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SHUNSUKE MOROSAWA AND MASAMI NAKADA

1. Preliminaries. Let D be the unit disk in the complex plane and
let 3D be its boundary. We think of D as endowed with the Poincare
metric ds = (1 — l^l2)"1!^!, zeD. In this paper, we consider a Fuchsian
group Γ acting on D whose elements are all hyperbolic transformations
and whose Dirichlet fundamental region F with the center at the origin
0 is a noneuclidean regular 4^-sided polygon (g *>2). Moreover, the action
of Γ on D is given by identifying the sides of F as in Fig. 1. We denote
by {(Xi, /3j?=i the generators of Γ.

We label the directed geodesic segment from 0 to α<(0) (or βt(0)) the
letter at (or δ,) and the directed geodesic segment from 0 to aϊ\Q) (or
βT\O)) the letter ar1 (or δΓ1)- Similarly, for every 7 e Γ , we label the
directed geodesic segment from 7(0) to 7(^(0)) the letter at and so on.
In this way, we have the net in D consisting of geodesic segments labeled
as aif aτ\ δ* and δΓ1 (1 ^ i ^ g). Every mesh of the net is also a non-
euclidean regular 4#-sided polygon. We denote by O1 (or O2) the order of
the letters corresponding to the sides on the mesh located succeedingly in
the clockwise (or anticlockwise) sense. At every vertex of the net, there
are Ag directed geodesic segments. We denote by O3 (or O4) the order
of the letters corresponding to the sides located succeedingly around the
vertex in the clockwise (or anticlockwise) sense. Hence every consecutive
subsequence of afoa^br1 agbga^b^a&a^br1 is of order Ot. Similar-
ly, every consecutive subsequence of bgagbg~

1ag~
ι b1a1bτ1az1bgagbg~

1ag~
1 ,

bgd^b^dg - bja^b^afigd^b^ag or a1bτ1aτιbι ajb^a^bgajb^az1^ is
of order O2, O3 or O4, respectively.

In the following argument, we set at = c4i_4, bϊι = c4ί_3, aiι = c4ί_2

and bt = cu_x (1 ^ i ^ g). Further, we set at = 74i _4, βϊι = 74ι-_3, aj1 =
Ύu-2 and βt = 74ί_! (1 ^ i ^ g).

We denote by cγι the directed geodesic segment of the inverse direc-
tion of cit Since cj1 is the directed geodesic segment from 7^0) to 0 =
^iOrXO)), it is by its definition the letter corresponding to the directed
geodesic segment from 0 to 7^(0). Clearly, cjι is ci+2, if i = 4=j — 4 or
Aj — 3 for some j , and cj1 is c*_2, if i = Aj — 2 or Aj — 1 for some j .
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FIGURE 1
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we set L(cilcH ) =

cin satisfies the following three

For a finite sequence chci2 c<w, we consider a directed broken geo-
desic path L(chcί2 cin) in D initiated at the origin 0 as follows: L(ch)
is the directed geodesic segment from 0 to 7^(0) and L(chci2 c ίw_1c ίJ
consists of L(chcί2 cίn_) with the terminal point ΎtlΎi2 7*^(0) and
the directed geodesic segment cin from ΎhΎh 7i%_1(0) to
^ - ^ ( O ) . For an infinite sequence

Assume that a finite sequence chch

conditions:
(C.I) For every j (2 ^ j ^ w), c<. is not cϊ}..
(C.2) There are no more than 2g consecutive sequence in order Ox

or O2.
(C.3) If there is a 2g consecutive sequence in order Oι (or O2), say

c*m+icW2 ' " ' cim+2g ( ^ + 2^ < w), then c<m+2^+1 is one of the 2g — 1 letters
succeeding c^+2g in order O3 (or O4).

In this case, the finite sequence c^c^ cin is called a finite admissible
symbol. Clearly, if chch ci% is a finite admissible symbol, then cίχci2 cir

(1 <; r ^ w) is also a finite admissible symbol. An infinite sequence chci2

is called an infinite admissible symbol, if, for every n, chch cin is a
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finite admissible symbol. Nielsen [2] associated a finite admissible symbol
chci2 cίn with a unique closed arc [chch cin] on 3D determined as
follows: [ch] is the minor closed subarc on 3D which is the projection
of the side of F from the origin, where the side of F is orthogonal to
the geodesic segment ch (see Fig. 1), and [chch Ctn_1c<J is the closed
subarc [chch v J n 7 Λ ' ' ' ^ - i f e j ) * H e showed that, for an arbi-
trary point ζ of 3D, there exists an infinite admissible symbol chci2

satisfying n~=i IA/^ '"* c*J ~ {Q a n d that this infinite admissible symbol
chci2 corresponding to ζ is uniquely determined except for a denumer-
able number of points on 3D. For the point ζ of this exceptional set,
there are two infinite admissible symbols cHch and chch satisfying
Π«=i [oHch ct J = Πm=i [chch cjm] = {ζ}. He also showed conversely
that every infinite admissible symbol chch satisfies nϊU IAA2 * *# CiJ =
{ζ} for some ζ e 3i). Thus an infinite admissible symbol represents a point
ζ of 3D and is said to be the Nielsen development of ζ. Moreover, Nielsen
characterized hyperbolic fixed points of Γ by proving the following.

THEOREM A. Let Γ be a Fuchsian group mentioned above. Let ζ be
a point of 3D and let c^c^ be its Nielsen development. Then ζ is a
hyperbolic fixed point of Γ if and only if there exists a finite admissible
symbol chch cβn and an integer m ^ 0 such that cim+kn+1 = ch, cim+Jen+2 =
°s* *" •> cim+k,+n = €>n f°

r αiί fc = 0, 1, 2, .

