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Introduction. Let G be a geometrically finite Kleinian group. Let

S(z) = (az + b)/(cz + d) , ad - be = 1

be any element of G and let id be the identity transformation. The
Poincare dimension P(G) and the Hausdorff dimension d(Λ(G)) of the limit
set Λ(G) for G are defined respectively as follows:

P(G) = infίt Σ k Γ < +«4
I SeG-{id} J

and

d(Λ(G)) = inf{μ/21 Mμ/2(A(G)) = 0} ,

where Mμ/2(Λ(G)) denotes the μ/2-dimensional Hausdorff measure of A{G).
Suppose that G is a Schottky group. The former author proved the

following relation ([1]):
( * ) d(Λ(G)) = P(G)/2 .

If G is a Fuchsian group of the first kind, the above (*) is trivial. It
was proved by Patterson ([6]) that (*) holds for a Fuchsian group of
the second kind without parabolic elements and for one with parabolic
elements in the case d(Λ(G))^2β. He then posed the problem whether
or not (*) holds for 1/2 < d(Λ(G)) < 2/3. Sullivan ([7]) solved this problem
affirmatively by using the method of the space group and recently
announced further in [8] that (*) is true for a geometrically finite Kleinian
group and that the proof will appear in [9].

In the previous paper [2] we proved that (*) holds for a finitely
generated Kleinian group with a fundamental domain bounded by a finite
number of circles which are mutually disjoint or tangent externally to
each other and posed the problem whether or not (*) holds for more
general geometrically finite free groups. The purpose of this paper is
to show that (*) is valid for such groups. Because our method is very
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different from Sullivan's, it is worthwhile to give another proof to (*)
for a geometrically finite free Kleinian group, in spite of Sullivan's
proof being valid for general geometrically finite Kleinian groups.

In §1, we shall state preliminaries and notations about a geometrically
finite free Kleinian group G and give the relation between the Hausdorff
measure and the measure defined by the special covering formed by the
isometric circles for the limit set of G. We shall prove the main theorem
giving the relation between the computing function and the Hausdorff
measure of the limit set of G in §2. Finally, in §3 we shall give the
relation (*) between the Poincare dimension and the Hausdorff dimension
of the limit set for G by using the main theorem.

We thank to Professor T. Kuroda for his valuable and suitable advice
given in the preparation of this paper.

1. Preliminaries and notations. 1. Let G be a geometrically finite,
free Kleinian group with basis {Tlf •••, Tp} (p^2). We denote by ΩiG)
and A(G) the region of discontinuity and the limit set of G, respectively.
We put & = {Tlf Tτ\ •••, Tp, T~1}. Then, for any SeG, there exist
TUl, , TUn e <& such that S can be represented uniquely in the normal
form S = T,no . oTVι, where THΦT-χ\γ (i = 1, , n - 1). So we shall
call the number n the grade of S and use the notation S(n) to clarify
the grade n of S.

Throughout this paper we assume °° 6 Ω(G). So it can be easily
seen that any element of G which fixes oo is the identity.

Consider two arbitrary elements S,TeG with SΦT~\ Denote by
Is, Iτ and ISoT the isometric circles of S, T and SoT, respectively. Let
Rs, Rτ and RSoT be the radii of ISf Iτ and ISoT, respectively. As to these
values, the following equalities hold (see [5]):

(1.1) Bs.τ = RsRτl\ Γ(oo) - S-^oo)!

(1.2) I (So m o o ) - r-^oo)! = BS.TBT/BS

By using (1.1) and (1.2), we have the following proposition ([2]).

PROPOSITION 1. Let {S(n)} be a sequence of G satisfying S(n) =
τ»n°'" °τ»i (τ*i> ' ' 'f T»J e & a n d s(n + 1) = Tun+1°S(n) for all neN, the
set of all natural numbers. Then there exist two positive constants
k0 = kQ(G) < 1 and kλ = k^G) depending only on G such that

(1.8) fto^Λ|

for all neN.
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2. It is well known that every limit point of a geometrically finite
group is either a point of approximation or a cusped parabolic fixed point
([4]). Let us denote by Aa(G) the set of all points of approximation of
G. Note that the difference between Aa(G) and A(G) is only a countable
set. Hence we can see that the Hausdorff measure of A{G) is equal to
that of Λa(G). As to such a subset Λa(G) of Λ(G), the following proposi-
tion is important ([2]).

