THE MULTIPLICITY OF HELICES FOR A REGULARLY INCREASING SEQUENCE OF σ -FIELDS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

TAKASHI SHIMANO

(Received March 29, 1983)

- 1. Introduction. The notion of helices was introduced in the theory of measure-preserving transformations as an application of the martingale theory by J. de Sam Lazaro and P. A. Meyer [2]. The multiplicity of helices has been discussed by the author in the same manner as that of square-integrable martingales [4], [5]. In this paper, we determine the multiplicity of helices under some condition of the regularity on an increasing sequence of sub- σ -fields.
- 2. Preliminaries. Throughout this paper (Ω, F, P) denotes a complete separable probability space and T an automorphism of Ω , that is, a bimeasurable measure-preserving bijection. Let F_0 be a complete proper sub- σ -field of F such that

(a)
$$F_n \subset F_{n+1}$$
 for all $n \in \mathbb{Z}$,

(b)
$$\bigvee_{n} F_n = F$$

where $Z = \{0, \pm 1, \pm 2, \cdots\}$ and F_n denotes the sub- σ -field $T^n F_0$. A pair (T, F_0) is called a system.

Let H denote the class of all squarely integrable real random variables with expectations 0, which is an infinite dimensional Hilbert space under the ordinary inner product, and H_n the subspace of H consisting of all elements measurable with respect to F_n for each $n \in \mathbb{Z}$.

DEFINITION 1. A sequence $X = (x_n)_{n \in \mathbb{Z}}$ in H is called a helix of (T, F_0) if the following conditions are satisfied:

$$(a) \quad x_0 = 0 ,$$

(b)
$$x_n - x_{n-1} \in H_n \cap H_{n-1}^{\perp}$$
 for all $n \in \mathbb{Z}$

where \perp indicates the orthogonal complementation in H,

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540098), The Ministry of Education.

(c)
$$(x_n-x_{n-1})\circ T^{-1}=x_{n+1}-x_n$$
 for all $n\in Z$.

By this definition, each helix $X = (x_n)$ can be written as

$$x_{\scriptscriptstyle 0}=0$$
 , $x_{\scriptscriptstyle n}=\sum\limits_{k=1}^{n}x\!\circ\! T^{-(k-1)}$ $(n>0)$, $x_{\scriptscriptstyle n}=-x_{\scriptscriptstyle -n}\!\circ\! T^{-n}$ $(n<0)$

for some $x \in H_1 \cap H_0^{\perp}$.

Note that each helix has the property of a martingale, namely $(x_{n+m}-x_m, F_{n+m})_{n\geq 0}$ is a square-integrable martingale. Thus we can apply the method of martingales to the study of helices.

Given two helices $X = (x_n)$ and $X' = (x'_n)$ of (T, F_0) , we define the random variable $\langle X, X' \rangle$ by

$$\langle X, X' \rangle = E[x_1 x_1' | F_0].$$

If X = X', then we write simply $\langle X \rangle$ instead of $\langle X, X \rangle$. Consider the process $(\langle X \rangle_n)_{n \geq 0}$ defined by

$$\langle X
angle_{_0}=0$$
 , $\ \langle X
angle_{_n}=\sum\limits_{_{k=1}}^{^n}\langle X
angle\circ T^{_{-(k-1)}}$ $\ (n>0)$,

which is nothing but the predictable increasing process of the Doob-Meyer decomposition for the martingale $(x_n, F_n)_{n\geq 0}$. We see easily that

$$\langle X, X' \rangle = \langle X', X \rangle$$

and for another helix Y,

$$\langle X + Y, X' \rangle = \langle X, X' \rangle + \langle Y, X' \rangle$$
.

DEFINITION 2. Two helices X and X' are said to be strictly orthogonal if $\langle X, X' \rangle = 0$.

DEFINITION 3. For two helices X and X', we denote by $\mu_{\langle X, X' \rangle}$ the signed measure on F_0 with density $\langle X, X' \rangle$, that is, for each $B \in F_0$

$$\mu_{\langle X,X'
angle}\!(B)=\int_{B}\langle X,X'
angle dP=\int_{B}x_{\scriptscriptstyle 1}\!x_{\scriptscriptstyle 1}'\!dP\;.$$

It is called the helix-measure of X and X', and $\mu_{\langle x \rangle}$ is called the helix-measure of X.