We call the point ζedD a transitive point under Γ if, for all ordered
pair (ζlf ζ2) of two distinct points of 3D and all zeD and for all ε > 0,
there exists an element yeΓ such that |ζ x - 7(z)\ + |ζ2 - τ(ζ)| < ε. If a
point ζ e 3Z) is not a transitive point under Γ, we call it an intransitive
point under Γ. The following theorem due to Hedlund [1] gives a
characterization of transitive points under Γ.

THEOREM B. Let Γ be a Fuchsian group mentioned above. Let ζ be
a point of 3D and let chch be its Nielsen development. Then ζ is a
transitive point under Γ if and only if for every finite admissible symbol
chch cί%, there exists an integer m ^ 0 such that cim+1 = ch, cim+2 =

In this paper, using these theorems, we shall prove the following.

THEOREM. Let Γ be a Fuchsian group mentioned above. For every
integer k with 1 ^ k ^ 4# — 1, consider a mapping

fk: z\-+z exp (i/ — lkπ/2g) .

If a point ζ of 3D is a transitive point under Γ, then fk(ζ) is also a
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transitive point under Γ. If a point ζ of 3D is a hyperbolic fixed point
of Γ, then fk(ζ) is also a hyperbolic fixed point of Γ.

The proof of this theorem for k Ξ= 0 (mod 4) is given in § 3 and for
k = 1, 2 or 3 (mod 4) in § 5 and § 6. Several lemmas and tables are stated
in § 2 and § 4. Finally, in § 7, we give an example of the Nielsen develop-
ment corresponding to an intransitive point ζ. The Nielsen development
of its image/2ff(ζ), which is the symmetric point of ζ with respect to the
origin, is also given.

2. Some lemmas and tables.

2.1. For integers k (> 0) and m, we set [m]k = m — kn with 0 ^
[m]k < k, where n is an integer. For every integer i with 0 ^ i ^ 4gr — 1,
we define the integer l(i) by cHί) = cϊ1. Moreover, for any pair (ct, cs)
with 0 ^ i, j ^ Ag — 1, we set (ci9 cά) = [£ — j]4g* As stated in Prelimi-
naries, if [i]4 = 0 or 1, then l(i) is i + 2, and if [i]4 = 2 or 3, then l{i)
is i — 2. Therefore we have the following Table 1.

0

2

1

2

2

40-2

3

4flr-2

TABLE 1

LEMMA 1. Let chch cin be a finite admissible symbol and set
fk(L(chch cin)) = L(chch cjn) for a fixed k. Then chch cjn is also
a finite admissible symbol and

k]4g and

for 1 n — 1.

cjn is a finite admis-PROOF. By definition, we easily see that chch

sible symbol.
Since fk is the rotation of angle kπ/2g around the origin, we have

fk(L(ch)) = L(ch) for JΊ = [ix + k]Ag. At the terminal point of L(chci2 cίr),
r i> 2, the angle θ from cϊ(<r) to cir+1 is <cir+1, cHίr))π/2g. On the other
hand, at the terminal point of L(chch cJr), the angle from cιιir) to
c i r + 1 is equal to θ (see Fig. 2). In other words, we have

Therefore j r + 1 = [l(jr) + <c<r+1, c,(<r,>]^ for 1 ^ r ^ n - 1. This proves
the lemma.
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l(Jr)

C'2 \

FIGURE 2

LEMMA 2. Let chcί2 cin and chch cjn be as in Lemma 1. Then

L r=l Jig

where er = 0 or ± 1 .

PROOF. For integers h, m, n with 0 ^ h, m, n ^ 4g — 1, we have

( 2 ) <cA, cn> = [<cΛ, cm> + <cm, cn>]4ί7

Hence (cίn, ch) = [Σr=ί <c< r + 1, c ί r>]4ff and <c< r + 1, c ίr> = [<c< r + 1, cZ(ίr)> + <c I ( < r ),

Cϊr>]4u Therefore we have

[ n-l n-1 "1

Σ <c<r+1, cHir)y + Σ <ci«r ), c<r>J^ .
Similarly we have

<Cin> Ch> = P S <βyr+ι, ^ί(ir)> + Σ <CHir), C i r>Ί .
Lf=l r=l _j4g

By (1), we see

( 4 ) <C,V Ciχ> = [ Σ <C<r+1, Cl{ίr))

As <cl(<fl), c ίr> is equal to 2 or 4g — 2 by Table 1, we see

tn- l n - l "1

Σ <c<r+1, cl{ir)) + 2 Σ e'r\ ,
r = l r = l J4ff

Σ
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where e'r = (cl{ίγ)f cir)/2 = 1 for [ir]4 = 0 or 1 and e'r = {(cHir)t cir) - 4#}/2 =
— 1 for [i r]4 = 2 or 3. Similarly we obtain

[jn - iJiα = <cin, ch) = Γ Σ <c,r+1, c,(ir)> + 2 Σ β r ' i ,
Lr=l r=l Jig

where e? = (clUr), cir>/2 = 1 for [i r] 4 = 0 or 1 and e'r' = {<cZ(ir), cir> - 4#}/2 =
— 1 for | j r ] 4 = 2 or 3. Therefore we have

where βr = (e" — eJ)/2 = 0 or ± 1 . This proves the lemma.

