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Introduction. Let G be a geometrically finite Kleinian group. Let
S) = (az + b)/(cz+d), ad —bc=1

be any element of G and let id be the identity transformation. The
Poincaré dimension P(G) and the Hausdorff dimension d(4(G@)) of the limit
set A(G) for G are defined respectively as follows:

P(G) = int{t ‘swzm,"”—t < oo

and
d(A(@)) = inf{p/2| M, (A(G)) = 0},

where M,,(A(G)) denotes the g/2-dimensional Hausdorff measure of A(G).
Suppose that G is a Schottky group. The former author proved the
following relation ([1]):

(%) ad(A(G)) = P(G)/2.

If G is a Fuchsian group of the first kind, the above () is trivial. It
was proved by Patterson ([6]) that (*) holds for a Fuchsian group of
the second kind without parabolic elements and for one with parabolic
elements in the case d(4(G))=2/3. He then posed the problem whether
or not (*) holds for 1/2 < d(A(G@)) < 2/3. Sullivan ([7]) solved this problem
affirmatively by using the method of the space group and recently
announced further in [8] that () is true for a geometrically finite Kleinian
group and that the proof will appear in [9].

In the previous paper [2] we proved that (x) holds for a finitely
generated Kleinian group with a fundamental domain bounded by a finite
number of circles which are mutually disjoint or tangent externally to
each other and posed the problem whether or not (x) holds for more
general geometrically finite free groups. The purpose of this paper is
to show that (x) is valid for such groups. Because our method is very
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different from Sullivan’s, it is worthwhile to give another proof to (x)
for a geometrically finite free Kleinian group, in spite of Sullivan’s
proof being valid for general geometrically finite Kleinian groups.

In §1, we shall state preliminaries and notations about a geometrically
finite free Kleinian group G and give the relation between the Hausdorft
measure and the measure defined by the special covering formed by the
isometric circles for the limit set of G. We shall prove the main theorem
giving the relation between the computing function and the Hausdorff
measure of the limit set of G in §2. Finally, in §3 we shall give the
relation (x) between the Poincaré dimension and the Hausdorff dimension
of the limit set for G by using the main theorem.

We thank to Professor T. Kuroda for his valuable and suitable advice
given in the preparation of this paper.

1. Preliminaries and notations. 1. Let G be a geometrically finite,
free Kleinian group with basis {T,, ---, T,} (p=2). We denote by 2(&)
and 4(G@) the region of discontinuity and the limit set of G, respectively.
We put ¢ ={T, T, ---, T,, T;'}. Then, for any SeG, there exist
T,,---, T, €% such that S can be represented uniquely in the normal
form S=T, o ---oT,, where T, #T,: (i=1,---,n —1). So we shall
call the number n the grade of S and use the notation S(n) to clarify
the grade n of S.

Throughout this paper we assume o € 2(G). So it can be easily
seen that any element of G which fixes « is the identity.

Consider two arbitrary elements S, Te G with S#T"'. Denote by
I, I, and I., the isometric circles of S, T and SoT, respectively. Let
R;, R, and R;., be the radii of Iy, I, and I,.,, respectively. As to these
values, the following equalities hold (see [5]):

(1.1) Rsp = RsRy[| T(e0) — S7H(e0)]
(1.2) [(SoT)™(e0) — T7(e0)| = Rs.oRr/Rs
= R7/| T(c0) — 87 (e0)] .
By using (1.1) and (1.2), we have the following proposition ([2]).

PROPOSITION 1. Let {S(n)} be a sequence of G satisfying S(n) =
T, e---°T, (T, -, T,)eZ and S(n + 1) = T, , S(n) for all ne N, the
set of all natural numbers. Then there exist two positive constants
k, = k(G) <1 and k, = k(G) depending only on G such that
(1.3) ky £ Rsin/Rsmy =k,

for all me N.
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2. It is well known that every limit point of a geometrically finite
group is either a point of approximation or a cusped parabolic fixed point
([4]). Let us denote by 4,(G) the set of all points of approximation of
G. Note that the difference between 4,(G) and A(G) is only a countable
set. Hence we can see that the Hausdorff measure of A(G) is equal to
that of 4,(G). As to such a subset 4,(G) of A(G), the following proposi-
tion is important ([2]).