DEFINITION 4. For a helix $X = (x_n)$ and a squarely integrable random variable ν on $(\Omega, F_0, \mu_{\langle X \rangle})$, the helix $Y = (y_n)$ given by

$$y_{\scriptscriptstyle 0}=0$$
 , $y_{\scriptscriptstyle n}=\sum\limits_{k=1}^{n}{(
u\!\circ\! T^{-(k-1)})}(x_k-x_{k-1})$ $(n>0)$, $y_{\scriptscriptstyle n}=-y_{-n}\!\circ\! T^{-n}$ $(n<0)$,

is called the helix-transform of X by ν and denoted by $\nu * X$.

This notion is analogous to the so-called martingale-transform. We have obviously $\langle \nu*X,X'\rangle=\nu\langle X,X'\rangle$ and $\langle \nu*X\rangle=\nu^2\langle X\rangle$.

The following result is of fundamental importance in our discussion.

PROPOSITION 1. Let (T, F_0) be a system. Then there exists a sequence of at most countable strictly orthogonal helices $\mathscr{X} = (X^{(p)})$ which satisfy the following conditions:

(a) Every helix X has the representation

$$X=\sum\limits_{p}
u^{(p)}*X^{(p)}$$
 , $\qquad
u^{(p)}\in L^2(\varOmega,\,F_{\scriptscriptstyle 0},\,\mu_{\langle X^{(p)}
angle})$.

(b) $\mu_{\langle X^{(p+1)} \rangle}$ is absolutely continuous with respect to $\mu_{\langle Y^{(p)} \rangle}$ for each p.

Furthermore, if $\mathscr{Y} = (Y^{(p)})$ is another such sequence, then $\mu_{\langle Y^{(p)} \rangle}$ is equivalent to $\mu_{\langle X^{(p)} \rangle}$ for all p.

Such a sequence of helices is called a strict base of helices of the system. Proposition 1 indicates that the length of a strict base is uniquely determined by the system.

DEFINITION 5. The length of a strict base is called the multiplicity of helices of this system, which is denoted by $M(T, F_0)$.

As for a calculation of the multiplicity, the following two results are known (cf. [4], [5]):

Let (T, F_0) be a system such that

$$F_{\scriptscriptstyle 0} = igvee_{\scriptscriptstyle n<0} T^{\scriptscriptstyle n} A$$

for some sub- σ -field A of F. Then, it is possible to estimate the multiplicity of helices of this system.

PROPOSITION 2. Let (T, F_0) be the system mentioned above. Then

$$M(T, F_0) \leq \dim L_0^2(A)$$

where $L_0^2(A)$ is the subspace of H consisting of all elements measurable with respect to A.

The equality in the above proposition holds for a special class of systems of the following type (cf. [4], [5]):

DEFINITION 6. Let T be an automorphism of Ω and A a sub- σ -field of F. The pair (T, A) is called a Bernoulli system or simply a B-system if

(a) $(T^n A)_{n \in \mathbb{Z}}$ is an independent sequence of sub- σ -fields,

(b) $\bigvee_{n\in\mathbb{Z}} T^n A = F$.

If we set $F_0 = \bigvee_{n<0} T^n A$, then (T, F_0) is clearly a system, which is called a Kolmogorov system.

PROPOSITION 3. Let (T, A) be a B-system and (T, F_0) the Kolmogorov system derived from (T, A). Then all helix-measures of a strict base are equivalent to P on F_0 and

$$M(T, F_0) = \dim L_0^2(A).$$

3. Predictable independence. In this section, we define some independence of a sequence of helices and investigate the procedure of Schmidt's orthogonalization for helices.

DEFINITION 7. A sequence $(X^{(p)})$ of helices is said to be predictably independent if $\langle \sum_p \nu^{(p)} * X^{(p)} \rangle$ is not equal to 0 for any $\nu^{(p)} \in L^2(\Omega, F_0, \mu_{\langle X^{(p)} \rangle})$ unless all $\nu^{(p)}$ are equal to 0.