This lemma shows the equality

( 5 ) [jnl = [in + k], ,

from which we have the following Table 2.

Value of [iJ*

0

1

2

3

0

0

1

2

3

1

1

2

3

0

2

2

3

0

1

3

3

0

1

2

TABLE 2

COROLLARY. Let chch cjn be as in Lemma 1 andcin and chch

assume [k\ = 0. Then j r = [i r + k]4g for any r (1 <* r ^ n).

PROOF. By (5), we have [jr]A = [ΐ r]4 for any r (1 ^ r <̂  n). So Table
1 implies <cί(<r,, cir> = <cI(yr), cjr). Hence we see e'r = e" in the proof of
Lemma 2. Therefore we have j r — [ir + k]ig for 1 <L r ^ n.

2.2. Let A = chch cin be an arbitrary finite admissible symbol
and let c8lc82 cSNchch cin = c8lcS2 cSiVA also be a finite admissible
symbol. Set

fk(L(c8lcS2 c8NA)) - L(c ί χc ί 2 ctNchch cjn) .

By Lemma 2, there exists a p (Q ίί p ^ g — 1) uniquely determined by
cSlc82 cβiV. and fc such that j \ — [ίx + k + 4p]4ff. So we may write j \ =
ji(p) Since j r (2 ̂  r ^ n) is determined by j\(p) and A, we may also
write j r = jr(p) and set Ap = ch{p)ch(p) cy n ( p ). Thus we can write as
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fk(L(c8lc82 c8NA)) = L(chct2 ctNAp) for some p (0 ^ p ^ g - 1) .

LEMMA 3. Let A = chci2 cin be an arbitrary finite admissible
symbol. Let c8]c82 c8NA and cVχcV2 cVMA be both finite admissible
symbols and assume

fk(L(c8lc82 c8NA)) = L(cHcH ctNAp)

fk{L(cVlcV2 cVMA)) = L(cμicμ2 cμMAq)

for some p and q (0 ^ p> q ^ g — 1), where Ap = chip)chip) cjnip). Then
<fiιiίrip))> cir(ί»> = (cιur(^ cu^y for 1 <> T ^ %. Furthermore, if p Φ q, then
Jr(p) Φ JΛo) for 1 ^ r ^ n.

PROOF. By (5), we see [jr(p)]4 = [ir(g)]4 = [ir + k]4 for 1 ^ r ^ nf so
by Table 1 we have

)), c ir(p)> = (clUriq)), cjriq)) for 1 ^ r ^ n .

By Lemma 2, we have ^(p) = [i± + k + 4p]4ff and ^(g) = [i, + fc + 4g]4ί/.
Hence j\(p) Φ j\(q) if p Φ q. The formula (4) shows

[OT-l m - 1 "~|

Σ <c < r + 1 , cZ ( ΐ r )> + Σ <Cί(if.(p,,, c i r ( ? > )>
r=l r=l J4ff

for 2 ^ m ^ n, so we have

[ m - l m - l "1

i i (p) + Σ <c<r+1, cZ(ίr )> + Σ <cκ, r(1,),, c i r ( p ) >
r=l r=l J4ff

for 2 ^ m ^ n. Similarly,

[ m-l m-l Π

J\(Q) + Σ <c < r + 1 , cZ(ίr )> + Σ <A( ir(f f,,, c i r ( f f )>
r=l r=l U4ff

for 2 ^ m ^ w. Since <c ϊ ( i r ( ( r ) ), cjr{q)) = (clUr{p)), cj{p)) as proved already,

we see jm(p) Φ jm(q) for 1 <* m tί n, if p Φ q.
LEMMA 4. Let chip)chip) cjn(p) and chiq)ch(q) cjnlq) be those in

Lemma 3. Then

/n particular, if ix = in, ίfeβti <Cyn(p), cil(p)> is α multiple of 4.

PROOF. Using (4), we see that the first statement of the lemma is
obvious from Lemma 3. If iγ — in, the formula (3) shows 0 = [Σ?=ί (c*r+i>
cmr)y + Σr=ί (cUir), cir)]4gf from which we have [Σr=ί <c<r+1, c i ( ir)>]4ί/ =
[ - Σ r = ί <cl(<r,, cir>]4ff. Hence (4) implies

= Σ {<filiίrlp))f Cjrip)) - <C I ( < r ), C ir>} .
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By Table 1, the right hand side is a multiple of 4. Therefore the second
statement of the lemma is obtained.

2.3. Now we take a finite admissible symbol A = c^ (0 ^ i ^ 4# — 1)
and assume that c8lc82 c8NA is also a finite admissible symbol. Set

fk(L(c8]c82 c8NA)) = L(chct2 ctNchch) .

Then, using (1) and (2), we see

= [<^ 2, cI(il,> + <c l ( i l), ch)]4g = [<Ci, cI(<>> +

For all integers m, n with 0 ^ m, w ^ 4gr — 1, we have

( 6) <cm, O + (cn, cm> - 4flf .

Hence [j2 - j\]4g = [4flr - <cl(<), c,> + <cZ(ii), cil>]4ί7. Therefore

The value [iJ 4 is determined by Table 2 and <cI(<), Ci) and <cZ(il), cix> are
obtained by Table 1. So we have the following Table 3.