PROPOSITION 2. For any z e Aa(G), there exist {S(n)} c G and KG > 0
depending only on G such that

\z - S-\n){oo)\ < KGRl(n) .

For any sufficiently small δ > 0, we denote by 1(3) a, family of closed
discs {Dλ} of radii lx <; δ such that every point of Λ(G) is contained in
some Int(Dχ). We shall call the quantity

J
the μ/2-dimensional Hausdorff measure of A(G)f where μe(0, 4], From
now on we assume μe (0, 4]. For any S(n)eG — {id}, we denote by

BS{n) = {z\ \z - S-\n)(oo)\ £ KGRl{n)} ,

where KG is a positive constant depending only on G in Proposition 2.
Putting

F(nOf δ/kQ) = {BS{n) I S(n) eG,n^n0 and ^ J 2 | ( n ) ^ δ/k0}

for any δ > 0 and any μ, we obtain the following ([2]).

PROPOSITION 3. For any μ, there exists a natural number No

depending only on G such that

(1.4) HmΓ inf { Σ (2i22

5(r ι)WΊ
δ-*0 L{F(no,δlkQ)}{BS{n)eF(no,δlko) )J

(2hY/2Y\
) ) J

= N0(KGk0)-^Mμ/2(A(G)) .

2. Computing functions and Hausdorff measure of A(G). 1. Since
oo e Ω(G), the set {S~\oo)\SeG - {id}} is bounded. Hence, for any Te &
and any S(n) = ΓoS(^ - l ) e G (neN), there exists a positive constant kτ

depending only on T such that

S(n)(oo)e{z\ \z - Γ(oo)| < kτRτ} .
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Here we put kG = maxΓ6̂ {AjΓ}. It can be easily seen that kG is
positive and depends only on G. Let us denote by D'τ = {z\ \z — Γ(°°)| <
kGRτ}. Then, for any Te$? and any S(n) = T<>S(n ~- l)e<? (neN), we
have D'τ aS(w)(oo) = (ToS(τt - l))(°o).

First of all we shall prove the following.

LEMMA 1. Assume that U(m + 1), V(n + ϊ)eG are of the form
U(m + 1) = Γ*oZ7(m), 7(w + 1) = To V(n), where m, ne N, f, T* eϊ? and
Z7(m), V(n)eG. If T*φT, then there exists a positive constant k*
depending only on G such that

\U(m + l)(oo) - V(n + l)(oo)| ^ A;*

for all m, ne N.

PROOF. Putting T = Γ*oC7(m) and S~ι = To7(w) in (1.2), we have

(2.1) |(Γ*oJ7(m))(oo) - (2*o^(n))(co)|

Since U~\m + l)o V(n + 1) = U~1(m)o T*'ιo To V(n), the grade of
i7"1(m + l)o V{n + 1) is (m + 1) + (n + 1) = m + n + 2. Then it follows
that i?εr(m+i) 13 2?7-i(n+i)otf(m+n for sufficiently large ^ ?s. Therefore we can
take a sequence {S(nk)}cG such that

I t is t r iv ia l t h a t Πk^iBS{nk)....mSinι).v-iln+1).U{m+1)czΛa(G). Then we can t a k e
zeΛa(G), so t h a t ze Bv-ι{n+1)oU(m+1) Π BUίm+1). Hence we obtain from Pro-
position 2 the following:

(2.2) \(U'\m)oT*'ιoToV(n))(oo) - (l/-1(m)oΓ*~1X00)l

) - z\ + \z-U~\m + l)(oo)|

=

Applying (2.2) to (2.1), we have

|(T*otf(m))(oo) - (To 7(^X00)1^1/2^ . q.e.d.

For each Γe ^ , we put Dτ = D^ - (J {s| |z - S(^)(oo)|<^*/2}, where
the union is taken over all S(n) e G with S(n) = TΌS(n — 1) for a T' e
^ — {Γ}. The set DΓ is not empty by Lemma 1.

2. Let S(n) = Γ, f to...oΓV ieG - {id} be of the form S(w)(z) =
(α« + b)/(cz + d), ad — be — 1. Taking the derivative of S(n)f we get

(2.3) \dS(n)(z)/dz\«/2 = \cz + d\~" = (BS{n)/\S-\n)(oo) - z\Y .



