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1. Preliminaries. Let D be the unit disk in the complex plane and
let 8D be its boundary. We think of D as endowed with the Poincaré
metric ds = (1 — [z2[»)7"dz|, z€ D. In this paper, we consider a Fuchsian
group [' acting on D whose elements are all hyperbolic transformations
and whose Dirichlet fundamental region F' with the center at the origin
0 is a noneuclidean regular 4¢9-sided polygon (¢ = 2). Moreover, the action
of I" on D is given by identifying the sides of F' as in Fig. 1. We denote
by {a;, B.}{-, the generators of I'.

We label the directed geodesic segment from 0 to «a,(0) (or B;(0)) the
letter a, (or b,) and the directed geodesic segment from 0 to a;'(0) (or
B710)) the letter a;* (or b;%). Similarly, for every veI', we label the
directed geodesic segment from v(0) to ¥(«,(0)) the letter a, and so on.
In this way, we have the net in D consisting of geodesic segments labeled
as a,, a7t b, and b;* (1 £7 =< 9). Every mesh of the net is also a non-
euclidean regular 4g-sided polygon. We denote by O, (or O,) the order of
the letters corresponding to the sides on the mesh located succeedingly in
the clockwise (or anticlockwise) sense. At every vertex of the net, there
are 4g directed geodesic segments. We denote by O, (or O, the order
of the letters corresponding to the sides located succeedingly around the
vertex in the clockwise (or anticlockwise) sense. Hence every consecutive

subsequence of a,b,a;7'b" - -+ ab,a;b;'a.b,arbrt - - - is of order O,. Similar-
ly, every consecutive subsequence of b,ab;'a;* --- babi'ar'b,ab;'a;" -,
b,a;'b;'a, -+ barbr'abar'b;'a, - or abitar’h, - abylartb,ab ath, - s

of order O,, O, or O,, respectively.

In the following argument, we set a;, = ¢y s, b;' = cCys A7 = Cus
and b, =¢,, A1 =1=g9g). Further, we set a, =7y, Bi' = Vu_s ;7' =
Y and B, =V, A =1 =9).

We denote by c¢;*' the directed geodesic segment of the inverse direc-
tion of ¢,. Since ¢;* is the directed geodesic segment from 7,(0) to 0 =
7.(¥71(0)), it is by its definition the letter corresponding to the directed
geodesic segment from 0 to v;*(0). Clearly, c¢;' is ¢4, if 1 =45 — 4 or
47 — 8 for some 7, and ¢;* is ¢;_,, if 1 =45 — 2 or 45 — 1 for some 7.
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FiGure 1

For a finite sequence ¢,c;, - - ¢;,, we consider a directed broken geo-
desic path L(c;c¢;, -+ ¢;,) in D initiated at the origin 0 as follows: L(c;)

is the directed geodesic segment from 0 to 7v,(0) and L(c,‘1 * €, _,Ciy,)
consists of L(c,c;, -+ ¢;,_,) with the terminal pomt Y, Y Yip 1(O) and
the directed geodesic segment ¢, from v,7, .-+ 7; _ 1(0) to 7Y,

Yip-,Y:,(0). For an infinite sequence c;c;, --- we set L(cc,, -- -) =
Usor Loy ++ €1,).

Assume that a finite sequence c;c,, - - - ¢;, satisfies the following three
conditions:

(C.1) For every j (2= j=mn), ¢ is not ¢ .

(C.2) There are no more than Zg consecutive sequence in order O,
or O,.

(C.8) If there is a 2¢ consecutive sequence in order O, (or O,), say
CipriCinps " " * lmm (m + 29 < m), then ¢, ., . is one of the 2g — 1 letters
succeeding c;>,, in order O, (or O,).