Value of j 2

0

1

2

3

[ii

[ii

0

ii

ii

- 4 J
4 f f

- 4 ]
4 ( /

1

ii

[i i - 4 ]
4 f f

[ii - 4 ]
4
.

ii

[ii

[il

2

ii

ii

+ 4]
4 ( 7

+ 4]
4 (
;

[ii

[ii

3

ii

+ 4]*

+ 4]
4 ( 7

ii

TABLE 3

Next we consider another finite admissible symbol A = cfiu+i]igc
(0 ^ i ^ 4flf — 1). We also assume that c8lc82 c8

symbol and set

fk(L(c8lc82 c8NA)) =

Then, by (1) and (2), we have

c8ΛΓA is a finite admissible

ctNchchcώ .

<fi +i\ig,
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Using (2) and (6), we see

[(Ci, Cl{ίi+U4g)) + (Cίi+ύig, Cm}]4g

= [(fitf Cu+ύig> + (fiίi+lligf

Hence we have

( 7 ) j 5 = L?Ί - <C|([i+i]4|r), Cίί+U4g) + <finh)9 Ch} - l

By the use of Tables 1 and 2, we have the following Table 4.

Value of j \

(cif cm}]ig

1

2

3

0

[Jl - 4]4g

*

1

*

*

b\ + 4]4{;

2

[ii + 4]4,

*

*

3

*

*

b\ - 4]4g

TABLE 4

For instance, in the case where [i]4 = 0 and [fc]4 = 1, first we see
[i + 1]4 = 1 and Table 2 shows [iJ 4 = 1 and [i2]4 = 2 and next we see
<A(ή)> cή> = 2 a n ( i (cιu2)> ci2) = 4^ — 2 from Table 1. Hence (7) gives
3z = b\ — 4]40. In other cases, similar arguments give the values of j z

in the above table.

LEMMA 5. Let cucίt be the Nielsen development of ζ on 3D and set

Then chch

L(chch •) = fk(L(chch •-.)) .

is also the Nielsen development of fk(ζ) on 3D.

PROOF. AS is easily seen from Lemma 1, chch is an infinite
admissible symbol. From the construction of the interval [chch cin]
we have

fk([chci2 c,J) - [chch cjn] .

Hence Λ(ζ) = Λ(ΓCU [chci2 c,J) = n ^ Λ f l c ^ c j ) = ΠΪU [cyιcΛ c J .
Therefore cyic i2 is the Nielsen development of fk(ζ) on 3D.

3. Proof of Theorem in the case [fc]4 = 0. First assume that a
point ζ on d£> is a transitive point under JΓ. Let c8jc82 be the Nielsen
development of ζ. Take an arbitrary finite admissible symbol cj}cJ2 cjn

and set
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fig-k(L(chch cjn)) = L(chch cj .

Lemma 1 shows that chch cin is an admissible symbol. Since [fc]4 = 0,
we have [Ag — &]4 = 0 and Corollary of Lemma 2 implies ir = [jr + Ag —
Jc]ig = [jr — fc]40 (1 ̂  r ^ n). By Theorem B, there exists an N such that
C*N+1 = Ch> C*N+2 = Ch> * * *> C*N+n = < V S i n C Θ ^ = ^ ~ ^ L , Wθ liaVβ j r =

[i r + &]4ίΓ Therefore, by Corollary of Lemma 2, we see

fk(L(cSlc82 c ^ c ^ et J ) - L(cflcί2 - ctNchch ci%)

for some finite admissible symbol cHch ctN. Hence fk(L(cSlca2

c8Nchch . . . cinc8N+n+1 ..-)) = I>(^c ί 2 ctNchch . . . c i Λ c t i r + # + 1 . •). Noting
Lemma 5, we see that the Nielsen development of fk(ζ) includes the
sequence chch cjn. Theorem B implies that fk(ζ) is a transitive point
under Γ.

Next assume that ζ is a hyperbolic fixed point of Γ. Then, by
Theorem A, the Nielsen development of ζ is of the form cSlc82 cSNchci2

cinchci2 cίnchci2 for some N and for some finite admissible symbol
chci2 cίn. Corollary of Lemma 2 implies

fk(L(c81cS2 c8Nchci2 cinchcί2 - cinchch - .))

- L(chct2 ctNchch cjnchch cjnchch •) ,

where j r — [ir + k]ig (1 ^ r ^ n). This means that the Nielsen develop-
ment of Λ(ζ) is of the form ctjct2 ctNchch cjnchch cjn . Theorem
A shows that fk(ζ) is a hyperbolic fixed point of Γ.

4. More several lemmas for the proof in the case [&]4 Φ 0.

4.1. We need more several lemmas for the proof of our theorem in
the case [&]4 Φ 0.

LEMMA 6. Let chcί2 cin be α finite admissible symbol. Then there
exists an ίn+1 such that cίlch cincin+1chcί2 cίn and chcί2 c ί ί lc ί ί i + 1c i lc [ i l + 1 ] 4 gc i

are both finite admissible symbols.

PROOF. First assume that cin_2g+1cin_2g+2 ctn (n — 2g + 1 ^ 1) is
arranged in order Ot (or O2). We choose cin+1 out of 2g — 1 letters suc-
ceeding c^l in order O3 (or O4) such that c ί % + 1 Φ c^1. Here, if c<:Lc<2 chg

is arranged in order Ox (or O2), then c ΐ? t+1c ΐ l must not be arranged in order
Ox (or O2). There are 2^ — 3 such choices of cin+ί. Since g ^ 2, it follows
that such a c ί%+1 exists. By this choice of c<w+1, the sequences c<]Lc<2

cincin+ichch '" cin

 a n d C n c ί 2 ' *' cinct«+iciict*i+iU9Ch b e c o m e finite admissible
symbols.

