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Introduction. The purpose of this paper is to investigate the dimen-
sion of the spaces of the vector valued holomorphic automorphic forms
defined on the domain D = {(z, w) eC2\δ(z — z) — \w\2 > 0}, where d is an
element of an imaginary quadratic field F with δ = —8(^0). Let Γ(N)
be an arithmetic subgroup of GR defined in §1. Let p be an irreducible
polynomial representation of GL2(C) of degree m + 1. Consider a Cm+1-
valued holomorphic function f(Z) on D satisfying

f(Ί{Z)) = p(J(y9 Z))f{Z)

for every ZeD and for every ΎβΓ(N), where J(Ύ, Z) is the canonical
automorphy factor on Γ(N) x D. Denote by SP(Γ(N)) the space of all
such forms. In [3], Cohn calculated the dimension of SP(Γ') in the case
where F = Qiλ/^ϊ), 8 = V^l, ρ(g) = det (g)k and Γ = GQf] Mz(Dr) (see
§1 for GQ). In this paper we try to extend his results to the case
where F is an imaginary quadratic field of class number one, p is an
arbitrary irreducible representation and Γ(N) is a principal congruence
subgroup of Γ(l).

§1 is devoted to classifying the elements of Γ(N), using several
methods of Cohn. In §2, we construct a good fundamental domain for
Γ(l). In §3, applying the method of Selberg [8] and Godement [4], we
reduce the computation of dim SP(Γ(N)) to that of certain integrals. In
the last section, using a method similar to those of Shimizu [9] and
Morita [7], we establish the following theorem:

THEOREM. Suppose that F is an imaginary quadratic field of class
number one and k ^ m + 6. Then

dim SP(Γ(N))

\Γ/Γ(N)\\(m + l) vol (Γ\D) + δ2n0(\δ\2n2

1)-1ζ(2) vol (C/δm)\E(F)\-

x i
3=0
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Various symbols used here will be explained in §4.

We note that we owe our results in §1 to those of Cohn. We also
note that Tsushima [11] has succeeded in computing the dimension of the
space of holomorphic vector valued Siegel modular forms of degree two,
and Kato [6] has derived the dimension formula of the space of holomor-
phic automorphic forms on SU(p, 1) of automorphy factor defined by
Jacobian.

The author would like to express his hearty thanks to Professor T.
Tannaka for his warm encouragements. He also would like to express his
hearty thanks to the referee suggesting some revisions of the original
version of this paper.

NOTATION. We denote, as usual, by Z, Q, R and C the ring of
rational integers, the rational number field, the real number field and
the complex number field. For a ring A, we denote by An

m the set of
all n x m matrices with entries in A, and denote A?(resp. Al) by An(resp.
Mn(A)). For zeC, we put e[z] = exp (2πiz) with i = V^Λ (Im i > 0).

1. Classification of conjugacy classes. This section is devoted to
summarizing several facts which we need later. Throughout this paper
we denote by F an imaginary quadratic field of class number one. Let
E(F) denote the unit group of F. Let J be a non-zero element of F
such that δ — —δ and Im<5 > 0, where the bar means the complex con-
jugate. Let

GQ = {ge SLΛ(F) \ 'gHg = H) (resp. GR = {g e SLB(C) \ 'gHg = H}) ,

I 0 0 δ\
where H = [ 0—1 0) and *g denotes the transpose of g. Then GQ is

\-δ 0 0/
a linear algebraic group defined over Q, and GR is its group of iJ-rational
points. Introduce a domain D in C2 determined by

D = {Z = \z,w)eC2\δ(z - z) - \w\2 > 0} .

We note that GR = SU(2, 1) and D = SU(2, 1)/S(U(2) x 27(1)). Define an
action of GR on D by

g(Z) = Y aγZ + aiW + α 3 ftjZ + ^<LW + fta \
V cλZ + C2W + Cz ' CλZ + C2W + C3 /

( x α2 aλ
&! b2 63 j e GR.