Note that all subsequences of such a sequence of helices are also predictably independent. Further, we remark the following on this independence of helices. If the sequence $(X^{(p)})$ is strictly orthogonal and each $\langle X^{(p)} \rangle$ is positive a.s., then $(X^{(p)})$ is predictably independent. Indeed, if $(X^{(p)})$ is strictly orthogonal, then

$$egin{aligned} \langle \sum_{p}
u^{(p)} * X^{(p)}
angle &= \sum_{p}
u^{(p)^2} \langle X^{(p)}
angle + \sum_{p \neq q}
u^{(p)}
u^{(q)} \langle X^{(p)}, X^{(q)}
angle \\ &= \sum_{p}
u^{(p)^2} \langle X^{(p)}
angle \;. \end{aligned}$$

Hence, if $\langle \sum_p \nu^{(p)} * X^{(p)} \rangle = 0$, then all $\nu^{(p)}$ are equal to 0 since all $\langle X^{(p)} \rangle$ are positive a.s.

Suppose that a sequence $(X^{(p)})_{p=1,2,\dots,\kappa}$ of helices is predictably independent and each $\langle X^{(p)} \rangle$ is positive a.s. In the case that $\kappa = \infty$, this means simply that the sequence is countably infinite. From such a sequence, we can obtain the strictly orthogonal sequence $(Y^{(p)})_{p=1,2,\dots,\kappa}$ of helices by the following procedure.

Schmidt's orthogonalization. First put $y^{(1)}=x_1^{(1)}/\langle X^{(1)}\rangle^{1/2}$ and construct a helix $Y^{(1)}=(y_n^{(1)})$ such that $y_1^{(1)}=y^{(1)}$, that is,

$$y_{\scriptscriptstyle 1}^{\scriptscriptstyle (1)}=0$$
 , $y_{\scriptscriptstyle n}^{\scriptscriptstyle (1)}=\sum\limits_{k=1}^{n}y^{\scriptscriptstyle (1)}\!\circ\! T^{-\scriptscriptstyle (k-1)}$ $(n>0)$, $y_{\scriptscriptstyle n}^{\scriptscriptstyle (1)}=-y_{\scriptscriptstyle -n}\!\circ\! T^{-n}$ $(n<0)$,

so that $\langle Y^{\mbox{\tiny (1)}}
angle = E[y^{\mbox{\tiny (1)}^2}|F_{\mbox{\tiny 0}}] = E[x_{\mbox{\tiny 1}}^{\mbox{\tiny (1)}^2}|F_{\mbox{\tiny 0}}]/\langle X^{\mbox{\tiny (1)}}
angle = 1.$ Then put $z^{\mbox{\tiny (2)}} = x_{\mbox{\tiny (2)}}^{\mbox{\tiny (2)}} - \langle X^{\mbox{\tiny (2)}}, Y^{\mbox{\tiny (1)}}
angle y^{\mbox{\tiny (1)}}$

and construct a helix $Z^{\scriptscriptstyle(2)}=(z_{\scriptscriptstyle n}^{\scriptscriptstyle(2)})$ such that $z_{\scriptscriptstyle 1}^{\scriptscriptstyle(2)}=z^{\scriptscriptstyle(2)}$ in the same way as

above for $Y^{(1)}$, that is,

$$Z^{(2)} = 1*X^{(2)} - \langle X^{(2)}, Y^{(1)} \rangle *Y^{(1)}$$
.