Next assume that n ^2g — 1 or that cί%_2ff+1cίw_2ί;+2 cin is not
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arranged in order Ox or O2. There are Ag — 3 choices of cin+1 such that
cin+i Φ CT^ and cincin+1 is not arranged in order O1 or O2. Among these
Ag — 3 ones, we choose a c i w + 1 such that c iw+1c ΐ l is not arranged in order
Ox or O2. Since there are 4# — 5 choices of c<Λ+1 satisfying these condi-
tions and since g ^ 2, we can choose a desired c<ll+1.

4.2. Let cyiCy2 cjn be an arbitrary finite admissible symbol and set

f4g-k(L(chch cjn)) = L f o ^ cin) .

For this cίχcί2 ci%, we choose cin+1 as in Lemma 6 and set A = chci2

Cin^ +l' W β S θ e t h a t ^ * ' ' A> A C H A C h ' * * ^ 1 ^ a ϊ l d ^H^CH+l^/H

Acίlcίh+ύigch Ac^Cc^+iĵ c^A are all finite admissible symbols. Evidently,
we have fk(L(chch cin)) = L(chch cjn) so that fk{L(A)) = L(chch

cjncjn+1) for some j n + 1 . Consider a finite admissible symbol c8]c82 c8MA.
As was stated in § 2.2, we may write as fk(L(c81c82 c8MA)) = L(ctlch

ctMAp) for a p determined by cnc82 cSM and fc, where Ap = chip)ch{p)
cJn+i(p) a n d ii(ί>) — IΛ + k + 4p]4ff. In particular, we see j x = [it + k]4g =
£(0) and hence ^(p) = [i, + fc + 4p]4ff = [^(0) + 4p]4ff = [j\ + 4p]4ff. More-
over, we may set fk(L(c8lc82 c$MAch)) = L(cίχcf2 ctMApch{q)) for a g
determined by cSlcS2 caifA and A; (0 ^ g ^ r̂ — 1).

LEMMA 7. Lei A = chch c i Λ + 1 be the finite admissible symbol as
stated above and let p and q be integers determined for a finite admissible
symbol cSlc82 c8MAcH as above. Suppose that p = q and that B —
c

8l

c82 ' * o^Ac^Ac^ AchA is a finite admissible symbol, where A appears
g times. If ([ij4 f [k\) = (0, 2), (0, 3), (1, 1) or (1, 2), then

fk(L(B)) = L(cHcH ctNAp,ch{pΊAίp,_ύgchiίp,_ύg)

for some p' (0 ^ pf ^ g — 1) αm£ /or some cίjLcί2 ctN. Furthermore, if
([iiL [*D = (2, 2), (2, 3), (3, 1) or (3, 2),

fk(L(B)) =

/or some p' (0 ^ p' ^ g — 1) αwd /or some c t lc ί2 ctN.

PROOF. First we consider the cases ([ίj4, [k]±) = (0, 2), (0, 3), (1, 1) or
(1, 2). Set fk(L(c8lc82 cSΛΓ)) = L(chct2 ctN). By Lemma 2, there exists
a p' determined by cSjc82 - — c8N and & such that fk(L(c8lcS2 c8NA)) =
£ K c ί 2 < v l P 0 . We set fk(L(c8lcS2 c.^Ac^)) = L(ctlct2 c^Ap/Cyl(ffΊ).
Then, Lemma 4 shows <Cyl(ff), cjlip)) = <c i l ( g Ί, c i l ( p Ί>. The assumption p = g
implies pf = q'. Hence we seefk(L(c8lcS2 c8iVAcίχ)) = L(ctlcti ctNAp,ch{pf)).
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By Table 3, we have fk(L(c8lc82 c8NAchch)) = L{cHcH ctNApfch{pΊcίhtpΊ_^g).
Since j\(p') = [ix + k + 4p']4ί7, we see jt([p' — 1],) = [ix + k + 4[p' — l]J4ί7 =
ft + k + 4(p' - l)]4ί7 = [^(p') - 4]4<7. So we have fk(L(c8lc82 c8NAchch)) =
i f e ^ c^Ap/Cil(p/,cil([p/_1]ir)) and hence fk(L(σ8lc82 c8NAchA)) = L(chctt

ctΛrAp/Cyl(p/,A[p,_.l3,). Now assume fk(L(c8lc82 c.^Ac^Ac^)) = I / f e ^
ĉ Aj/Cŷ p/ίA /̂.̂ Cŷ g//,). Then, using Lemma 4 and the assumption p = q
again, we see j\([p' - l]g) = j\(q") and hence fk(L(c8lc82 c^Ac^Ac^)) =
L(chct2 ctNAp>cJl{P')Aίp>_mlΊgcJl{ίpf_i]g)). Continuing this procedure, we have

the desired formula.
In the cases ([ij4, [jfcJJ = (2, 2), (2, 3), (3, 1) or (3, 2), we have the

desired by the argument similar to the above.

LEMMA 8. Let the finite admissible symbol A = chci2 cin+1 and
integers p and q be those in Lemma 7. Suppose that p — q and that
B = c8ιc82 c^Ac^Cu^^c^Ac^u^^ Achcih+lhgchA is admissible,
where A appears g times. If ([ij4, [fc]4) = (0, 1) or (3, 3), then

fk{L{B)) = L(chct2 ctNApfchipΊcmichi[pf_ύg)A[pf_llg

for some p' (0 ^ p' ^ g — 1) αmZ /or some ctlcH ctN, cmi, , ^ ^ ^ //

([iiL MO = (1. 3 ) or (2,1),

fk(L(B)) =

for some pf (0 ^ pf ^ g — 1).