KLEINIAN GROUPS 5

Take any fixed element Te ^. Forming the sum of (2p — l)n terms
with respect to all S(n) in (2.3) with TUl^T~\ we have the following
function

(2.4) ΣΛSoo/IS-WCoo) - z\" = Σ \dS(n)(z)/dz\«/2 .
S{n) S{n)

We denote it by X{

n

μiT)(z) and call it the μ-dimensional computing function
of order n on T. The domain of definition of Xn

μιT)(z) is Dτ.
Assume that S(l)eG is of the form S(l) = T<>S(l - 1) (Te Sf). It can

be easily seen that S(i)(°°) e Dτ. Then we can obtain from (1.1) and (2.4)

(2.5) ZJ
S(n)

= Σ ΛS,,,.s««,/Λίf,« , where S(n)oS(l) = S(Λ + I) .
5 ( )

The relation between two computing functions on the different
elements of if is given as follows ([2]).

PROPOSITION 4. For any two computing functions on the different
elements of %f9 there exists a positive constant k(l, μ) depending only on
I and μ such that

(2.6) ZJίSPGO ̂  fc(I, μ)VΓτ\S{l){z)) ,

where l i m ^ k(l, μ) = 0 and S(Z) = TΌS(i - 1).

Next we shall look for the relation between two computing functions
on the same T of different orders.

LEMMA 2. Take any Te& and any z e Dτ. Then for any positive
integer n there exist two positive constants kλ(n, μ) and k2(n, μ, z) de-
pending only on n, μ and n, μ, z, respectively, such that

(2.7) Un, μ)%rτ\z) £ V£ϊ\z) £ h(n, μ, zW>τ\z)

for all leN.

PROOF. For any fixed integer n > 0, we have

(2.8) XίlϊΠz) = Σ ΛScΛScnlS-Wίoo) - S(l)(z)\'"\S'\l)(oo) - z\-f ,
S(+l)

where S(n + I) = S(n)oS(l) = T.n+ιo • oT(1+ιoT(1. - . Γ , , (Γ"1 Φ T). Not-
ing (S-1(ί)°S-1(n))(oo) = (Γ-1<» . oΓ-i+I)(oo)eDΓ, we see IS^nKoo) -
S(l)(z)\ Φ 0. Since the natural number n is fixed, there exists 8 =
δ(n, z) > 0 such that I S " ^ ) ^ ) - S(l)(z)\ ^ δ for all S(n)eG and all le
N. Furthermore there exists r > 0 such that |S~1(w)(oo) — S(l)(z)\ < r,
since <>o e Ω(G). Hence we obtain
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(2.9) δ" ^ \S~\n)(oo) - S(l)(z) \" ̂  r" .

Putting σx = minS{n)eβRsw and σ2 = maxsweβRSM, we have the following
from (2.9)

(2.10) σζjr> ^ RU\S-

By combining (2.10) with (2.8), we obtain

(2p - mσJnYXΓKz)
^ Σ BSMRSw\S

lS(n +

Putting (2p - ΐ)n(σjr)μ = k^n, μ) and (2p - l)n{σβY = k2(n, μ, z), we have
(2.7). q.e.d.

3. Now let us give a lemma on a sequence of computing functions.

LEMMA 3. Let {1TiT\z)} be α sequence of computing functions.
pose that \imn^ooX

(

n

μ]T*\z0) = °o (resp. 0) on some T*e& and some zoeDτ*.
Then lim^oo XT'T*\z) — °° (resp. 0) uniformly on Dτ*.

PROOF. (I) The case of the limit <*>. For each neN, we put S(n) =
S(n - l)oΓVl (27-1 Φ T*). Since S'\n)(oo) = (T^oS'Xn - l))(oo)$ Z)Γ,, we
can easily see I S " 1 ^ ) ^ ) _ Zo\ ^ A;*/2 for all S(n) = S(n - l)oTne
G (Γ" 1 ^ T*). Here we choose a sufficiently large number r > 0 such that
{z| |^ — zo\ < r}z)\Jτe&Dτ. Obviously we can take k0 > 0 so that r ^
Λ0Jfc*/2. Then we see

) - z\ ^ 2r ^ &oA;* ^ 2A: 0

for all z e Dτ*. Hence we obtain from the above

(2.11) XT'τ*\z) = ΣΛWIS-XwXoo) - z\"Σ
Sin)

Putting K = (2ko)~μ, we have from (2.11) the following inequality

for all zeDτ*. This shows that limn_OoZiAί;Γ*)(ί5) = °° uniformly on DΓ*.
(II) The case of the limit 0. It can be easily seen that

IS-^Xoo) - zo\ ^ r. For any S(n) = S(n - l)oTHeG (T^ΦT*), we see
\S~\ri)(<χ>) — z\ ^ k*f2 for all zeDτ*. Hence, in a way similar to the
case of the limit °o, we obtain

\S-\n)(oo) - z o \ ^ r ^ k0k*/2 £ k0\S-\n)(oo) - z\

for all zeDτ*. Putting K' = kμ, we have



KLEINIAN GROUPS

for all zeDτ*. q.e.d.