We say that the non-zero vector xeCB is positive, isotropic, or nega-
tive according as (x, x) is positive, zero, or negative, where {x, y) = lyHx
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for x, y 6 C3. By Lemma 1 of Cohn [3, Chap. I l l ] , we can classify the
elements of GR = GR — {aEz\az = 1} as follows:

( i ) an element g of GR is elliptic if g has a positive eigenvector and
has no isotropic eigenvector,

(ii) an element g of G'R is hyper elliptic if there exists a two-dimen-
sional non-degenerate subspace W containing an isotropic vector such
that gWaW and g\w = Xldw (λ Φ 1, |λ| = 1),

(iii) an element g of GR is hyperbolic if there exist linearly in-
dependent isotropic vectors vx and v2 in C3 such that gvt = 7tVi (ΐ = 1, 2)
with 71ΦΎ2f

(iv) an element g of G'R is parabolic if # has an isotropic eigenvector
and is neither hyperelliptic nor hyperbolic. Here we note that an eigen-
value λ of a non-isotropic eigenvector of gεGR satisfies |λ| = 1. The
following proposition can be proved by using the result of [3, pp. 21-22].

PROPOSITION 1.1. // geGR is either elliptic or hyperelliptic, then
there exists gf e SL3(C) such that

with \κ\ = 1 a = l, 2,3).

// 9 is hyperbolic, then there exists an element g' of GR such that

Γ \
g = g'\ OL2 \(g') ι with \OL2\ = 1 and ata3 = 1 .

PROOF. First we assume that g is elliptic or hyperelliptic. Then, by
[3, proof of Lemma 1 (p. 21)], g has eigenvectors xlf x2y xz such that
C3 = Cx1 + Cx2 + Cxs and xt (i = 1, 2, 3) are not isotropic. Then the eigen-
value λ, of g attached to xt satisfies |λj = 1. Therefore we obtain the
first assertion of Proposition 1.1. Next we assume that g is hyperbolic.
Then, by [3, proof of Lemma 1 (p. 21)], g has a basis {vlf v2, vz) of C3

such that gvi = Xtvt (i — 1, 2, 3), v3 is negative, vt (i = 1, 2) are isotropic
and vlf v2e{v3}

L. We may assume that (v3, v3} — — 1. Assume that
(vi, 2̂> = 0. Then we have {v1 + v2f vt) = 0 (i = 1, 2, 3). So vx + v2 = 0.
This is contrary to the fact that {vl9 v2, vs} is a basis of C3. Therefore
we can choose vectors vlf v2 such that (vlf v2) = — δ. Let fe be an element
of GLZ(C) satisfying hvί = elf /^;2 = e3 and Λv3 = μe2, where μ is a complex
number with \μ\ = 1, ex = «(1, 0, 0), e2 = '(0, 1, 0) and β3 = '(0, 0, 1). Then
we see that (hx, hy) = (x, y) for all x, y e C 3 and
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hgh-1 =

Now we have det (h) = 1 with a suitable μ. Therefore we obtain the
remainder of Proposition 1.1 and completes the proof.

Let ΌF be the ring of all integers in F. We consider a lattice L in
F* determined by L = A£)F, where

For a positive integer N, put

Γ = {ge GL3(F) \ g*Rg = 22, ( ^ - OF) , f (iSΓ) - {g e Γ \g =

where i? = [ —1
\

Γ = {g e GQIgL - L) and Γ(iSΓ) = {geGQ\(g- E3)L c iVL}( = AΓ(N)A'1) .

By the same method as that of Morita [7, Lemma 2], the following lemma
can be easily verified.

LEMMA 1.2. Let N be a positive integer iV(^3). Suppose that ζ is
an eigenvalue of g of Γ(N) and that ζ is a root of unity. Then ζ is
equal to 1.

Since R = A*HA, Γ(N) = AΓ(N)A~\ the above lemma holds for
Γ(N). Let g be an element of Γ(N) not belonging to the center of
Γ(N). We assume that g is elliptic or hyperelliptic. By Proposition 1.1,
all eigenvalues of g are complex numbers of absolute value 1. So, by
Lemma 1.2, g is equal to Ez. Therefore we have the following corollary.

COROLLARY 1.1. Under the same assumption as that of Lemma 1.2,
an element of Γ(N) — {aE3\as = 1} is hyperbolic or parabolic.

A vector v in L is called primitive, if a vector v belongs to aL with
aeΌF implies that a is an unit of OF. Now we can verify the following.

LEMMA 1.3. Under the above notation, every primitive isotropic
vector v 6 L can be embedded in a basis {v, v, y) of L such that (y, v) =
(y, V) — (v, v > = — 1 and y ± v, v.