PROOF. We assume ([ij4, [fc]4) = (0,1) or (3, 3). Set/A(L(c8lc82 cj) =
L(chct2 ctN). By Lemma 2, there exists a p ' determind by c8jc82 — c8N

and fc such that fk(L(c8]c82 c8NA)) = L(chch ctirAp>). From the proof
of Lemma 7, we see fk(L(c8lc82 c8NAch)) = L(chct2 ctNAp,ch{pΊ). Table
4 implies fk(L(c8]c82 c^Ac^+i] ,/^)) = L{chch c ^ A ^ c ^ ^ c ^ c ^ ^ J ,
where mλ is determined by c8lc82 c8^Acί]L and k. As was seen in the
proof of Lemma 7, we have [j\(p') — 4]4j7 = j\([p' — 1]̂ ) and hence
fk(L(c8lc82- .c.2fAc<1c[<1+1]4/<1)) = L(c4lct2 -ctNAp,ch{pf)cmich{ίp,_ύg)). By Table 3, we
see fk(L(c8]c82- c^Ac^^+^c^) = L(ctίch c^Ap.c^^^^^^p^^^c^^j,^!]^)
and hence fk(L(c81c82 c^Ac^c^+^c^A)) = L f e ^ ctNApfch(pΊcmich(ίpr_ύg)

AEP'-I]^. By using Lemma 4 and the assumption p = q again, we have
fk(L(c8lc82 c^Ac^+rt^Ac^) = L(chct2 c^Ap/Cil(p/)CWlcil([p/.1]|r, Aw_lΛg

Cyl([P'-i]g)) Repeating this procedure, we have the desired.

The similar argument gives also the desired in the cases ([ij4, [&]4) =
(1, 3) or (2, 1).
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Let a finite admissible symbol A — chch cin+1 and integers p and
q be those in Lemma 7. If p Φ q, then Lemma 4 gives (chig), ch{p)) = 4r
for some r (1 ^ r ^ # — 1), where r is independent of p and g. Let m
be the smallest natural number satisfying [rm]g — 0. Obviously we see
1 ^ m ^ #.

LEMMA 9. Lei α ,/ϊmίe admissible symbol A — chch cin+ί and inte-
gers p and q be those in Lemma 7 and let B = c8jc82 c8NAA A be a
finite admissible symbol, where A appears g times. Suppose that p Φ q
and that m given in the above is equal to g. Then

fk(L(B)) = L(chch ctNAp,A[p,+rlg Alp,+{g_ί)rh)

for some p't where [pf + ur]g, u = 0, 1, , g — 1 are all distinct.

PROOF. By Lemma 2, there exists a pr determined by c8lcS2 c8N

and k such that fk(L(c8lc82 c8NA)) = L(cHcH ciNA9>). Set fk(L(c8ιc82

<V4c<:ι)) = L f e ^ ctNApfchiqf)). Lemma 4 implies <βhiq,)f ch{pf)) = 4r for
some r (1 ^ r ^ g — 1), so j\(q') = [j\(p') + 4rJ4ff. Since j\(p') = [^ + fc +
4p']4ί7, we have j\(q') = [iλ + k + 4[p' + r]J4 i / = j\([p' + r] y). Hence we see
fk(L(cHc82 cβNAch)) = L(c t lc l2 cf^A^cil([j,,+r]ff)) and fk(L(c8lc82 cgΛΓAA)) =
L(chct2 ctjyi4.3>/A[P/+rjfl). Repeating this procedure, we have the desired
formula. The assumption implies [p' + uxr]g Φ [pf + u2r]g for u19 u2 (Φ ut)
with 1 <£ ulf u2 ^ βf — 1.

LEMMA 10. Lei a finite admissible symbol A — chci2 cin+1 and
integers p and q be those in Lemma 7 and let r be the one stated before
Lemma 9. Suppose that p Φ q and that m, the smallest natural number
with [rm]g = 0, is smaller than g. Let B = c8lc82 * c8NAA Ach be a
finite admissible symbol, where A appears m times. Then

fk(L(B)) = L(chct2 ctNAp,Alp>+rlg Aίp,+{m_1)r]gch{pΊ)

for some pf (0 S pf ^ g — 1), where [pr 4- ttr] f l, ^ — 0, 1, , m — 1, are
aK distinct.

PROOF. By the same manner as in the proof of Lemma 9, we
have fk(L(c8lc82 c8NAA A)) = L(c t lc f2 c^AP/ACp/+r]ir Aίp,+{m_1)rh) for
some p ' (0 ^ p ' ^ flr - 1). Set fk(L(c8lc82 c8NAA Ac^)) = L(chcH

ctNAP>Aίpf+ri ••' ^ . [ p ' + ( » - i ) r ] ^ y l ( g ' , ) . T h e n w e s e e <c i l ( f f /), c i l ( [ ί ) , + ( m _ 1 ) r ] f f ) > = 4 r

and hence ^(g') = [iχ(b' + (m — l)r]ff) + 4r] 4 g. From ^([p' + (m - l)r]ff) =
[ii + A; + 4[p' + (m — l)r]J4 ί /, we see j\(qf) = [ix + jfc + 4[p' + mr]J4 f f and
hence g' = [p' + mr]g. The assumption [mr] ? = 0 implies pr — qf. Since
m is the smallest natural number with [mr]g = 0, we see that [pf + 'M'r]̂ ,
^ = 0,1, , m — 1, are all distinct.
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5. Proof of the first half of the theorem for [k]4 Φ 0. Let ζ e 3D
be a transitive point under Γ and let c8lcS2 be its Nielsen development.
Suppose that chch cjn is an arbitrary finite admissible symbol. As in
§ 4, we write f4g_k(L(chch cjn)) = L{chch c,J. We also choose a c,n+1

as stated in Lemma 6 and determine cjn+1 by

fk(L(chci2 c ^ J ) - L(cyic ia cjncjn+1) .