4. Now let us give the main theorem.

THEOREM 1. The following three propositions are equivalent to each
other:

( i ) lim^ooZ^^Ozo) = °° (resp. 0) on some T* e& and some zoeDτ*.
(ii) limn̂ oo%^;Γ)(^) = °° (resp. 0) uniformly on Dτ for any Te5f.
(iii) Mμ/2(Λ(G)) = - (resp. 0).

As the proof of this theorem is fairly complicated, we divide it into
five lemmas. First we shall show that (i) is equivalent to (ii). For this
purpose, it suffices to show that (i) implies (ii).

LEMMA 4. Suppose that lim^ooZJf ^Oso) = °° (resp. 0) on some T*e
if and some zoeDτ*. Then \imn^ooX

{

n

μiT)(z) = co (resp. 0) uniformly on
Dτ for any Tegf.

PROOF. (I) The case of the limit oo. From Lemma 3, there exists
a constant K>0 such that X{

n

μ;Tm\z) > KXΐiTt)(z0) for all neN and all
z e Dτ*. For any large Mo > 0, there exists no(Mo, T*) > 0 depending
only on Mo and T* so that Vn

μ'τ*\z,) ^ Mo/K for any n ^ no(Mo, Γ*). Then
we conclude

(2.12) XTτ*\z) ^ Mo

for all n ^ no(Mo, Γ*) and all z e Dτ*.
For any fixed Te&, there exist zτeDτ and S(nτ)eG (nτeN) such

that S(nτ)(zτ) 6 Dτ*. Then we have the following from Proposition 4:

(2.13) Zίff£(*Γ) ^ k(nτ, μ)XTτ*\S{nτ){zτ))

for any n ^ no(Mo, Γ*). As S(nτ)(zτ) e Dτ*, there holds

Hence from (2.12) and (2.13), there exists nQ(M0, T)eN which depends
only on Mo and T so that Wf&),(zτ) > Mo for any n ^ no(Mo, T). Here
we put n*{MQ) = maxΓ6^{^0(ikf0, T) + nτ). Then ZίfϊΓ)(«Γ) > ikf0 for any
Teϊ? and any n^n*(MQ). Hence ZΓΓ)fe) and X{

n

μ;T*\z0) diverge uni-
formly to oo for all Te gf. From Lemma 3, we obtain lim^Z^^Os) = oo
uniformly on Dτ for all Te gf.

(II) The case of the limit 0. From Lemma 3, there exists a constant
Z ' > 0 such that XTτ*\z) ^ IΓZίf^Oso) for any zeDτ*. For any small
ε > 0, there exists wo(ε, Γ*) e iV depending only on ε and T* such that
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Vτ*\Zo) < e/K' for any n ^ nQ(e, T*). Then we have

(2.14) XϊT'τ*Kz) < ε

for all n ^ no(ε, Γ*) and all zeDτ*.
For any fixed Te^9 there exist z*eDτ* and S(nτ)eG (nτeN) such

that S(nτ)(zϊ) e Dτ. Hence we have from Proposition 4

(2.15) %?£(*?) > ft(nΓ, μ)XΐiTKS(nτ)(z$))

for any w ^ wo(ε, Γ*). As z$ e Dτ*, we have l i m ^ X ^ * ^ ? ) = 0. Hence
from (2.14) and (2.15), there exists no(ε, T)eN depending only on ε and
T such that

W'T)(S(nτ)(zϊ)) < e for any n ^ no(β, T) .

Here we put no(e) = maxΓ e^K(ε, Γ)}. Then we obtain Wn

μ'τ\S(nτ)(zί))<e
for any Te& and any n ^ nQ(ε). Hence we complete the proof of this
lemma. q.e.d.

5. Next we shall show that (ii) implies (iii).

LEMMA 5. Suppose that limn_>ooZi'l;Γ)(2) = °° (resp. 0) uniformly on Dτ

for any Te%?. Then Mμn{Λ(G)) = oo (resp. 0).