PROOF. We observe that ex = <(0, 1, 0), e2 = \l/δ, 0, 1/2), β3 = (2/ί, 0, 0)
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satisfy L = OF{elf e2, e3} and det ((ei9 e i> 1^ i, i ί 8) = 1. According to [3,
Remark (3) (p. 24)], there is a vector v' e L with <>', v) = 1. Since OF

is a principal ideal domain and since <L, v) = {(x, v)\xe L) = DF, there
exists a basis {xlf x2f x3} of L over £V such that L = L f] {v}1 0 {#3}. Set
v' = a + nxz {a e L Π M 1 , w € £V). Since (v\ v) = 1, n belongs to E(F).
Thus L = Lf] {v}1 + {ι/}. Since L Π {v}1 Π {v'} = 0, we have L = Lίl
M 1 0 {ι/}. By [3, Remark (1) (p. 24)], we can verify L Π {v}1 = {v, x}.
Using [3, Remark (2) (p. 24)], we get

/<y, ?/> (v',v) (v',x)\

det (v, v') (v, v) (v9 x) I = - (x, x) = 1 .

\(x, vf) (x, v) (x, x) I

Set v" = v' + <>', x)x + 6v (6 e£)F). Then, <v", v> = <V, v> = 1 and
<v", ΛJ> = 0. Let d be the discriminant of F. If d = 1(4) or d ^ 1(4)
and <v', i;'> + <v', x><cc, v'> = 1(2), we can choose an element b of OF

satisfying (v", v"} = - 1 . We set # = x and v = - v " . If d m 1(4) and
<V, v'> + <v', ίc)<a;, v'y = 0(2), we can choose an element b of OF satisfying
{v", v"} = 0. In this case, we set y = x + v and v = — v" — x. Thus
{v, v, y) is a required basis of L. This completes the proof.

Now we can prove the following proposition.

PROPOSITION 1.2. Let g be a parabolic element of Γ. Then [g]Γ Π

PQ^Φ, where [g]Γ = {ΎgΎ'1 \ΊeΓ} and PQ = \\0 * * ) e r | . Further-
(\0 0 */ j

more, every eigenvalue of g is a root of unity.

PROOF. Since g is parabolic, there are only the following two cases
(see [3, proof of Lemma 1 (p. 21)]):

(i) g has no positive eigenvector but has a negative eigenvector;
(ii) Every eigenvector of g is isotropic.

By the same method as that of [3, Lemma 1 (p. 24)], we see that every
eigenvalue of a parabolic element of Γ belongs to DF. Therefore, since
Γ = AΓA~\ every eigenvalue of g belongs to OF, and every component
of g belongs to F. Let {λj JJ^ be the set of all eigenvalues of g. Then,
there exists an isotropic eigenvector x of g belonging to Fz. Indeed,
there is an eigenvector x of g in F\ If x is isotropic, x is a required
vector. So we suppose that every eigenvector x of g in Fz is negative.
By the first remark, x is negative. Set {cφ = {yeF3\(x, y) = 0}. Then,
{x}j> is a 2-dimensional vector space over F. Since (x, x) — (gx, gx) =
(ΎjX, ΎjX) = \Ύj\2(x, x)f we have Ίό Φ 0. So it is easily seen that g{x}F<z
{X}F. Therefore there exists an eigenvector x' e {x}F of g such that
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x' ± x. By [3, proof of Lemma 1 (p. 21)], xf is isotropic, which contra-
dicts the assumption on x. This shows the existence of the required
isotropic vector x. We can choose neF — {0} such that v = nxeL
and v is primitive. By Lemma 1.3, we can write L = ΌF{v, y, v} with
(v, v) = (y, y) = (v, v) = — 1 and y ± v, v. Let h be an element of
GL3{C) satisfying he1 = y, he2 = v, hez — v. Then, a simple calculation
shows that (hx, hy) = (x, y) holds for every x, y e C\ h(L) = L and
h-'gh e PQ. Set v = det (h). Then, v belongs to E(F) because h(L) = L.

/I 0 0\
We put h' = h\0 %> 0). We see t h a t hf~ιghf e PQ and h' e Γ. Set

\0 0 1/
M * * \

k'^gh! = 10 α2 * I. Since every eigenvalue of c/ belongs to DF, at

\0 0 α8/
(i = 1, 2, 3) belong to DF. Since det (g) = aλa2a3 = 1, α* is a root of
unity. Thus our proposition is proved.

Applying Lemma 1.3 and the method used to prove Proposition 1.2,
we can prove the following (cf. [3, p. 26]).

PROPOSITION 1.3. The group GQ coincides with ΓPQ.