We set A = cixci2 c<#c in+1. As stated in § 4, we see that AA A,
AchAch AcίχA and A c ^ + ^ / ^ A A c ^ c ^ + ^ ^ A are all finite admis-
sible symbols.

Theorem B implies that there exists an M such that the Nielsen
development of ζ is of the form cncH c8MAchc8M+{n+2)+ί . Hence, as
was stated in § 2.2, there exist p and q (0 ^ p, q ^ g — 1) with the
property

fk(L(c8lcS2 cβMAchctM+{n+2)+1 •)) = L(chch ctMApchlq)ctM+{n+2)+1 •) .

Here we recall Ao = chch c i w + 1.
Now we prove the first half of our theorem in the case [fc]4 Φ 0 by

dividing the case into the following six cases (i)~(vi).
( i ) p - q and ([ij4, [fc]J - (0, 2), (0, 3), (1, 1) or (1, 2). _
We denote the admissible symbol AchAch AchA by A, where A

appears # times. Since ζ is a transitive point under Γ, there exists an
N such that its Nielsen development is of the form cHc82
csNMN+{n+1)g+{g_1)+1 ••-. B y L e m m a 7, w e h a v e

fk(L(cSlc82 cS i Γl)) = L(chch c ^ A p ^ ^ A ^ . ! ] / ^ ^ , ^ )

for some pf (0 ^ pf ^ g — 1). Since the integers {[pf — u]g}lz\ are all
distinct, we have [pf — u]g — 0 for some u with 0 <; w ^ 5r — 1.
Hence the Nielsen development chch ctNAp,ch{pf)Aίp'_llgch{ίp'_ύg)

A [ 3 , ,_ f f + 2 ] f f c i l ( [ ^_ f f + 2 ] f f ) A [ 2 , ,_, + 1 ] ί 7 c ί i V Γ + ( w + 1 ) i 7 + { 0 _ 1 ) + 1 of / f c (ζ) i n c l u d e s A o = c i ] L c i 2

c - c
°n T i i ) V = 9 and ([ij4, [fc]J - (2, 2), (2, 3), (3, 1) or (3, 2).

Using Lemma 7 and the fact that {[pf + %],}j£i are all distinct, we
see similarly to the case (i) that the Nielsen development of fk{Q includes
Λ.

(iii) p - q and ([ij4, [fc]J - (0, 1) or (3, 3).
Set A = ACifa+ii^Actfa+^c^ Achc[il+1]igchAt where A appears g

times. Since ζ is a transitive point under Γ, there exists an N such
that its Nielsen development is of the form c8lc82 c8NAcSN+{n+1)g+5{g_1)+1 .
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By Lemma 8, we have

fk(L(c8lc82 cSNA)) = L(chct2 ctNApfch(pf)cmichapf_lh)Aίp^llg

The integers {[pf — u]g}lz)> are all distinct so that the Nielsen develop-
m e n t chct2- ct^Ap/Cyl(p',cWlcil([p/_1]α)Λ[J,/_1]^ AιP>_g+figCjl(ίP>_g+2]g)cmg_1ch{ιP>_.g+1 ]g)

AP>-9+itftN+{n+1)g+B(g-1)+1 of Λ(ζ) inc ludes A o = chch c i Λ v f l .
(iv) v = ? and ([ij4, [fc]J = (1, 3) or (2, 1).
Using Lemma 8 and the fact that {[pf + n\g}

a

u~i\ are all distinct, we
see similarly to the case (iii) that the Nielsen development of fk(ζ)
includes Ao.

Next we consider the remained two cases with p Φ q. In these cases,
we set (chiq), chip)) — 4r (1 <£ r <; g — 1). Let m be the smallest natural
number satisfying [rm]g = 0.

(v) p Φ q and m = g.
Set A = A A A, where A appears g times. Since ζ is a transitive

point under Γ, there exists an N such that the Nielsen development of
ζ is of the form c8lc82---c8NAc8N+g{n+1)+1 •••. By Lemma 9, we have

fk(L(c8lc82 cSΛrA)) = L(chct2 c^A p /A [ p / + r ] ί r Aίp,+ιg_1)rlg)

for some p', where {[p' + ru]g}ΐio are all distinct. Therefore [pf + r^] f f = 0
for some u (0 ^ u ^ g — 1). Hence the Nielsen development ctlcH

ctNAv,AWΛ.rΛg Aίp'+(m-i)r-\g

ctN+g{n+1}+1 ' - - of Λ ( ζ ) i n c l u d e s A o .
The final case (vi) p Φ q and 1 ^ m ^ c/ — 1 is further divided into

four cases (vi)-(l)~(vi)-(4). Set A = AA A, where A appears m times.
Since ζ is a transitive point under Γ, there exists an N such that its
Nielsen development is of the form c8lc82 c8NAchcaN+m{n+1)+2 . Then
Lemma 10 implies

fk(L(c8lcS2 c8NAch)) = L(c<χcί2 c^Ap/ACl,/+r]i A[p,+(m_1)r]ffcil(p,))

for some p' (0 Ξ£ 3/ 5* 0 — 1). Now we set β = A and have fk(L(c8lc82

c . ^ ^ ) ) = L(c4l<V 'CtNBprCh(pf))f where Bp, = Ap,A[p,+r]ff -. A[p,+(TO_1)rV

(vi)-(l) ([ij4, [AJ]J = (0, 2), (0, 3), (1, 1) or (1, 2).
Set B = BchBch BchB, where B appears g times. Since ζ is a

transitive point under Γ, its Nielsen development is of the form c8lc82

c8κBc8κ+gmin+1)+{g_1)+1 for some positive integer K. By Lemma 7, we
have

fk(L(c8lcS2 caκB)) = L(chct2 ctκBp,,ch{p,f)Bip,,_Λgch{ίp,,_ιh) . . .