In this case, the finite sequence c,c,, - ¢;, is called a finite admissible
symbol. Clearly, if ¢, c;, - - ¢;, is a finite admissible symbol, then ¢;c;,-- - ¢;,
(1 = r £ n) is also a finite admissible symbol. An infinite sequence ¢;c;, * -+
is called an infinite admissible symbol, if, for every =, ¢;c;, - ¢, is a
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finite admissible symbol. Nielsen [2] associated a finite admissible symbol
€,Cy *+ €, With a unique closed arc [c;c,, -+ ¢;,] on 0D determined as
follows: [c,] is the minor closed subarc on 9D which is the projection
of the side of F' from the origin, where the side of F' is orthogonal to
the geodesic segment c; (see Fig. 1), and [c;c, -+ ¢;,_,c,,] is the closed
subare [c; ¢, + v € JNViYs, -+ Vi,_([c;,]). He showed that, for an arbi-
trary point { of 4D, there exists an infinite admissible symbol c,c;, - - -
satisfying N7, [¢i¢, *++ €:,] = {{} and that this infinite admissible symbol
€,,Cq, + + + corresponding to { is uniquely determined except for a denumer-
able number of points on 6D. For the point { of this exceptional set,
there are two infinite admissible symbols ¢, c,, - -+ and ¢;c;, - -+ satisfying
Nyt leg iy v €] = Nm=iej05, -+ ¢;,] = {€}. He also showed conversely
that every infinite admissible symbol c;c, - - - satisfies N;_, [c; i, -+ €;,] =
{¢} for some { € 9D. Thus an infinite admissible symbol represents a point
¢ of 9D and is said to be the Nielsen development of {. Moreover, Nielsen
characterized hyperbolic fixed points of I" by proving the following.

THEOREM A. Let I' be a Fuchsian group mentioned above. Let { be
a point of dD and let c;c;, + -+ be its Nielsen development. Then { is a
hyperbolic fixed point of I' if and only if there exists a finite admissible
symbol c;c;, - -+ ¢;, and an integer m = 0 such that ¢, ... = €, Cip\pnis =
Cipp ** %y Cinrpmin = Cin JOT @ll £ =0,1,2, ---.

We call the point { €0D a transitive point under [ if, for all ordered
pair (¢, &) of two distinct points of 0D and all z€ D and for all € > 0,
there exists an element v eI such that [, —v(?)| + [ — Y| <e. Ifa
point { €oD is not a transitive point under I', we call it an intransitive
point under I'. The following theorem due to Hedlund [1] gives a
characterization of transitive points under I.

g *

THEOREM B. Let I' be a Fuchsian group mentioned above. Let C be
a point of D and let c;c,, -+ be its Nielsen development. Then § is a
transitive point under I’ if and only if, for every finite admissible symbol
€;\Ciy * ** Cjny there exists am integer m = 0 such that ¢, ., =c;, ¢, ., =
Ciy ** %y C =c

im+n in®

In this paper, using these theorems, we shall prove the following.

gy *

THEOREM. Let I' be a Fuchsian group mentioned above. For every
anteger k with 1 <k < 49 — 1, consider a mapping

fiiz—zexp(V —1kx/2g) .
If a point { of 0D is a transitive point under I', then f.(0) is also a
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transitive point under I'.  If a point £ of 0D is a hyperbolic fixed point
of T, then f,({) is also a hyperbolic fixed point of I.

The proof of this theorem for k = 0 (mod 4) is given in §3 and for
k=1, 2 or 8 (mod4) in §5 and §6. Several lemmas and tables are stated
in §2and §4. Finally, in § 7, we give an example of the Nielsen develop-
ment corresponding to an intransitive point {. The Nielsen development
of its image f,,({), which is the symmetric point of { with respect to the
origin, is also given.

2. Some lemmas and tables.

2.1. For integers k(> 0) and m, we set [m], =m — kn with 0 =
[m], < k, where n is an integer. For every integer ¢+ with 0 <1 < 49 — 1,
we define the integer (1) by ¢, = ¢;i'. Moreover, for any pair (c;, c;)
with 0 <14,5 <49 — 1, we set {c,¢,>) =[t — j],, As stated in Prelimi-
naries, if [¢], = 0 or 1, then [(¢) is ¢ + 2, and if [¢], =2 or 3, then ()
is 2 — 2. Therefore we have the following Table 1.

[i]s 0 1 2 3
ey, € 2 2 49 — 2 49 — 2
TABLE 1

LEMMA 1. Let c,c, -+ c;, be a finite admissible symbol and set
Ju(L(eieq, +++ €1,)) = Licjej, + - ¢;,) for a fized k. Then c;c;, - c;, is also
a finite admissible symbol and

jl = [7‘1 + k]u a’nd jr+1 = [l(.?r) + <ct,+17 cl(t,,)>]4n ’
forl<sr=mn-—1.