2. Fundamental domain for Γ. For (α, n) eF x Q, put [α, n] =
(1 a n + δαα/2 \
f 0 1 aδ . W e define two groups Γ^ and ΓL1} by Γoo = {[α, w] 6 Γ}
\0 0 1 /
and ΓLυ = Γ Π P<?. Put m = {α 6 F | [a, n] e Γ^ for some n e Q). We note
that [a, n] e Γoo if and only if a e {21S) and n + δaά/2 e (4/δ). Therefore
we have the following lemma.

LEMMA 2.1. Let the notation be as above. Then, m is an ideal in
F. Moreover, if [a, n] and [a, nf\ belong to Γoo, then n — n' belongs to

(4/5) n Q.

Let L be a positive number. We can take the following set §«,
(resp. %H]) as a fundamental domain in D for Γoo (resp. ΓH]):

goo = {{z, w)eD\Re {z) e (4/3) f l Q a n d w e C/δm} ,

g£> = {(z, w) e Z) I Re («) 6 (4/δ) ΠQ and we {C/δm)/E(F)} ,

Foo(L) = {Ze%»\δ(z - z) - |w|2 > L} ,

K(L) = %ίl] Π Foo(L)

and

% = {Ze%™I|i(T, Z)\ ^ 1 for every ΎeΓ} ,

with
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/ / * * * \ \
j(Ύ, Z) = (cλZ + C2W + C3) 7 = 1 * * * 6 Γ .

\ \cx c2 cj I
By Proposition 1.3 and by BoreΓs reduction theory of algebraic groups
defined over Q, we can obtain the following (cf. [1, 2]).

PROPOSITION 2.1. Let notation be as above. Then % is a fundamental
domain for Γ and g satisfies the relation VL(Lf) d%(Z VΌo(L) for some L
and V.

3. Automorphic forms and the Selberg trace formula. First we
summarize the fundamental facts about the representations of GL2(C) on
finite dimensional vector spaces. We denote by ρm(g) the symmetric
tensor representation of degree m of GL2(C), i.e.

(Pm(g)f)(zi, z2) = f(az1 + cz2, bzL + dz2)

for every fe Vm and for every g = (a yje GL2{C), where Vm is the
vector space of homogeneous polynomials of degree m in (zlf z2). Put
Λ(«i, *z) = (vΊc\(m -k)\ Y1zh

1zfh (0 ^ k ^ m). We represent pm{g) with
respect to a fixed basis {fk(zί9 z2)}t=0 in Vm and denote the corresponding
matrix by the same symbol. For each positive integer k, put p(g) =
(det(g))kpm(g) for every geGL2(C). It is well known that any irreducible
polynomial representation of GL2(C) is given in the above way. For
each / and / ' in Vn, define an inner product </, /'> = Σ?=i k\{m — k)\akbk

with f(z19 z2) = ΣΓ=o akzϊzT~k and f'(zu z2) = ΣΓ=o bkz\z2~
h. It is easily seen

that <|0m(flO/, /'> = </, ί>w(^*)/'> for each /and / ' in Vm, where A* - '(A).
Therefore we have

P(9)* = P(9*)

For each g eGR and for each ZeD, we define an automorphy factor
J(9, Z) by

b2-δ-%w (1/3)6. + (l/δ)M\
. R , _ - , - » where g =

— C20 + CXW C3 + CjZ I

and Z = («, w). For each (Z, Z') 6 D x D, put

w z — z

with Z = 0, w) and Z' = (zf, w'). For each g e GR and for each Cw+1-
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valued function / on D, we define a Cm+1-valued function / | ^ on ΰ by

We call a Cm+1-valued holomorphic function f(Z) on ΰ a cusp form of
weight p with respect to Γ(N) if the following conditions are satisfied:

(i) 11/0(1/-i*M(Z, Z))f(Z)\\ is bounded on D,
(ϋ) / \py = f for every 7 e Γ(N),

where \\\au a2, , αw+1)|| = (ΣΓί1 |αJ2)1/2. We denote the space of all such
functions by SP(Γ(N)).

For each (Z, Zr) eD x D and for each g e GR, put

JK ,,,(Z, Z') = pCM(Z, g{Z'))-'p{J{g, ZT^pCMiZ', Z')) .

Define a measure dZ on D by dZ = (i{ — δ~ι\w\2 + z— z))~3dxdydudv with
z = x + ί̂ /, w = u + iv. It is well known that dZ is a GΛ invariant
volume element on D. We consider the Hubert space !QZ

P(D) consisting
of all holomorphic Cm+1-valued functions f on D satisfying

, Z))f(Z) \\>dZ < - .