PROPOSITION 2. For any z€ A,(G), there exist {S(n)}C G and K; >0
depending only on G such that
[z — 87 (n)(0)| < KeRwm -

For any sufficiently small 6 > 0, we denote by I(6) a family of closed
dises {D;} of radii I, < ¢ such that every point of A(G) is contained in
some Int(D,). We shall call the quantity

M, (A(@)) = lim[inf{ > (2l2)#/2}:|

3-0 Lirn \pyeT(a

the p/2-dimensional Hausdorff measure of A(G), where ge (0,4]. From
now on we assume g€ (0,4]. For any S(n)e G — {id}, we denote by

By, = {2] |z — ST (n)()| £ KeR%wm}

where K, is a positive constant depending only on G in Proposition 2.
Putting

F(n,, 0/ky) = {Bswm|S(n)e G, n =z n, and KRk, =< 0]k}
for any 6 > 0 and any g, we obtain the following ([2]).

PRroOPOSITION 3. For any p, there exists a natural number N,
depending only on G such that

(1.4) 1im|: inf { (2RZS(,,))”/2”
3=0 L{F(ng,alkq)) {Bg (n) e Fing,01kg)

< N,(Kghy)*" lim[:inf{ s (zh)ﬂ/ﬂ

30 L{I(3)} \Dye1(d)

= No(Kgko) ™" Mup(A(G))

2. Computing functions and Hausdorff measure of 4(G). 1. Since
oo € (@), the set {S~()|Se G — {id}} is bounded. Hence, for any Te ¥
and any S(n) = ToS(n — 1) G (ne€ N), there exists a positive constant %,
depending only on T such that

S(n)(eo) e f{z] |z — T(e0)| < krRy} .
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Here we put k; = max,..{k;}. It can be easily seen that k; is
positive and depends only on G. Let us denote by D7 = {z| |z — T(0)| <
keR;}. Then, for any Te ¥ and any S(n) = To-S(n — 1)e G (ne N), we
have D; 3 8S(n)(c0) = (ToS(n — 1))(eo).

First of all we shall prove the following.

LEMMA 1. Assume that U(rrg + 1), Vin+1)eG are ~of the form
Um + 1) = T*U(m), Vin +1) = ToV(n), where m,ne N, T, T*e & and
Uim), V(in)eG. If T*+#T, then there exists a positive constant k*
depending only on G such that

[U(m + 1)(c0) — V(n + 1)(0)| = k*
for all m, ne N.
PROOF. Putting T = T*-U(m) and S~ = T V(n) in (1.2), we have
2.1)  [(T*Um)) (o) — (To V(n))(eo)|
= Rivg /| (U (m)o T* "o To V(nm))(o0) — (U (m)o T*")(e0)]| .
Since U(m + 1)oV(n +1)=U"(m)oT* " o To V(n), the grade of
U'm+ 1)eVin+1)is (m+ 1)+ n + 1) =m + n + 2. Then it follows
that By D By-iminwmsn for sufficiently large n’s. Therefore we can
take a sequence {S(n,)}CG such that
By—1vevmin 2 Bsiper—tminvmin 2 *** D Bspeeosmper—tmanvmen 2 * -
It is trivial that ML, Bswye- esmpr—tmrnvmen C 4(G). Then we can take
z¢e A,(G), so that z2€ By-1(,11y.v(msn N Bymsn. Hence we obtain from Pro-
position 2 the following:
(2.2) (U (m)o T* "o To V(m))(c0) — (U™ (m)o T*)(e0)|
S[(Um + Do Vin + 1)(e0) — 2| + [2 =U™(m + 1)(c0)|
= KGR%’_l(n+1)°U(m+1) + KGR%(m+1)
é 2KGRzU(m+1) .
Applying (2.2) to (2.1), we have
|(T*e Ulm))(o0) — (To V(n))(=)|=1/2K, . q.e.d.
For each Te &, we put D, = D; — U {z||z — S(n)(e0)|<k*/2}, where

the union is taken over all S(n)e G with S(n) = T'-S(n — 1) for a T'e
< — {T}. The set D, is not empty by Lemma 1.