B\.p" -g+z\gG jiiίp" -g+2\g)-&lp" -g+ι\g)

for some p " (0 <£ p " ^ gf — 1), where
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Blp"-*]g — AW'-vΛgA\.W-vΛg+r-\g ' ' * A[ίp"-u-\g+(m-l)rlg fθΓ 0 <i U ^ Q — 1 .

Therefore the Nielsen development cHcH ctKBp..ch{pn)BiP,,_1-igch(Lp»_ng)

Ap"-g+2]gcil([p//_y+ί]<r,J5c,-_,+1]ircljr+αιll(ll+1)+(α_1)+1 of Λ(ζ) includes { A ^ ^ U .
We have [p" — u]g = 0 for some te (0 <£ % ̂  # — 1) and the Nielsen develop-
ment of Λ(ζ) includes Ao.

(vi)-(2) ([ij4, [fc]J - (2, 2), (2, 3), (3, 1) or (3, 2).
Set 5 = BchBch - BchB, where B appears g times. Applying the argu-

ment in (ii) to B, we see Λ(L(cSlcS2 csκB)) = L(chct2- ctκBplfcSl^)Bίp^+1-]g'
Bί^+g-izgchΛp"+β-2ig)Bί^+^llg). Hence the Nielsen development of Λ(ζ)
includes Ao as in the case (vi)-(l).

(vi)-(3) ([ij4, [fc]4) - (0, 1) or (3, 3).
Set B = ^c i l c [ i l + 1 ] 4 / i l Ec i l c [ i l + 1 ] 4 / ί l Bc^+^c^B, where ^ appears g

times. Applying the argument in (iii) to B, we see

fk(L(c8lc82 c8KB)) = L(chct2 ctκBp,,ch{p,Ίcmich{[p,,__lh)B[p,,_ύg

Hence the Nielsen development of fk(ζ) includes Ao.
(vi)-(4) ([ij4, [kl) = (1, 3) or (2, 1).
We apply the argument in (iv) to B and see as in the case (vi)-(3)

that the Nielsen development of fk(ζ) includes AQ.
Thus, in all cases (i)~(vi), we see that the Nielsen development of

fk(ζ) includes an arbitrary finite admissible symbol chch cjn. Theorem
B shows that fk(ζ) is a transitive point under Γ.

6. Proof of the second part of the theorem for [fc]4 Φ 0. Let ζ be
a hyperbolic fixed point of Γ. Then, by Theorem A, the Nielsen develop-
ment of ζ is written as c8JcS2 c8NAA by some finite admissible
symbol A = chci2 cin and some integer N. Set

fk(L(c8lc82 c8NAA- •)) = L(chcH ctNAPlAP2 . •) ,

where A,, = ch(Pv)chiPv) - cin{Pv). Lemma 4 shows <c i l (Pp), cil(Pv_l}> = 4r
for some r (0 ^ r ^ g — 1), which is independent of v. If r = 0, then
i i ( ί θ = Ji(Pv-i) and the Nielsen development of fk(ζ) is of the form
chct2 - ctNAPlAPl . Hence, by Theorem A, fk(ζ) is a hyperbolic fixed
point of Γ. If r ^ 0 , we denote by m the smallest natural number
satisfying [mr]g = 0. Set B = A A A, where A appears m times.
Then, by Lemma 10, we have

fk(L(c8lc82 c.NBctl)) = L(ctlch - ctNAPlAlPl+rΛg - A [ P l + ( m_1 ) r ] ( rc i l ( l > l )) .

The Nielsen development of ζ can be also written as c8lcH c8NBB
and Lemma 4 gives
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f k ( L ( c 8 l c 8 2 c8NBB . . . ) ) = L(chct2 • ctNBPlBPl . . ) ,

where 5P l = APlA[Pl+r]ir A[2,l+(m_1)rV Hence, by Theorem A, /fc(ζ) is a
hyperbolic fixed point of Γ.

7. An example. Consider the case where g = 3 and fc = 6. The
mapping /β is the rotation of angle π about the origin. We take the
symbol

A . — CQCQCQCQCQCQCQCQCQCQCQCQCQC^ .

By definition, this is an infinite admissible symbol. Moreover, it does
not contain any cyclic part. Hence the point ζedD, whose Nielsen
development is A, is not a hyperbolic fixed point of Γ. On the other
hand, this symbol does not contain the finite admissible symbol cx. There-
fore, ζ is an intransitive point under Γ. Hence our Theorem shows that
/β(ζ) is an intransitive point under Γ. Set

By (3), we see [i j 4 = [0 + 6]4 or [ίn]4 = [3 + 6]4. Therefore, in = 1, 2, 5,
6, 9 or 10. This fact also implies the intransitivity of the point /β(ζ).
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