Now we can prove the following lemma (cf. [4]).

LEMMA 3.1. Let the notation be as above. Then

f(Z) = c{p) \ pCM(Z, Z'V-WMiZ', Z'))f{Z')dZ'
JD

holds for every fe&P(D) with c(p)~ι = 2k+m-1π\-iδ)(2k + 2m - 3 ) ! !

{{2k + 2m - 2) !)~ ι ΣΓ= 0 ,C,(m - l)\{l + k - Z)\, where {2n -1)11 means

1 3 (2w - 1).

PROOF. Put f{Z) = *(0, , 0, {{-2d)~ι - z)~ik+m)). We can easily
check that fe&%D). By the same fashion as in Godement [4], we can
show that

f{Z) = c{p) \ P{
tM{Z, Z'))^p{*M{Z>, Z'))f{Z')dZ'

JD

for every fe$2

p(D), where c{p) is a constant not depending upon a choice
of /. Therefore we have

f(Z0) = c(p) \ pCM(ZOf Z'^pCMiZ', Z'))RZ')dZ'
JD

with Zo = (-1/23, 0). Thus we obtain

(3.1) e(p) \ pi'MiZ^ Z'))-WM(Z'9 Z'))f{Z')dZ'
JD
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= c{p) \ V, ••-,*, δ-k{\wr+δ(z'-z')}k(z'-zrr\(-l/2δ)-z'\-m+m))dZ'
JD

= c(p)(-2miδk+m+ι) \ '(*, , (2y-\w\2)k-3ym(
J2y-\w\2>o

x dxdydudv .

A direct calculation shows that

\ (2y - \w\2)k-*ym(x2 + (y + l/2)2)" ( f c + m )dxdydudv
J2y-\w\2>θ

δ) / c + " + 1 4- 2

x dxdy'dudv
—oojo J —oo J _oo

1ττΓ Γ(V" 8(V + ^)m(^2 + (y + r + iY)-{k+m)dxdydr
J_ooJo Jo

2)-1(2(fc + m)-3)-1 (2(fc + m)

»(Z2/ f" (
Observe that

Γ (1 + x2)~{k+m)dx = B(l/2, fe + m - 1/2)
J-oo

and

Γ yι+k-\V + l)- ( 2 / f + m + z-2 )d2/ = B(l + ifc - 2, k + m) ,Γ
Jo

where 2?(sc, i/) is the beta function. Thus the value of the integral (3.1)
equals

Σ,mι( )( ) ( ( m -
1=0

x 5(1/2, k + m - lj2)B{l + k - 2, k + m) .

Therefore we get the explicit value of c(p).

Now we prove the following lemma.

LEMMA 3.2. Let E and E' be compact subsets in D. Suppose that
k — m ^ 6. Then the series

Σ \\pCM(Z, Ί{Zf)))~1p{J{Ί9 z')*)"1!!
ΐeΓ

converges absolutely and uniformly on (Z, Z')eE x E', where \\A\
l/tr(ilA*).

PROOF. We can verify that
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(3.2) \\pm('M(Z, Z')Γ\\ \\pm{\/-i*M{Z', Z) )||

^ c |1 - (2«' + 3-')(2z' - δ-1)-1!""/2

for every ZeE and for every Z' e D, where c is a constant not depend-
ing upon Z, Z'. Let r be a sufficiently small positive number such that
E" = {Z"eE\3Z'eE' and V\z" - zj + \w" - w'\2 ̂  r) is contained in D
with Z" = (z", w") and Z' = (zr, w'). We fix ZeE. Then we have

KfK'M(Z, Ύ(Z')))-γj(y, zrXil

^ c \ \{p{λ/-itM{Z", Z"))(){tM{.Z, ΊiZ"))-1)*J(Ύ, Z'TXJ] dZ"
JE"

S c' \ \\(K*M(Z, ΊiZ"))-^ \\P(V-i'M(Z", Z"))p{J{Ί, Z")Y%dZ" ,
JE"

where c and cr are constants. Put ζ = Ί{Z"). Then

KpCM(Z, 7(Zf)))-^J(Ύ9 Z'rXil ^ c\ WpiiZ-i'M^, ζ))|| \\pCM(Z, O

By virtue of (3.2), we obtain

\\p(%M{Z, QTι\\dζ < oo

for any k ̂  m + 6, Hence for any ε > 0, there exists a compact subset
A in D such that

ί MV-VM^Q) || \\ρCM(Z, ζ))"1!!^ < ε .