ProOF. By definition, we easily see that ¢;c;, - - - ¢;, is a finite admis-
sible symbol.

Since f; is the rotation of angle %kz/2g around the origin, we have
Sfiu(Le,)) = L(c;) for j, = [4, + kl,,. At the terminal point of L(c;c,, - -+ ¢.,),
r = 2, the angle 6 from ¢, to ¢, ., is {e,,, ¢14,)7/29. On the other
hand, at the terminal point of L(c;c;, -+ ¢;), the angle from ¢, to
¢;,., is equal to 6 (see Fig. 2). In other words, we have
(1) <0f,+1; Cz<j,)> = <ct,,+1’ Cz(z,.)> .

Therefore j,., = [I(4,) + <¢i,,pp QupPliy for 1 =r <=n —1. This proves
the lemma.
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LEMMA 2. Let c,cqy -+ ¢, and cjc;, -+ ¢;, be as in Lemma 1. Then

j,.=[z'n+k+4"§e,] ,
r=1

49
where e, = 0 or *1.
Proor. For integers k, m, n with 0 < h, m, n < 49 — 1, we have
(2) <ch’ cn> = [<ch’ Cm> + <cm’ cn>]4g .

Hence <ci,,_’ ci1> = [ <Ci,+1, ci,,>]4g and <Ci,+1: ci,.> = [<Ct,.+1’ cl(i,r)> + <Cz(i,.n
¢.,»ly- Therefore we have

n—1

(3) (Cipy € = [?.‘.1 <ci,.+17 Cuip) + g <cl(i,.)’ ci'>:|4a

Similarly we have

e €5 = [g Cipsp Criip? + g {Cuiips cif>:|
By (1), we see
(4) Cim 3 = [ Copr i) + 2 rin 05| -
As (e, €i,0 is equal to 2 or 49 — 2 by Table 1, we see

n—1 n—1
[ = iy = <G €6) = [ o i) +23 01,

g

49
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where e, = {¢;u,, ¢;,»/2 =1 for [i,], = 0 or 1 and e; = {{c;s,), ¢;,) — 49}/2 =
—1 for [i,]. = 2 or 3. Similarly we obtain

n—1 n—1
[7. — 3 = <cj,,» cj1> = |:q§‘1 <ci,+1’ cl(i,.)> + 2; e;-’:I ,

49

where e, = ¢y, ¢;,7/2 = 1 for [j,], = 0 or L and e’ = {{cy;,), ¢;,) — 44}/2 =
—1 for [7,]. = 2 or 3. Therefore we have

n—1 n-—1
go=[i+i—i+2 e -] =[in+r+4Ze]
r=1 g r=1 g
where ¢, = (e} —el)/2 =0 or +1. This proves the lemma.
This lemma shows the equality
(5) [5.)s = i + Kl
from which we have the following Table 2.

Value of [Jjals

[2a)s
0 1 2 3
[%s
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
TABLE 2

COROLLARY. Let c,c;, -+ ¢, and c;c;, -+ ¢;, be as in Lemma 1 and
assume [k]l, = 0. Then j, = [i, + k], for any r A < r < n).

Proor. By (56), we have [j,], = [4,]. for any r (1 < r < n). So Table
1 implies {¢;,, €i,) = {Ci;,, C;,). Hence we see e; =e; in the proof of
Lemma 2. Therefore we have j, = [, + k], for 1 < r < n.

2.2, Let A=yc¢;c;, -+ c, be an arbitrary finite admissible symbol
and let ¢, ¢, ++* €yCifCiy *** C;p = €, €y, + -+ €, A also be a finite admissible
symbol. Set

fk(L(caIng e CBNA)) = L<ctlct2 o cthilcjz tee cin .
By Lemma 2, there exists a p (0 < p < g — 1) uniquely determined by
CsCsy *** Csy and k such that j, = [+, + k + 4p],,. So we may write j, =

7i(p). Since j, (2 = r = n) is determined by j,(p) and A, we may also
write j, = 7.(p) and set A, = ¢;,;)Ciym *** Cj»- Thus we can write as
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Je(Leooy * -+ CoyA)) = Licyye, - -+ €1 A,) for some p 0=p=g—-1).

