of real numbers, for which
(1.2" > a; < oo

keNd

By the Riesz-Fischer theorem there exists a function f(x)e LX(X, Z, )
such that the rectangular partial sums of (1.1') defined by

ny nq
8,(2) = 3 -+ 3 mPu(x) (meNY)
k=1 kg=1
converge to f(x) in L’-metric:

S[s,,(x) — f@)Pdp@) —0 as minmn; — oo .

1sjsd

Denote by o,(x) the first arithmetic means of the rectangular partial
sums:

e

0.(%) = <’IdI=l ny ‘)kZ . -k:2:.13k(x)

1=

= i oo %[ﬁ (1 — k"%— 1):]a,,<p,,(x) (ne N%).

k=1 kg=1Lj=1 7

Given two d-multiple sequence {k(n): ne N¢ and {\(n):ne€ N¢ of
real numbers, the relation

£(n) = o{Mn)}
is defined by the requirements that

k(n)/\M(n) —0 as minn; — o
1sisd

(including the assumption that A(n) # 0 if each n; is large enough) and
le(n)| < CIMn)| (neN%).
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Now, the extensions of Theorems 1-4 read as follows.
THEOREM 1’. If

d
>, ai I N5(k;) < oo
keNd = j=1
where each {\j(k;):k; =1,2, -} belongs to 4,,1 < j < d, then
o,(x) — flx) = oz{max x;‘(nj)} a.e.,
1<j=d

and there exists a function g(x)e L¥(X, F, 1) such that
{g}gd{hj(nf)}lan(x) — f@)| = g(®) a.e. (neN%.

THEOREM 2'. If

(2.5") S aiV(max kj> < oo,
kenNd 1£45sd
where {(Mn):n, = 1,2, ---}ed,, then for every 6 > 1 we have
(2.6") max --- max |o,(x) — f(@)] =o' (n)} a.e.,
ng:0~1lgngIn; <0 ng:0"1sngin <6

and there exists a function g(x)e LXX, FZ, pt) such that the left-hand side
of (2.6") multiplied by A(m,) does not exceed g(x) a.e. (n, =1,2, ---).
THEOREM 3'. If condition (2.5') s satisfied with {Mn)}€ 4, and
{n A" (n,)} s nondecreasing, then for every 8 > 1 we have
ny Ok
(2.8") nt D 2 e D [s(®) — f@)) = 0. A (n)} ae.
k=1 ko=0"1k, kg=6"1k;

If (2.5") is satisfied with {Mn)} e Az and {nN"*(n,)} is nondecreasing,
then

Ok,

ny Okq Oky
2.9) w3 ke 3 e [si(@) — f@] = 0.{A7*(n)}  ae.
k=1 ko=0—"1k; kg=0"1ky

Furthermore, there exists a fumction h(x)e L'(X, F, p) such that
the left-hand sides of (2.8") and (2.9") both multiplied by N(n,) do not
exceed h(x) a.e. (n,=1,2, --.).

THEOREM 4'. If condition (1.2") is satisfied and o,(x) converges to
f(x) a.e. as min, ;o4 n; — oo, then for every 6 > 1 the left-hand side of
2.9") is o,{1} a.e. and does not exceed a function h(x)ec L'(X, Z, 1) a.e.
(nl = 1, 2; )

The proofs can be carried out in a similar manner to those of
Theorems 1-4, only the technical details will become somewhat more
complicated.
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Quite analogously, one can extend Theorems 5-7 from d = 2 to general
d, too. Let @ ={Q,:r=1,2, ---} be a nondecreasing sequence of finite
sets in N¢ whose union is N¢ If we write

5,(Q; ) =k§ @, Pu()

7,(Q; %) = z 5,(Q; @)

=§<1__p-—1) S e r=1,2-3Q=0),

r k€Qp\Qp—1

and

(3.1 S aphn <,

r=1 \k€Q,\Qp—1

then Theorems 5-7 in the form as they are stated in Section 3 remain
valid for arbitrary d = 1.
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