Let E be a compact subset in B. Put p~\E) = {g e GR\g(Z0) efi).
Then p~\E) and 5 = U^ep-î j 9(A) ^^β compact. Since Γ1 is discrete,
S = {ΎeΓ\7(E")ΓiBΦ 0} is a finite set. Put n = %{ΎeΓ\Ύ(E") n
£"' ^ 0 } . Then

7(z/))-1) V(7 f z')-1)*^!

γeΓ-S JT{E")

^ nc \ \\(K*M(Z, ζ))-1!! \\p(v/-itM(ζ, ζ))|| dζ

^ »8 ί ||/o('Λf(Z, ζ))-1 II \)p(v/-itM(ζ',ζ'))\\dζ
JD-g(A)

^ nc εM,

where Z = g(Z0) and ζ = g{ζ') and ilf = max, e E \\ρ(V-VM{Z, Z))~
Hence we have proved the assertion:
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Put

K*(Z, Z') = c(p) Σ K,j(Z,Z').
γeΓ(N)

Applying Lemma 3.1 and Lemma 3.2 as in Godement [4], we can show
the following (3.3)-(3.5):

(3.3) f(Z) = \ K*(Z, Z')f{Z')dZf

holds for every / e SP(Γ(N)), where %(N) is a fundamental domain for
Γ(N);

(3.4) \\K£(Z, Z)\\ is bounded on %{N)

(3.5) dim SP{Γ(N)) = \ tr K£(Z, Z)dZ .

By (3.5), we have

dim SP(Γ(N)) = e(p) Σ ( Σ tr KPJ,(Z, Z)dZ ,

where 7' = β~λΊβ and 7 runs over Γ(N).
Now we have the following lemma.

LEMMA 3.3. Let L be a sufficiently large positive number. Then
for every Ze Foo(L) we have

\tτKPt[atnlr(Z9 Z)\^J(-2iδy-\Σ \
[α,n]eΓoo

where J is a constant not depending upon a choice of Z and 7.

PROOF. A simple calculation yields that

tr KPJ(Z, Z) = tr W'MiZ, 7(Z))-^(J(7, ZYΓp(?M{Z, Z))) .
Set ft(ίjf) = det (ff)*-" and p2(g) = det {g)mpm{g). Then p(g) = p1{g)p1{g).
Thus |tr KPJ(Z, Z)\ = \KPlJ(Z, Z)\ |tr (KPιJ{Z, Z))\. Put Z = ff(Z0). A direct
calculation shows that

tr KP2J(Z, Z) = tr

Note that 11 ̂ m(i/A-^SA"1) 11 > i(e) 11/ô CA-1) 11 for all positive Hermitian
matrix B satisfying B > εE2, where ε is a positive number and j(e) is a
function of ε satisfying j(e) > 0. So we obtain

\tvKP2j(Z, Z)\ ^ c\\p2{J{g-^g, Z0)*~ι

where c and cf are constants depending only upon Zo. Therefore, by (3.2),

sup {|tr if,2,r(^, Z)| IZ 6 A 7 6 GR} < oo .
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Thus

| tr KPtr(Z, Z)\ ^ MQάet CM(Zf 7(Z))-V(7, Z)*~ι *M(Z, Z))\)k~m

for every 7 eGR and for every ZeD, where M is a constant not depending
upon 7 6 GR and ZeD. By the same fashion as in Cohn [3], we can obtain

Σ \tτKPtla,M Z)\^C(-2iδy-\w\2yk+™+2\det(J(Ύ, Z)*-"M(Z, Z))\k'm .
[αr,π]eΓoo

By Lemma 3.3, we can prove the following.

LEMMA 3.4. Let k ̂  m + 6 (resp. Lo > 0) be a positive integer (resp.
a sufficient large number). Then

\ Σt\tτ KPJ(Z,Z)\dZ< - ,

where Ύ runs over /T'/XΛO/S - Γ£ Π β'ΨiWβ with β e Γ.