2. Let S(n)=T,p---oT, G —{id} be of the form S(n)(z) =
(az + b)/(cz + d), ad — bc = 1. Taking the derivative of S(n), we get

(2.3) |[dS(n)(2)/dz|** = [ez + d|™ = (Bswm/|S7'(n)(e0) — 2])* .
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Take any fixed element Te . Forming the sum of 2p — 1) terms
with respect to all S(n) in (2.8) with T, #T™", we have the following

function

@4) 3 Byol|S7(m)(>) — 2l = 3 |dSm@)/dal”

We denote it by X#7(z) and call it the g#-dimensional computing function
of order » on T. The domain of definition of X% (z) is D;.

Assume that S(l)e G is of the form S(I) = T-S(I — 1) (Te¥). Itcan
be easily seen that S(I)(e)e D,. Then we can obtain from (1.1) and (2.4)

(2.5)  Xyn(S(1)(e=)) =S% R/ 87 (m)(e0) — S(1)(o0) |
= g]) Rf.sw/RSw , where S(n)eS(l) = S(n + 1) .

The relation between two computing functions on the different
elements of ¥ is given as follows ([2]).

PROPOSITION 4. For any two computing functions on the different
elements of &, there exists a positive constant k(l, pt) depending only on
l and pt such that

(2.6) XD (2) = k(L X (SU)(2))
where lim,_., k(l, #) = 0 and S({I) = T'-S( — 1).
Next we shall look for the relation between two computing functions

on the same T of different orders.

LEMMA 2. Take any TeZ and any z€ D,. Then for any positive
integer n there exist two positive constants k.(n, tt) and ky(n, ¢, z2) de-
pending only on n, ¢t and n, Y, 2, respectively, such that

(2.7) ky(n, X7 (2) < XD(2) < ko(m, g2, 2)X"7(2)
for all 1€ N.

ProOF. For any fixed integer n > 0, we have
(2.8) XED(2) =S(§l)R5<n)R§(z) [S7H(m)(e=) — S@)(2)[7#|S7(1)(e2) — 2],

where S(n + 1) = S(m)eS(1) = T,, o -+ T, ,oT,0 -+ oT, (T;}# T). Not-
ing (S7(1)°S7m)(o0) = (T5fo -+ o T34 )() € Dy, We see |S7(n)(o0) —
S()(z)| # 0. Since the natural number = is fixed, there exists 0 =
o(n, z) > 0 such that |S™'(n)(<) — S(I)(z)| = 6 for all S(n)eG and all le
N. Furthermore there exists r > 0 such that |S™'(n)(e0) — S()(z)| < 7,
since o € 2(@). Hence we obtain
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(2.9) 0" = |87 (m)(e0) — SR [ = 7 .

Putting o, = ming,,c¢ Ry and o, = maxg,,.q Rsq» We have the following
from (2.9)

(2.10) ol/r* = Rf /IS (m)(e=) — S()(2) |* < af/o* .
By combining (2.10) with (2.8), we obtain
(2p — 1)"(oy/n)"X{"" ()
< 3 RwRia|S"()(=) — SO@[S A=) — 2|
= (2p — 1)"(0:/0)" X" (2) .

Putting (2p — 1)*(g,/7)* = k,(n, ) and (2p — 1)"(0,/0)* = ky(n, p, 2), we have
2.7). q.e.d.

3. Now let us give a lemma on a sequence of computing functions.

LEMMA 3. Let {X"(2)} be a sequence of computing functions. Sup-
pose that lim,,_,., X7 (z,) = o (resp. 0) on some T*ec < and some z,€ Dj..
Then lim,_., X" (2) = oo (resp. 0) uniformly on Dip..

PrOOF. (I) The case of the limit . For each n e N, we put S(n)=
S(n — 1)oT,, (T} # T*). Since S7(n)(c0) = (T;'eS™(n — 1))(e°) & Dp., we
can easily see [S7Y(m)(e0) — 2| = k*/2 for all S(n) =8(n —1)T, e
G (T} # T*). Here we choose a sufficiently large number » > 0 such that
{z] |z — 2] < *}DUres D;. Obviously we can take k, > 0 so that » <
k.k*/2. Then we see

87 (m)(e0) — 2| < 2r < k™ < 26| S7(m)(e0) — 2|
for all ze D,.. Hence we obtain from the above
(2.11) X (2) =SZ Riwm/|S7 (m) (o) — z]* = (2ko) X" (2,)
(n)

Putting K = (2k,)~*, we have from (2.11) the following inequality
X;F;T‘)(z) g KX;L/I;T')(ZO)

for all ze D,.. This shows that lim,_, X" (2) = o uniformly on D;..