Then $\langle Z^{(2)},Y^{(1)}\rangle=\langle X^{(2)},Y^{(1)}\rangle-\langle X^{(2)},Y^{(1)}\rangle\cdot\langle Y^{(1)}\rangle=0$ and $\langle Z^{(2)}\rangle>0$ a.s., since $X^{(1)}$ and $X^{(2)}$ are predictably independent. Put $y^{(2)}=z^{(2)}/\langle Z^{(2)}\rangle^{1/2}$ and construct a helix $Y^{(2)}=(y^{(2)}_\pi)$ such that $y^{(2)}_1=y^{(2)}$. When $Y^{(1)},Y^{(2)},\cdots,Y^{(p-1)}$ are obtained in this way, so that $\langle Y^{(q)},Y^{(r)}\rangle=\delta_{qr}$ for $1\leq q,r\leq p-1$, put

$$oldsymbol{z}^{\scriptscriptstyle(p)}=x_{\scriptscriptstyle 1}^{\scriptscriptstyle(p)}-\sum\limits_{\scriptscriptstyle q=1}^{\scriptscriptstyle p-1}\langle X^{\scriptscriptstyle(p)},Y^{\scriptscriptstyle(q)}
angle y^{\scriptscriptstyle(q)}$$

and construct a helix $Z^{(p)}=(z_n^{(p)})$ such that $z_1^{(p)}=z^{(p)}$, that is,

$$Z^{\scriptscriptstyle (p)} = 1{st} X^{\scriptscriptstyle (p)} - \sum\limits_{\scriptscriptstyle q=1}^{p-1} {\left\langle {{X^{\scriptscriptstyle (p)}},\,{Y^{\scriptscriptstyle (q)}}}
ight
angle st {Y^{\scriptscriptstyle (q)}}}$$
 .

Then $\langle Z^{(p)}, Y^{(q)} \rangle = 0$ for $1 \leq q \leq p-1$ and $\langle Z^{(p)} \rangle > 0$ a.s., since $X^{(1)}$, $X^{(2)}$, \cdots , $X^{(p)}$ are predictably independent. Put $y^{(p)} = z^{(p)}/\langle Z^{(p)} \rangle^{1/2}$ and construct a helix $Y^{(p)} = (y^{(p)}_n)$ such that $y^{(p)}_1 = y^{(p)}$ in the same way as above. Hence $Y^{(p)}$ added to $Y^{(1)}$, $Y^{(2)}$, \cdots , $Y^{(p-1)}$ retains the property that $\langle Y^{(q)}, Y^{(r)} \rangle = \delta_{qr}$ for $1 \leq q$, $r \leq p$, and this procedure can be continued to $p = \kappa$. Thus we obtain a strictly orthogonal sequence $(Y^{(p)})_{p=1,2,\dots,\kappa}$ of helices such that $\mu_{\langle Y^{(p)} \rangle} = P$ on F_0 for all p.

By this procedure, we can show the following for the multiplicity of helices of a system:

THEOREM 1. Let (T, F_0) be a system such that

- (a) $F_0 = \bigvee_{n < 0} T^n A$ for some sub- σ -field A and
- (b) dim $L_0^2(A) = \kappa$.

If $(X^{(p)})_{p=1,2,...,p}$ is a predictably independent sequence of helices of (T, F_0) and each $\langle X^{(p)} \rangle$ is positive a.s., then all helix-measures of each strict base of helices of (T, F_0) are equivalent to P on F_0 and

$$M(T, F_0) = \kappa$$
.

PROOF. By the procedure of Schmidt's orthogonalization for $(X^{(p)})$, we can obtain a strictly orthogonal sequence $(Y^{(p)})_{p=1,2,\dots,\kappa}$ of helices such that $\mu_{\langle Y^{(p)} \rangle} = P$ on F_0 for all p. Then we have that $\kappa \leq M(T, F_0)$. By Proposition 2 and the condition (b) in the statement, we have that $M(T, F_0) \leq \kappa$ and hence $M(T, F_0) = \kappa$. Thus $(Y^{(p)})$ is a strict base of helices of (T, F_0) such that $\mu_{\langle Y^{(p)} \rangle} = P$ on F_0 for all p. q.e.d.

4. Helices for regularly increasing sub- σ -fields. In this section, we deal with a system (T, F_0) of the following type:

 $F_0 = \bigvee_{n<0} T^n A$ where a sub- σ -field A is generated by a partition $\alpha = \{A_0, A_1, \dots, A_n\}$ of Ω .