PROOF. Put Γ = β-ιΓ(N)β - Γ^ ^\ β~Ψ{N)β, Γ = Γ2> n β~ιΓ(N)β
and Γ" = Γoo Π β-ψ(N)β. It is seen that

S(Z) = Σ |tr KP,r{Z, Z)\ = Σ Σ |tr ϋ ^ . c . . ^ , ^ ) | .
-eΓ γeΓ/Γ" la,n]eΓ"

It follows from Lemma 3.3 that

S(Z) ^ C Σ (-2ίδy - M2)- fc+m+2

γeΓlΓ"

= c Σ,yo
^ CL~{k-m)/2+2 Σ

γeΓlΓ"

Since VL{L) is a Siegel domain, {ΎeΓ\Ύ(VL(L)) Π K(L) Φ 0} is a finite
set. Thus we obtain

Σ l/|det (*
ΓlΓ"

i/|det('ilf(Z,

V r F L )

Note that Urβr/r" 7(FJL(L)) = {{z, w) e ΓJ\D\ -2iδy - \w\2 ̂  L}. Therefore
we have the desired result.

Next we show the following lemma.

LEMMA 3.5. Let k ̂  m + 6 (resp. Lo > 0) be an integer (resp. a
sufficiently large number). Then

Σ tr KP r(Z, Z)dZ = lim Σ ( tr Kp r(Z, Z)(-2iδy - \w\2)~ksdZ ,
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where 7 runs over Γ£ f] β'T(N)β.

By Lemma 3.3, we have

Σ Σ |tr KPJ(Z, Z)\ ^ c(-2iδy - \w\2)-2

reΓ'/Γ" la,n]eΓ"

with a constant c. Since {-2iδy - \w\2)'ks ^ L~k8(Ze VL(L)) and

{-2iδy - \w\2)~ι'ksdxdydudv < oo ,

it follows from Lebesgue's convergence theorem that

Σ^ f tr KPJ(Z, Z)(-2iδy - \w\2)~k8-zdxdydudv

= \ Σ tr Kp r(Z, Z)(-2iδy - \w\2)-k8~zdxdydudv .
JV'^L) reΓ'

By Proposition 2.1, (3.4) and Lemma 3.4, we have

A | Σ tτ Kp§r(Z, Z)\dZ < - .
JF^(L) reΓ'

It follows that

lim ( Σ tr KPJ(Z, Z)(-2iδy - \w\2)~ks'3dxdydudv
8—0 jV'^iD reΓ'

= f Σ tr ̂  r(Z, Z)dZ .

Consequently our lemma is proved.

By Proposition 2.1, (3.4), Lemma 3.4 and Lemma 3.5, we have

PROPOSITION 3.1. Suppose that k ̂  m + 6. Then,

dim SP(Γ(N))

= c(p) Σ Γ( tr Kp E3(Z, Z)dZ + Σ ( trKp β-irβ(Z, Z)dZ
βeΓ(Γ(N) LJS r Jϊ

+ lim Σ \\ tr KPtβ-ίrβ(Z, Z)dZ + ί tr KPtβ-ir,β(Z, Z)
8-0 r ' (.Jδ—Foo(i-) ' JFOO(L)

X ( —

where Ί(resp. 7') runs over {7 6 Γ(ΛΓ)| β-'Ύβ £ Γ£} (resp. {Y e Γ(N)\ β~Ύ'β e
pa)

4. Explicit calculation of integrals. Put HN = {Ύ e Γ(N) 17 is
hyperbolic} and 17̂  = {Ύ eΓ(N)\Ύ is parabolic}. By corollary 1.1, we have
Γ(N) = HN UUN\J {E3} (disjoint union). It follows from Proposition 2.1,
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and Lemma 3.4 that

( Σ \tτKpr(Z,Z)\dZ<

So

(4.1) Σ ( tτKp7'(Z9Z)dZ=Σi[ tr Kp j(Z, Z)dZ ,

where 7 runs over {7 e Γ(N)\Y = β^ΊβS Γ£}}, 7 runs over all Γ-conjugacy
classes in HN and %y is a fundamental domain for the group
{7 € Γ177 = 77}.

To verify that the series (4.1) vanishes, it is sufficient to show that

I tr Kp γ(Z, Z)dZ vanishes for 7 e HN. For any 7 e Γ, put Cr = {ge
Jθfr

ΓI gy = 7flf.} and Cf = {# e GΛ | βfT = 7#}. Assume that 7 belongs to HN.
Then we can write

Ptr(Z, Z)dZ =\ RdzΛ R tr KPJ(Z, Z)dZ> ,tr

where dZ\res^. dZ2) is the restriction of dZ on Cf (resp. the induced
measure on C?\D) (cf. [5, Chap. X (p. 369)]). It is enough to show

, tr Kp>r(Z, Z)dZ2 = 0 .