(II) The case of the limit 0. It can be easily seen that
ST (n)(0) — 2| < 7. For any S(n) = S(n — 1)-T, €G (T;'#T*), we see
[SY(n)(=) — 2| = k*/2 for all ze D,.. Hence, in a way similar to the
case of the limit -0, we obtain

[S7(n)(e0) — 2| = 7 = kok*/2 £ k[ ST (n)(e0) — 2]
for all ze D,.. Putting K' = ki, we have
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X;#:T‘)(z) é K’X;ﬂ;T‘)(zo)
for all ze D;,.. q.e.d.
4. Now let us give the main theorem.

THEOREM 1. The following three propositions are equivalent to each
other:

(i) lim, e X7 (2,) = o (resp. 0) on some T* e <& and some 2z, € Dy..

(il) lim,_ . X¥7(2) = oo (resp. 0) uniformly on D, for any Te <.

(iii) M,,(A(G)) = oo (resp. 0).

As the proof of this theorem is fairly complicated, we divide it into
five lemmas. First we shall show that (i) is equivalent to (ii). For this
purpose, it suffices to show that (i) implies (ii).

LEMMA 4. Suppose that lim,_ . X#*7(z,) = oo (resp. 0) on some T*¢€
< and some 2,€ Dp. Then lim,_ ., X#7(z) = o (resp. 0) uniformly on
D, for any Te Z.

PrROOF. (I) The case of the limit . From Lemma 3, there exists
a constant K > 0 such that X%*™(z) > KX{"™(z,) for all ne N and all
2€ D,.. For any large M, > 0, there exists n,M, T*) > 0 depending
only on M, and T* so that X" (z,) = M,/K for any n = n,(M,, T*). Then
we conclude

(2.12) X(2) =2 M,

for all n = n,(M,, T*) and all z€ D,..
For any fixed Te &, there exist z,€ D, and S(n;)€ G (n,€ N) such
that S(n,)(2;)€ D;.. Then we have the following from Proposition 4:

(2.13) Xt (zr) Z k(ng, X5 (S(n,)(21))
for any n = n,(M,, T*). As S(n;)(2;)€ D,., there holds
lim X7 (S(n)(27)) = o .

n—o0

Hence from (2.12) and (2.13), there exists %M, T)e N which depends
only on M, and T so that X7 (z;) > M, for any n = n(M,, T). Here
we put n*(M,) = max,..{n,M, T) + ny}. Then X¥"(z,) > M, for any
Tez and any n = n*(M,). Hence X¥*"(z,) and X" (z,) diverge uni-
formly to « for all Te &. From Lemma 3, we obtain lim,_, X#*7(2) = o
uniformly on D, for all Te Z.

(ITI) The case of the limit 0. From Lemma 3, there exists a constant
K’ > 0 such that X" (z) < K'X*""(z,) for any ze€ D,. For any small
¢ > 0, there exists n,e, T*)€ N depending only on ¢ and T* such that
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XET(z) < ¢/ K’ for any n = ny(e, T*). Then we have
(2.14) XE™(z) < e

for all n = n,(e, T*) and all z€ D;..
For any fixed Te &, there exist z¥€ D, and S(n,)€ G (ny€ N) such
that S(n,)(zf)e D,. Hence we have from Proposition 4

(2.15) Xiinp (27) > k(ng, X" (S(nr)(21)

for any n = n.(e, T*). As zf€ Dy, we have lim,.. X477 (27) = 0. Hence
from (2.14) and (2.15), there exists m,(¢, T)e N depending only on & and
T such that

L (S(nr)(ed)) < & for any m Z nle, T) .

Here we put n.(e) = max,.. {n,e, T)}. Then we obtain X" (S(n,)(2})) <e
for any Te & and any n = n,¢). Hence we complete the proof of this
lemma. q.e.d.