PROOF. (I) The case of the limit oo. From the assumption of this
lemma, for any Te^ and any M > 1, there exists no(M)eN depending
only on M such that

(2.16) XTτ\z) > M

for any ze Dτ and any n ^ no(M). Let an integer nγ {nx > nQ) be fixed.
Consider the 2p(2p — I)71!-1 elements of grade nx of G. Take and fix an
element S(^) = S(^x — l)oTr~1 of grade nL among them. Let F(n0, δ/kQ)
be a covering of Λa(G) defined in §1. We take a covering consisting of
a finite number of closed discs BS(mi)f , BS{mQ) e F(n0, δ/k0) of Λa(G) Π
Bsίni)9 ί^-y \J%i BS(mj) ^ Λa(G) Π BS(nΰ, Here we assume that δ > 0 is a
sufficiently small number such that n0 — nγ > n0.

We put m* = minlsSi^Q {m,-}. We amend these closed discs JB5(Wl), ,
BS{mQ) as follows: (i) if m5 — m* = nQr (re Z,r^ 0), then we put m5 = m'jt
and (ii) if mά — m* = nor + s ( r , s e Z , r ^ O , l ^ s ^ ^ - 1 ) , then we
replace t h e closed disc BSίmj) by (2p — I) 7 1 0 " 8 discs BSk{m^)f k = 1, 2, •••,
(2p — l)n°~% of grade m'j = m* + no(r + 1) = ms + (n0 — s). By this
procedure, we get a new covering of Λa(G) Π 5 5 ( n i ) consisting of Bs{m^)9

• , ^(m^), (Q ̂  12). Then t h e r e exists from (1.3) a constant K(nOf μ) > 0
depending only on w0 and /ί such t h a t
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(2.17) Σ ΛSe,, ^ K(n09 μ) Σ

We again amend these closed discs BS{m')f , 2?5(my in the following
manner.

In the set of closed discs BS{m>ι)f , BS^R), there exist a finite number
of systems TFm* (1 <£ A 2g w) with the following properties: (i) each Wm*k

has (2p — l)n° closed discs of grade m* and (ii) the grades of closed discs
in different systems are not necessarily equal. Here we put Wm*k =
{BSj(no)oS(m^no)\j = 1, 2, , (2p - l)-o}. We replace these (2p - l)-« closed
discs in each system Wm* by closed discs whose grades are m* — 1.
Repeat such procedure w0 times for each Wm*k (1 <± k £* n). Then we see
from (2.5) and (2.16)

(2.18) Σ Hs[mt-n0)oS{n0) > ^S(mϊ-.n0)
<S(n0)

After such replacement we reach a new covering of Λa(G) Π J55(ni) con-
sisting of closed discs BS{m»)f , BS{m^r)(U < iϊ).

Repeating the above procedure to these closed discs and continuing
(r — 1) times, we obtain the following:

(2.19) Σ Λ S o ψ ^ Σ ΛSo , ,

where S(m*) = SinJoSim* — ^ ) and the summation on the right hand
side is taken over all transformations in G of the form S(m*) =
SinJoSim* - O . Then we have from (2.5) and (2.16)

(2.20) Σ Rs(m*) — Σ (Jϊ!s-l(m*-n1)<»S-1(n1)/-R5-l(n1))X-β!s-l(n1)

where S(^J = S(nt — ^oT'1 and the summation in (2.20) is taken over
all the transformations of the form S(^) = S^ — l)°T~\ Hence we
obtain from (2.18), (2.19) and (2.20)

(2.21) Σ ΛSoy) ^ K(n09 μ) Σ ΛS( j ,

^ K(n0, μ) Σ ΛSc , ^ ίΓ(no, μ)'M-R^nΰ .

Noting that (2.21) holds for any closed discs BS{ni), we obtain from (1.4)
and (2.21) the following:

(2.22) N0(2KGk0)-^Mμ/2W(G) Π DΓ)

^ ΛΓ(Wo, μ)( Σ R's-HnJRϊ-i) x Λf-i x
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Since M is any positive number and nλ is any fixed integer greater than
nOf we obtain from (2.22) that Mμ/2(Λ(G)) = °° by letting nγ to go to
infinity.