Here we may assume

la, 0 0 \

7 = 0 a2 0 (|α2| = 1, a,άz — 1 and aλ Φ α8)

\ 0 0 aj
(cf. Prop. 1.1). A simple calculation shows

( a, 0

0 0 aj

is a fundamental domain for Cf in D. Consequently

0 α2 0 \eGR\ and {(v + i, v') e

S v/-2iδ f oo

dv' \ v(». v'){δ((v + i - \a.\\v - i))
0 J-co

where c is a constant and φ(v, vr) is a polynomial of degree m in (v, v').
Since
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v*l(v + aY'dv = 0 (α?Λ, j ' - j ^ 2) ,

tr KPJ(Z, Z)dZ> = 0 .
\DCγ\D

Therefore we conclude that

(4.2) ( Σ tr KPJ,(Z, Z)dZ = 0 ,

where 7 runs over {ΎeΓ(N)\Y = β-'Ύβg Γ£]}.
Next we calculate the integral

(4.3) lim Σ ( tτKp r(Z, Z){-2iδy - \w\2)-k8dZ
s-+o r Jo?

= lim Σ [ tr Kp ~{Z, Z)(-2iδy - \w\2)~ksdZ ,
8-+o γ Jgfjr

where Ύ runs over {ΎeΓ(N)\Y = β^ΎβeΓ™ - {E^}}, y runs over all Γ-
conjugacy classes in UN and %y is a fundamental domain for C7. By
Lemma 1.2 and Proposition 1.2, we may assume that 7 = [α, %].

First we treat the case where 7 = [0, n]. A simple calculation yields
that §7 = %£> (cf. Lemma 2.1). Since

tr KPj(Z, Z) = Σ ((-2iδy - \w\2)l{-2iδy + δn - \w\2))k+ί ,

the integral in the sum of the right hand side of (4.3) is equal to

lim ί"° dx \ (-ίδ-*)-1 Σ (~2iδy - \w\2)k+*
β-»0 Jo Jf-2iδy-]w\2>0 y=0

\we(C!δm)IE(F)

x (-2iδy + δn - \w\2)-k~j{-2ίδy - \w\2)-z~k8dydudv

= lim (-iδ-3)"1 Σ no(-2iδ)-1 vol ((C/δm)/E(F)) f°° yk+^ks-\y + δn)-k~jdy
s->o i=o J o

m

x (fc + j - l)-\k + 3 - 2)-1φ(k(k + jy'k

x exp(-{sgn(w)τα((/b + j)ks(k + j)"1 +

where vol ((C/8m)E(F)) = ( dudv(w = u + iv), (4/δ) Π Q = ( « (»0 > 0)
J (.CΙδm)E(F)

and ^(s) -> l(s -> 0).
If 7 == [a, n](a Φ 0), then, by a simple calculation, we can show that

the integral

( tτKPtf(Z9 Z)(-2ίδy - \w\2yk8dZ
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vanishes. Consequently we have established the following theorem.

THEOREM. Let F be an imaginary quadratic field of class number
one. Suppose that k ^ m + 6 and N ^ 3. Then

dim SP(Γ(N))

= {2k+m~1π\-iδ)(2k + 2m-3)!!((2k + 2m-2) ! r 1 Σ«C,(m-
1=0

vol (Γ\Z>) + δ2w0(|δ|2^)-1ζ(2) vol (C/δm

vol (Γ\D) = ( dZ, vol (C/δm) = \ dudv(w = u + iv), Q n (4/δ) =

(n0), Q Π (4/δ) ΓΊ (iV) = (nλ)(nQ, nx > 0) αtid ζ(s) is ίΛ,e Riemann zeta func-
tion. The volumes of Γ\D and C/δm are given as follows:

(1 i/ ^ ^
vol (Γ\D) = 2-3{|δ|2(iδ-1)3}-VL(-2, Z)ζ(-l) x ,

l t/ ^ = %ny —ό),
where L(s, X) = ζF(s)/ζ(s) and ζF(s) is the Dedekind zeta function of
F (see [6, 12]), and

vol (C δm) = i κ
7 ; \\ι/d\ if d =

where d is the discriminant of F.
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ADDED IN PROOF. The referee has informed the author that H. Koseki
calculated the traces of Hecke operators acting on the spaces of automor-
phic forms on S 17(1, 2) and SJ7(3).