5. Next we shall show that (ii) implies (iii).

LEMMA 5. Suppose that lim, ., X*#7(2) = o (resp. 0) wniformly on D,
for any Te &. Then M,,(A(G)) = o (resp. 0).

Proor. (I) The case of the limit . From the assumption of this
lemma, for any Te & and any M > 1, there exists n,(M)e N depending
only on M such that

(2.16) XDz > M

for any ze D, and any n = n,(M). Let an integer n, (n, > n,) be fixed.
Consider the 2p(2p — 1) elements of grade », of G. Take and fix an
element S(n,) = S(n, — 1)oT~! of grade n, among them. Let F(#,, d/k,)
be a covering of 4,(G) defined in §1. We take a covering consisting of
a finite number of closed dises By, **, Bsmg € F(f, 0/k,) of 4,(G) N
By, i-€., Uj=1 By D 4.(G) N Bs,,,. Here we assume that ¢ >0 is a
sufficiently small number such that #, — n, > n,.

We put m* = min,g;.o{m;}. We amend these closed dises By, ** -
Bsmy as follows: (i) if m; —m* =ngr (re Z, r20), then we put m; = m;,
and (ii) if m; —m* =nor +s (r,5€¢Z,r=0,1=<s=mn,—1), then we
replace the closed disc By, by (2p — 1)™~* discs Bs, i k=12 ---,
(2p — 1)~ of grade m;=m* + m(r +1) =m; + (n, — 8). By this
procedure, we get a new covering of A,(G) N By, consisting of By,
*++, Bympy» (@ < R). Then there exists from (1.3) a constant K(n,, #) >0
depending only on 7, and g such that
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(2.17) Z Rfmy = K(n,, 1) Z RS(m D .

We again amend these closed discs By, ***, Bswmsy in the following
manner.

In the set of closed dises By, * * *, Bsimsy, there exist a finite number

of systems Wm;‘ (1 = k = n) with the following properties: (i) each W,
has (2p — 1)™ closed dises of grade mj} and (ii) the grades of closed discs
in different systems are not necessarily equal. Here we put W,. =
{Bs;ipesamy-np | 5 = 1,2, - -+, (2p — 1)*}. We replace these (2p — 1)™ closed
dises in each system Wm; by closed discs whose grades are mj} — 1.
Repeat such procedure n, times for each W,: (1 <k < n). Then we see
from (2.5) and (2.16)

(218) 2 RS(mk—no) °8(nq) > RS(mk—no) .

$(ng)
After such replacement we reach a new covering of 4,(G)N Bs., con-
sisting of closed dises By, ***, Bsmp(U < R).
Repeating the above procedure to these closed dises and continuing
(r — 1) times, we obtain the following:
R

(219) Z S(m ) 2 ZA Rg(m") ’

S(m*—mny)

where S(m*) = S(n,)oS(m* — n,) and the summation on the right hand
side is taken over all transformations in G of the form S(m*) =
S(n,)eS(m* — n,). Then we have from (2.5) and (2.16)
(2-20) st Z )Rg('m*) = _1(24 )(Rg"l(m‘—nl)°S_1(n1)/R§_1(n1))XRg_l(nl)

m*—n,’ m*—mny

5#-53.1(3‘1(%1)(00)) X R-1() 2 MRS'—I(nl) ’

where S(n,) = S(n, — 1)oT* and the summation in (2.20) is taken over
all the transformations of the form S(n,) = S(n, — 1)oT~'. Hence we
obtain from (2.18), (2.19) and (2.20)

Q
(2.21) jzlesm]) = K(n, £) 2 Bfmy)
= K(n,, P‘) Z Rsm') = K(n, pt)-M- R, .

Noting that (2.21) holds for any closed dises Bs,,, we obtain from (1.4)
and (2.21) the following:

(2.22) N(2Kgho) ™" M,.,,(A(G) N Dy)
> K(no, ) (S%;)Rg_w /Rg_L) % Ri x M.
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Since M is any positive number and =, is any fixed integer greater than
Ny, we obtain from (2.22) that M,,(4(G)) = « by letting =, to go to
infinity.