(II) The case of the limit 0. For any T e ^ and any ε > 0, there
exists n0 = no(έ) e N depending only on ε such that

(2.23) Xζ'τ\z) < ε

for any z e Dτ. For any x e N, we put [x] = 2p(2p - I)"-1. Take any
sufficiently large integer I (I > n0) and let it be fixed. Then there exist
Ss(l) G G U = 1, 2, -, [I] = 2p(2p - I)1'1) such that

U^(n^Λ(G).

Note that S(k)(oo)eDτ, if S(h) = ToS(k - 1) for any heN. So we get
from (2.5) and (2.23)

Hence we have

(2.24)

Let us put I = rn0 + s (r, se N, s ^ n0 — 1). Since S(l) = S(nQ)oS(l — n0) =
S(no)°S((r — ΐ)n0 + s), we can see from (2.24)

S (n0)

Taking the summation on both sides of (2.25) over all transformations
of grade I — n0 = (r — ϊ)n0 + s, we obtain

3-1 3 i=l ^

If we repeat this procedure (r — 1) times, we obtain

[M _ [s] f[m]

Since the right hand side of (2.26) tends to zero as r tends to the
infinity, we have

LM Is] rim] )

(2.26) Σ ΛSyα, < er Σ ΛSi(.) ^ *" max Σ ΛSy( , .

Hence we conclude Mμ/2(Λa(G)) = Mμ/2(Λ(G)) = 0. q.e.d.

6. Now we shall show (iii) implies (i). First we shall show this in
the case of the limit oo as follows.
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LEMMA 6. If Mμ/2(Λ(G)) = oo, then l i m ^ XlΓ'τm)(z0) = °o /or some
T* e & and some z0 e Dτ*.

PROOF. Let n0 be a fixed natural number. From the assumption, we
have S(n0) e G such that

(2.27) Mμn{Λa(G) Π BS{no)) = - .

Put S(n0) = T*oS(n0 - 1). We can easily see S(n0)(oo)e Dτ*. Then
for any nλeN (n± > n0) and any zeΛa(G) Π B8{nQ)f there exists SinJeG
such that 2 6B S ( n i ) , where S(nι, = S ( ^ — nQ)oS(n0). Hence we find that
there exist S^nJ e G (j = 1, 2, , JSΓ0 = (2p - l)»i-«o) such that

From the definition of Hausdorff measure we have

(2.28) Mμ/2(Λa(G) n ft(no)) ^ Σ (2KGR*Sj{ni)y
/2 .

From (2.5) it follows that

(2-29) Σ - B § . ( n i ) = Σ Rs{n1-n0)»S{n0)/-Rs(n0)
 X-R.S(n0

i = l <S'(n1—n0)

= %^(S(w0)(oo))xi2g ( n o ).

Hence we obtain the following from (2.28) and (2.29)

Putting S(n0)(oo) == z0, we see zoeDτ*. Thus from (2.27) we have
l im n i _ Z i ^ W = oo. q.e.d.

7. In order to prove that (iii) implies (i) in the case of the limit
zero, we have to prove the following.

LEMMA 7. Suppose that there exists a subsequence {X^τ*\z)} of
{Xίμ]T*\z)} with respect to some T*eϊ? such that l i m ^ Vn

μ:**\zQ) = oo
(resp. 0) for some zQeDτ*. Then limn_MX,%ίίl;Γ*)(So) = °° (resp. 0).

PROOF. (I) The case of the limit oo. Replacing {Xι

n

μiTm)(z0)} by
{X[£}τ*\zQ)} in Lemma 3, we have l i m ^ X^τ*\z) = oo uniformly on Dτ*.
For any large Mr > 0, there exists n0 = n'0(M') e N depending only on M'
such that X{

nf*\z) > Mf for any ze Dτ*. Here we put S? = {Tl9 T2,
Tp, Tp+1 = Tτ\ Tp+2 = T2\ - ,T2P= Γ-1}. Then, for any Tde gf, there
exist s,- 6 D Γ i and Ss(n) eG (neN) such that S^nXz^ e Dτ*, where Sy(%)
depends only on T3-e^ (j = 1, , 2p). Hence we have from (2.6).
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(2.30) Kμβ'^

^ k(n, μ)M' .