In addition, we impose the following condition of regularity on this system:

DEFINITION 8. The system (T, F_0) of the above type is said to be regular if

$$0 < P(A_p|B) < 1$$
 for all $B \in F_0$ with $P(B) > 0$ and all $A_p \in \alpha$

where P(A|B) denotes the conditional probability of A under B.

It is obvious that (T, F_0) is regular if (T, A) is a *B*-system. This definition means that all parts of Ω are homogeneously mixed by the transformation T.

THEOREM 2. If a system (T, F_0) is regular, then all helix-measures of each strict base of helices of (T, F_0) are equivalent to P on F_0 and

$$M(T, F_0) = \kappa$$
.

PROOF. Let $\alpha=\{A_0,\,A_1,\,\cdots,\,A_\kappa\}$ be a partition which generates A. Obviously, dim $L^2_0(A)=\kappa$. For $1\leq p\leq \kappa$, put

$$x^{(p)} = 1_{A_p} - E[1_{A_p}|F_0]$$

where 1_A denotes an indicator of the event A. Then $x^{(p)} \in H_1 \cap H_0^{\perp}$. Corresponding to each $x^{(p)}$, construct a helix $X^{(p)} = (x_n^{(p)})$ such that $x_1^{(p)} = x^{(p)}$. To prove the statement under the condition of regularity, it is sufficient to show that the sequence $(X^{(p)})_{p=1,2,\dots,\kappa}$ is predictably independent and each $\langle X^{(p)} \rangle$ is positive a.s. by Theorem 1 in the preceding section.

First, we shall show that $\langle X^{(p)} \rangle > 0$ a.s. for $1 \leq p \leq \kappa$. By the regularity of (T, F_0) , it is obvious that

$$0 < E[1_{A_p}|F_0] < 1$$

for $0 \le p \le \kappa$. Then

$$\langle X^{(p)} \rangle = E[x^{(p)^2}|F_0] = E[1_{A_n}|F_0](1 - E[1_{A_n}|F_0])$$

is positive a.s. for $1 \le p \le \kappa$. Next, to prove that $(X^{(p)})_{p=1,2,...,\kappa}$ is predictably independent, we put

$$B = \left\{ \left\langle \sum_{p=1}^{\kappa}
u^{(p)} * X^{(p)}
ight
angle = 0
ight\}$$

where $\nu^{(p)} \in L^2(\Omega, F_0, \mu_{\langle X^{(p)} \rangle})$ for $1 \leq p \leq \kappa$ and

$$\sum_{p=1}^{\kappa} \int_{B}
u^{(p)^2} d\mu_{\langle X^{(p)} \rangle} < \infty$$
 .

Then we have that

$$egin{align} Eigg[ig(1_{\scriptscriptstyle B}\cdot\sum_{\scriptscriptstyle p=1}^{\scriptscriptstyle \kappa}
u^{\scriptscriptstyle (p)}x^{\scriptscriptstyle (p)}ig)^2ig|F_{\scriptscriptstyle 0}igg] &= 1_{\scriptscriptstyle B}\cdot Eigg[ig(\sum_{\scriptscriptstyle p=1}^{\scriptscriptstyle \kappa}
u^{\scriptscriptstyle (p)}x^{\scriptscriptstyle (p)}ig)^2ig|F_{\scriptscriptstyle 0}igg] \ &= 1_{\scriptscriptstyle B}\cdotig\langle\sum_{\scriptscriptstyle p=1}^{\scriptscriptstyle \kappa}
u^{\scriptscriptstyle (p)}*X^{\scriptscriptstyle (p)}ig
angle \ &= 0 \quad ext{a.s.} \end{split}$$

This implies that

$$1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} x^{(p)} = 0$$
 a.s.

and hence

$$1_{\scriptscriptstyle{B}} \cdot \sum_{\scriptscriptstyle{p=1}}^{\scriptscriptstyle{\kappa}} \nu^{\scriptscriptstyle{(p)}} 1_{\scriptscriptstyle{A_p}} = 1_{\scriptscriptstyle{B}} \cdot \sum_{\scriptscriptstyle{p=1}}^{\scriptscriptstyle{\kappa}} \nu^{\scriptscriptstyle{(p)}} E[1_{\scriptscriptstyle{A_p}} | F_{\scriptscriptstyle{0}}] \quad \text{a.s.}$$