(II) The case of the limit 0. For any Te ¥ and any & > 0, there
exists n, = n,(&) € N depending only on & such that

(2.23) LEN(z) < e

for any ze D,. For any x€ N, we put [z] = 2p(2p — 1)*7'. Take any
sufficiently large integer [ (I > n,) and let it be fixed. Then there exist
S;HeG (7=1,2, ---,[1] = 2p(2p — 1))"") such that

1
jLle Bs;y D 4,(G) .

Note that S(k)(co)e D, if S(k) = T-S(k — 1) for any k€ N. So we get
from (2.5) and (2.23)

X" (S(k)(e0)) = S(E“)Rg(no)osm)/Rg(k) <e.
0

Hence we have
(2.24) > RS(no) s < EREw .

S (ng)
Letusputl=7n,+s (r,se N, s < m,—1). Since S(I) = S(n,)°S(l—n,)=
S(ny)eS((r — L)m, + 8), we can see from (2.24)

(2.25) g.)Ré‘m < eREu_ng -
70

Taking the summation on both sides of (2.25) over all transformations
of grade I — n, = (r — 1)m, + s, we obtain

03] [i=nq]

ZRS < € Z R 0-np -

If we repeat this procedure (» — 1) times, we obtain

[m]
(2.26) ZRS o < € ZRS (o = €' max {Z R, (m)} .

1=mgZs

Since the right hand side of (2.26) tends to zero as » tends to the
infinity, we have

lim Z (Rs ) =0.

l—oo j=

Hence we conclude M, ,(4,(@)) = M, (4(G)) = 0. q.e.d.

6. Now we shall show (iii) implies (i). First we shall show this in
the case of the limit o as follows.
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LEMMA 6. If M,(A(G)) = oo, then lim, .. X7"(2,) = oo for some
T*e & and some z,€ Djs.

PrROOF. Let #n, be a fixed natural number. From the assumption, we
have S(n,) € G such that

(2.27) M, ;(4,(G) N Bsny) = © .

Put S(n,) = T*oS(n, —1). We can easily see S(n,)(>)€ D;.. Then
for any n,e N (n, > n,) and any z€ 4,(G) N Bs,,, there exists S(n,)eG
such that ze By,,, where S, = S(n, — n,)°S(n,). Hence we find that
there exist S;(n,)eG (7 =1,2, -+, N, = (2p — 1)) such that

No
_1'L=J1 BSj('nl) - AG(G) n BS('nO) .

From the definition of Hausdorff measure we have

No
(2.28) M, (4.G) N Bsy) = Z.l (2K ;)" -
From (2.5) it follows that
No
(2'29) ; jo('nl) :S(Z )Rg(nl—n‘)hS(no)/Rg(no) XRg(no)
=1 nj—ng

= XTI (S(mo)(0)) X B ngy -
Hence we obtain the following from (2.28) and (2.29)
M (4.(G) N Bspy) = (2KaR% )" Him X170 (S(ne)(0)) .
nl—»oo

n1— "

Putting S(n,) () =2,, we see z,€Dn. Thus from (2.27) we have
lim,, o XJ50(2) = oo. q.e.d.

7. In order to prove that (iii) implies (i) in the case of the limit
zero, we have to prove the following.

LEMMA 7. Suppose that there exists a subsequence {X"(2)} of
{X7(2)) with respect to some T*e % such that lim,.., XJ™(z,) = oo
(resp. 0) for some z,€ Dy. Then lim,_ ., X7 (2,) = oo (resp. 0).

PROOF. (I) The case of the limit o. Replacing {X{"™(z,)} by
(X" (%)} in Lemma 3, we have lim,.. X{""(2) = o uniformly on Dy.
For any large M’ > 0, there exists n, = no(M’)e N depending only on M’
such that X%7(z) > M' for any z€ D,.. Here we put & ={T, T, ---,
Ty Tppy =17, Tppo =T, -+, To, = T;'}.  Then, for any T,e &, there
exist z;€ D;; and S(f)e G (e N) such that S;(#)(z;)€ D, where S;()
depends only on T;e % (j =1, ---, 2p). Hence we have from (2.6).
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(2.30) X d (@) 2 k@, L™ (8,()(z,)
2 k(@ )M’ .