Since l i m ^ V^'KSjinXZj)) = oo for any T3- e Sf, we can see

for any Ty e gf. From the proof of Lemma 3, for any Tά e ^ , there
exists i^ > 0 depending only on Tό e g? such that

(2.31) X{μ*£(zϊ) ^ K5t
μ''τi\z)

for any nt and any a e DΓ i . Here we put Ko = m a x ! ^ ^ {!£,}. Hence we
obtain the following inequality from (2.30) and (2.31)

(2.32) Z ^ s ) ^ KϊV^ίzj) ^ K^k{n, μ)M'

for any z e DTj and any T3 e ^. Note that k(n, μ) depends only on n
and μ. Take a sufficiently large number M' > 0 such that K^kίn, μ)M' =

Λ f > l . Then there exists n"(M)eN such that tμ^jl(z) ^ Λf > 1 for

any ^ e Z>Γy and Tό e gf. Here let us put n0 = n[\M) + n. Then we can
easily see

(2.33) Vζ'τό\z) ^ M > 1

for any z e ί ) Γ i and any Td e ^ .
Now let us consider the computing function X{

q

μ

nf*\z) at z0 for qeN.
For any ε > 0 there exists δ(ε) > 0 such that

X{

q

μnP(*o) > r$p{z) - e

for any z e Dτ* Π {z \ \ z — zQ \ < δ(έ)}. Take a sufficiently large I e N. Then
t h e r e e x i s t ε > 0 a n d S(l)eG s u c h t h a t S(l)(oo)eDτ* Π{z\\z - zQ\ < δ(ε)}
and so

(2.34) Z#Π*o) > ^ ^ ( S α X ^ ) ) - e .

Now we have from (2.5)

(2.35) ZίSΓW)(oo)) = Σ ΛS(̂ ,.S,»/ΛS(«

Modifying the right hand side of (2.35), we obtain

(2.36) i2j(ί) Σ
5 ( )

where S(0) = id. Since



KLEINIAN GROUPS 13

(i ^ 1), we have from (2.33)

(2.37) Vζ τHS((j - l)n0)oS(l)(^)) ^ M , (j^l)

where S((j - l)no)<>S(l) = Tt°S((j - l)n» + 1-1), T^S?. If we apply
(2.35), (2.36) and (2.37) to (2.34), then we obtain

X%Γ(Zo) >M"-s.

Hence we conclude

(2.38) limZ<*f >(«„) = ~ .
g->oo

For any positive integer m = qn0 + r (q, r e Z, q, r ^ 0, r ^ ^ 0 — 1),
let us put w = r and ϊ = qn0 in Lemma 2. Then we have from (2.7)

(2.39) *,(*„, μ)XTnΓ(z0) ^ XL^KZo) ^ k2(n0f μ, zo)X%o

τ*\zo) .

Therefore from (2.38) and (2.39) we conclude l i m ^ XT'τ*\zϋ) = oo.
(II ) The case of the limit 0. For any Tάe gf there exists S5(n)e

G(ne N) depending only on Tj such that Sj(n)(zo)e DTj. Put nt — n = n't.
Then we have

Zίf 'GO > fc(

for any Tά e gf. Since l i m ^ Zίζ ̂ W = 0, we have l i m ^ Xif^\S5{n){zQ)) =
0 for any Tά e &. Hence, from Lemma 3, for any small ε > 0 there
exists n0 = nQ(e) e N such that

(2.40) Xζ>τΠz) < e

for any z e DTj and any T3 e 5^.
In a way analogous to the case of the limit oo, we conclude from

(2.40) l im n _ Xir>τ*Xz0) = 0. q.e.d.

8. Now we can show that (iii) implies (i) in the case of the limit
zero.

LEMMA 8. // Mm{Λ(G)) = 0, then l i m ^ XTτ*\zQ) = 0 for some Γ* e
^ and some zQ e Dτ*.

PROOF. Assume the contrary. Since (i) and (ii) of Theorem 1 are

equivalent to each other from Lemma 4, there exists a subsequence

{ZίζϊΓ)(*)} o f iWtT)(z)} and 0 < ώ ^ oo such that

^iZo) = d

for some Γ * e ^ and some zoeDτ*.
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If d — oo, then from Lemma 7 we can see lim^oo Xlt"'T*\Zo) = ©o. Hence
from Lemma 5 we have Mμ/2(Λ(G)) = oo, a contradiction. So we may-
assume 0 < d < oo. Then

(2.41) 0 < lim inf XTT){z) ^ lim sup Xΐ>τ\z) < oo

for any Te & and any zeDτ.
Now take a compact set K in Dτ* such that Int (If) Π Aa(G) Φ 0 and

let it be fixed. Then there exist clf c2 > 0 such that

0 < cL ^ lim inf Zίί^GO ^ lim sup Zf'^Oz) ^ c2 < + oo

for any ^ e if. Taking a sufficiently small ε > 0 (ε < c j , we can easily
see that there exists nQ = nQ(e, K)e N depending on ε and K such that

(2.42) 0 < d - ε ^ XTiT*\z) ^ c2 + ε < + oo

for any ze K and any n*zn0. For any sufficiently large nLe N^ > n0)
we can t a k e and fix S(nt) = T*oS(nL - l ) e G such t h a t Bs-i{ni)dlnt(K).