By the measurability of the right hand side of the above formula, the left hand side is also measurable with respect to F_0 , which implies that

$$E\Big[\Big(1_{\scriptscriptstyle B}\cdot\sum_{\scriptscriptstyle p=1}^{\scriptscriptstyle \kappa}
u^{\scriptscriptstyle (p)}1_{\scriptscriptstyle A_{\scriptscriptstyle p}}\Big)^{\scriptscriptstyle 2}\Big|\,F_{\scriptscriptstyle 0}\Big]=\Big(1_{\scriptscriptstyle B}\cdot\sum_{\scriptscriptstyle p=1}^{\scriptscriptstyle \kappa}
u^{\scriptscriptstyle (p)}1_{\scriptscriptstyle A_{\scriptscriptstyle p}}\Big)^{\scriptscriptstyle 2}\;.$$

Then we have

$$1_{\scriptscriptstyle{B}} \cdot \sum_{\scriptscriptstyle{p=1}}^{\scriptscriptstyle{\kappa}} \nu^{\scriptscriptstyle{(p)}{}^{2}} E[1_{\scriptscriptstyle{A_p}}|F_{\scriptscriptstyle{0}}] = 1_{\scriptscriptstyle{B}} \cdot \sum_{\scriptscriptstyle{p=1}}^{\scriptscriptstyle{\kappa}} \nu^{\scriptscriptstyle{(p)}{}^{2}} 1_{\scriptscriptstyle{A_p}}$$

since $A_p \cap A_q = \emptyset$ for $p \neq q$. The right hand side of this formula is equal to 0 on A_0 . Then we have

$$1_{A_0}\!\!\left(1_{{\scriptscriptstyle{B}}}\!\cdot\!\sum\limits_{n=1}^{{\scriptscriptstyle{K}}} {{
u}^{(p)}}^2 E[1_{A_p}|F_0]
ight) = 0$$
 a.s.

and hence by conditioning both sides relative to F_0 , we obtain

$$E[1_{A_0}|F_{\scriptscriptstyle 0}]\Big(1_{\scriptscriptstyle B}\cdot\sum_{\scriptscriptstyle p=1}^{\scriptscriptstyle \kappa}
u^{(p)^2}E[1_{A_{\scriptscriptstyle p}}|F_{\scriptscriptstyle 0}]\Big)=0 \quad {
m a.s.}$$

Since $E[1_{A_0}|F_0]>0$ by the regularity of (T,F_0) , we have

$$1_{{\scriptscriptstyle{B}}} \cdot \sum\limits_{p=1}^{{\scriptscriptstyle{\kappa}}} {{{\mathcal{V}}^{(p)}}^{{\scriptscriptstyle{2}}}} E[1_{{\scriptscriptstyle{A}}_{p}} | F_{{\scriptscriptstyle{0}}}] = 0$$
 a.s.

and since $E[1_{4_p}|F_0]>0$ for $1\leq p\leq \kappa$, we have the consequence that $\nu^{(p)}$ is equal to 0 on B for $1\leq p\leq \kappa$.

REFERENCES

 [1] N. H. A. DAVIS AND P. VARAIYA, The multiplicity of an increasing family of σ-fields, Ann. Probab. 2 (1974), 958-963.

- [2] J. DE SAM LAZARO AND P. A. MEYER, Méthodes de martingales et théorie de flots, Z. Wahrsch. Verw. Gebiete 18 (1971) 116-140.
- [3] H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209-245.
- [4] T. SHIMANO, An invariant of systems in ergodic theory, Tôhoku Math. J. 30 (1978), 337-350.
- [5] T. SHIMANO, Helix-representation in ergodic theory, Math. Rep. Toyama Univ. 6 (1982), 37-84.

DEPARTMENT OF MATHEMATICS
COLLEGE OF HUMANITIES AND SOCIAL SCIENCES
IWATE UNIVERSITY
MORIOKA 020
JAPAN