Since lim,., X" (S;(#%)(z;)) = o for any T;€ &, we can see
hmx(#r)( ) — o

i—00

for any T,e . From the proof of Lemma 3, for any T;e ¥, there
exists K; > 0 depending only on T;e€ & such that

(2.31) 1) = KX "2(2)

for any n, and any ze¢ DTJ.. Here we put K, = max,;,,{K;}. Hence we
obtain the following inequality from (2.30) and (2.31)
(2.32) Xood @) z Kok 2(2) = K@, )M

0 notTn
for any ze D,; and any T;eZ. Note that (%, ¢) depends only on %
and p. Take a sufficiently large number M’ > 0 such that Ki'k(#, p)M' =
M > 1. Then there exists n,/(M)e N such that X(” )( Y= M >1 for

any ze D;; and T;e &. Here let us put n, = n,'(M) + #i. Then we can
easily see

(2.33) XpTi(z) =2 M > 1
for any ze D,; and any T,e Z.

Now let us consider the computing function X{%""(z) at 2, for ge N.
For any ¢ > 0 there exists d(¢) > 0 such that

Ko™ (z0) > Xn7"(2) — €
for any ze D,.N{z| |z — z,| < d(¢)}. Take a sufficiently large e N. Then

there exist ¢ > 0 and S(I) e G such that S(I)(eo)e D,. N {z]| |2 — 2,| < d(e)}
and so

(2.34) X (z) > XnT(S(1)(0)) — € .

Now we have from (2.5)

(2.35) x;ﬁLT‘)(S(l)(w)) = S(E )Rg(qno)f'S(l)/-Rg(l) .
qng

Modifying the right hand side of (2.85), we obtain
(2.36) Rshy ) Rfgupesw
S(gng)

q
= H[: 2)R§(jno)=S(l)/ > Rfv‘((f—nno)«su)} ’
0

S((§=1)ng)

where S(0) = id. Since



KLEINIAN GROUPS 13

Bity-marsi 3 Blgugesr = LTS = Dno)oSA)(=))
7o

(j =2 1), we have from (2.33)
(2.37) XET(S((5 — Dmg)oS()(o) =2 M, (§=1)
where S((j — 1)m)oS(l) = T:oS((j — )my +1 — 1), T;e &. If we apply
(2.35), (2.36) and (2.37) to (2.34), then we obtain
XET(z) > M — ¢ .
Hence we conclude

(2.38) lim X577 (2) = oo .

For any positive integer m =qn, + r (¢,7r€ Z,q,r=0,r < n, — 1),
let us put n = » and [ = qn, in Lemma 2. Then we have from (2.7)

(2.39) ki(no, X355 (20) = X" (20) = Koo, f2, 20)X3557(20) -

Therefore from (2.38) and (2.39) we conclude lim,_. X7 (z,) = oo.

(II) The case of the limit 0. For any T;c & there exists S;(%)e
G(7ie N) depending only on T; such that S;(#)(z,)€ D;;. Put n, — % = ni.
Then we have

X5 (20) > kM, (X379 (S;(7)(20)

for any T;e &. Since lim, .. X" (2,) = 0, we have lim, .., X% (S;(%)(2,)) =
0 for any T;e . Hence, from Lemma 3, for any small ¢ > 0 there
exists n, = my(e) € N such that

(2.40) AET(z) < &

for any ze D,; and any T,e &.
In a way analogous to the case of the limit -, we conclude from
(2.40) lim,_., X¥7™(2,) = 0. q.e.d.

8. Now we can show that (iii) implies (i) in the case of the limit
Zero.

LeEmMMA 8. If M,,(A(G)) = 0, then lim, . X¥™(2,) = 0 for some T*¢
& and some z,€ Dy..

PROOF. Assume the contrary. Since (i) and (ii) of Theorem 1 are

equivalent to each other from Lemma 4, there exists a subsequence
(X7 (=)} of (X" (2)} and 0 < d < oo such that

lim X{57(z,) = d

i—00

for some T*e ¥ and some 2,€ Dp.
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If d = o, then from Lemma 7 we can see lim,_,., X#"(2,) = .. Hence
from Lemma 5 we have M,,(4(G)) = «~, a contradiction. So we may
assume 0 < d < «. Then