Then for small δ > 0, there exists w' = n\δ) e JV depending only on δ and
closed disc BS{mj)f , J55(mρ) e F(wf, δ/ft0) such that m, > n1 (j = 1, , Q)
and Int (if) 3 U?=i ft (my) ̂  -̂ o(G) Π ft{ni). Here we can take a natural
number n* so large that n* — mά *> ̂ 0 for i = 1, , Q. Then we get
from (2.42)

(2.43) cx - ε ^ Σ ΛSu —^.β^/ΛSc.y) ^ c2 + ε .

It holds from (2.43) that

(2.44) RSimj) ^ (c2 + ε)"1 Σ ΛS^-^).^^,

- f e + εΓ Σ ΛSo )
5(n*-«y)

for all j = 1, , Q. Hence we have from (2.44)

(2.45) Σ #§(.,) > (c + ε)"1 Σ ΛS(Λ., .

Since

Σ Rμs^ = BS(II1) Σ R^-n^nJRI^ = Rμ

S{ni) x %i^(S(^)(oo)) ,

we have from (2.45)

(2.46) ίjΛϊc.y> > (ct + erZJSL^SίnOίoo)) x ΛJ ( B I ) .

Noting n* — n,^ nQ, we have the following from (2.42) and (2.46)

(2.47) Σ RSw > fe - ε)(c2 + ε)-^ ( n i ) .
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Hence we obtain from Proposition 3 and (2.47) the following relation:

N0(KGk0)-^Mμ/2(Λ(G) n B8{nι)) ^ lim Γ inf {Σ (2i2|(mi))*/2}Ί ,

where the summation is taken over all BS(mj) e F(n'f d/k0). Clearly the
right hand side of this inequality is greater than a positive number
2*/2(c1 - ε)(c2 + s)-\RS(ni,. This contradicts the assumption Mμ/2(A(G)) = 0.

q.e.d.

Therefore we complete the proof of Theorem 1.

3. Hausdorff dimension of A(G) and Poincare dimension of G.
1. In this section we shall consider the relation between the Haus-

dorff dimension of Λ(G) and the Poincare dimension of G. First of all
we give the definitions.

Let Γ be a Kleinian group with oo e Ω{Γ) and {Se Γ\S(oo) = oo} =
{id}. The Hausdorff dimension d(Λ(Γ)) of A(Γ) is defined as

(3.1) d(Λ(Γ)) - inf {μ/2 \ Mμ/2(Λ(Π) = 0} .

The Poincare dimension of Γ is

(3.2) P(Γ) = inf \μ Σ s
SeΓ-{id}

As to these values, the following two propositions are essential.
They are direct consequences of Theorem 1 (see [2] for the proofs).

PROPOSITION 5. Put d(A(G)) = μ*/2. Then

0 < MμV2(A(G)) < + oo .

PROPOSITION 6. // Mμ/2{A(G)) = 0, then

Σ R
G i d }

2. The following two results are well known.

PROPOSITION 7 ([4]). If Γ is a geometrically finite Kleinian group,
then

d(A(Γ)) ^ P(Γ)/2 ^ 2 .

PROPOSITION 8 ([3]). Let Γ be a discrete subgroup of PSL (2, C). //
Ω(Γ) Φ 0, then

Σ R\< +oo .
SeΓ-{iά}

Now we can prove the following theorem.

THEOREM 2. d{A(G)) = P(G)/2 < 2.
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Proof. From Propositions 6 and 7, it can be easily seen that d(A(G)) =
P(G)/2 ^ 2. If d(Λ(G)) = 2, then Proposition 5 yields 0 < M2(Λ(G)) < + oo.
Since Σseσ-udjΛ!s< + °° from Proposition 8, we conclude M2(Λ(G)) = 0 from
Proposition 7, a contradiction. Hence we obtain d(Λ(G)) < 2. q.e.d.
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