(2.41) 0 < liminf X*7(2z) < lim sup X7 (z) < o

n—00 n—0c0

for any Te & and any ze€ D,.
Now take a compact set K in D,. such that Int (K) N 4,(G) # @ and
let it be fixed. Then there exist ¢, ¢, > 0 such that
0 < ¢ < liminf X7 (2) < limsup X" (2) £ ¢, < +

n—co n—oo

for any ze K. Taking a sufficiently small ¢ > 0 (¢ < ¢,), we can easily
see that there exists n, = n,(¢, K)e N depending on ¢ and K such that

(2.42) 0<e,— e XF™R)Zc, +e< +o0

for any z¢ K and any n = n,. For any sufficiently large n,€ N(n, > n,)
we can take and fix S(n,) = T*oS(n, — 1)€ G such that Bs-i,,CInt(K).
Then for small 6 > 0, there exists »' = »/(6) € N depending only on é and

~ closed disc By, ***, Bsmgp € F(n', 6/k;) such that m; > n, (j =1, ---, Q)
and Int(K)D Ul Bsmp D 4.(G) N Bg(,y. Here we can take a natural

number »* so large that n* —m; =n, for j=1, ---,Q. Then we get
from (2.42)
(2.43) Cl - 5 _S_ S(Z )Rg(n'—mj)"s(mj)/Rg(mj) é 02 + 6 .
n*—m j
It holds from (2.43) that
(2'44) Rg(mj) g (62 + 6)—1 2 Rg‘l(n‘—m i)oS (m )
S(n*—m ;) ’ !
= (e + &) > Rbum
S(n*—Mj)
for all =1, ---, Q. Hence we have from (2.44)
Q
(2.45) ]ZJIRg(m,-) > (e + 5)-18(2 )Rfsl(n') .
= n¥—n)
Since
o, Bl = By 3\ Rl sl Ry = Rlwy X LEL(Sm)()

we have from (2.45)
Q
(2.46) 2 Ry > (6, + &) LET(S(n) () X Ry
i=1
Noting »* — n, = n,, we have the following from (2.42) and (2.46)

Q
(2.47) >, Ry > (6, — )0 + ) Rl -
£
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Hence we obtain from Proposition 8 and (2.47) the following relation:

NEok) My AG) \ Byy) 2 lim | inf (S @R} |,

0 L{F(n’,5/kg)}

where the summation is taken over all By, F(n/, 6/k;). Clearly the
right hand side of this inequality is greater than a positive number
2¢"*(¢, — €)(¢, + €)'R§(,y. This contradicts the assumption M,,(4(G)) = 0.

q.e.d.

Therefore we complete the proof of Theorem 1.

3. Hausdorff dimension of A(G) and Poincaré dimension of G.

1. In this section we shall consider the relation between the Haus-
dorff dimension of A(G) and the Poincaré dimension of G. First of all
we give the definitions.

Let I" be a Kleinian group with «~ e 2(I") and {Sel'|S(x®) = o} =
{id}. The Hausdorff dimension d(A(I")) of A(I') is defined as

3.1) d(A)) = inf {¢/2| M. ,(AI")) = 0} .
The Poincaré dimension of I' is
3.2) P(I') = inf { 2 RE< +oo} .

As to these values, the following two propositions are essential.
They are direct consequences of Theorem 1 (see [2] for the proofs).

PROPOSITION 5. Put d(A(G)) = p#*/2. Then
0 < Mup(A(G@)) < +o0 .
PROPOSITION 6. If M, (A(G)) =0, then
Ry < + oo,

SeG—{id}
2. The following two results are well known.

PROPOSITION 7 ([4]). If I' is a geometrically finite Kleinian group,
then
aAlM) = P2 2.
PROPOSITION 8 ([3]). Let I' be a discrete subgroup of PSL(2,C). If
Q') # @, then
Ry < +oo.

SeF={id}
Now we can prove the following theorem.
THEOREM 2. d(4(G)) = P(G)/2 < 2.
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Proof. From Propositions 6 and 7, it can be easily seen that d(4(G)) =
P®)/2 2. If d(A(G)) = 2, then Proposition 5 yields 0 < M,(4(G)) < + <.
Since Ygcq_ia; B < + o from Proposition 8, we conclude M,(4(G))=0 from
Proposition 7, a contradiction. Hence we obtain d(4(G@)) < 2. q.e.d.
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