LEMMA 3. Let A =c,c, ¢, be an arbitrary finite admissible
symbol. Let c¢,c,, - ¢, A and c,c, -+ c,, A be both finite admissible
symbols and assume

fk(L(cslcag v caNA)) = L(ctlctz te ctNAp)

FoLensy -+ CoyA)) = LiCucu, -+ CugAy)
Sfor some p and ¢ (0 = p,q =< g — 1), where A, = C;;Ciym ** * Ciom- Then
g Cipmy = LCuijpam Cinwy Jor 1 = v = n.  Furthermore, if p + q, then
J.(0) # 3.(q) for 1 = r < n.

Proor. By (5), we see [5,(0)], = [4.(@) = [¢, + k], for 1 =r < n, so
by Table 1 we have

<Ctu',mm Cj,-(p)> = <0m‘,(q>)» Cipy for 1=r=mn.

By Lemma 2, we have j,(p) = [4, + k + 4p],, and 5.(q) = [i, + k + 44],,.
Hence j.(p) # j.(q) if p # q. The formula (4) shows

m—1 m—1
[1.(P) — 5.(D)]y = [1'2=1 <Ci,+1r Cuapy + rgi <Cl<j,.(p)), Cj,(p)>:|

49

for 2 < m £ n, so we have

m—1 m—1
In(®) = l:jl(p) + TZ'=1 {Ciprpr CLip) + TZ=1 L Cmm>}

4g

for 2 < m £ n. Similarly,
m—1 m—1 )
In(@) = I:Jl((I) + 'Z=1 <Ci,+1, cmr)> + Z"i <ct(j,-(q))7 cj,<q>>]

for 2=<m =mn. Since {c;, @ i) = {Cij, o Ciw) @S Droved already,
we see 7,.(p) # J.(q@) for 1 < m < n, if p #q.

49

LEMMA 4. Let ¢;,50Ciypm *** Cipm ONA  CjCipy ** * Cin D€ those inm
Lemma 3. Then

(Cinwr Civw) = LCinimrr Ciyim) -
In particular, if i, = 1., then {¢; u, Ci,m) S @ multiple of 4.

Proor. Using (4), we see that the first statement of the lemma is
obvious from Lemma 3. If 4, = 1,, the formula (3) shows 0 = [>.7=} ¢, .,
Cuipy + 2rst {Cuapy €0l from  which we have [3r2 ey, i)y =
[— X5t e €:,0)iy Hence (4) implies

n—1
LCintmrs Civm) = [724:1 {<cl(j,-(p))’ cj,(p)> — LCiips Ci,>}-‘4g .
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By Table 1, the right hand side is a multiple of 4. Therefore the second
statement of the lemma is obtained.

2.3. Now we take a finite admissible symbol A =c,c, 0 <149 — 1)
and assume that c,c,, +-- ¢, A is also a finite admissible symbol. Set

Ju(L(e, €y, =+ + €y A)) = L(c,Csy + * + €4C5,C3,) -

Then, using (1) and (2), we see
[7: — Ji)s = <epy €5
= [{ejy C1ip) + LCuiips €i g = [KCiy 1) + LCuiips €30 ]ig -
For all integers m, n with 0 < m,n < 49 — 1, we have
(6) {Cms €a) + {Cpy Cn) = 49 .
Hence [j, — 7., = [49 — {c1y €D + <€y ;).  Therefore
Jo =[5 — Lewns € + LCuiipy €50 )ug -

The value [j,], is determined by Table 2 and (¢, ¢;) and {¢;;,, ¢;> are
obtained by Table 1. So we have the following Table 3.

Value of j.
[ile
m 0 1 2 3
0 gt g Ji gt
1 Ji [5: — 4]y Ji [71 + 4]y
2 [5i—4lg | [i— 4 | [i+4ly | [+ 4]y
3 [5: — 4l g1 [5: + 4l gt
TABLE 3

Next we consider another finite admissible symbol A = CiClit11,,Ci
(0 =+ =49 —1). Wealso assume that ¢,c,, - ¢, A is a finite admissible
symbol and set

Ju(L(CyyC4y + * + CoyA)) = L(Cy i€y * + C1yCiiCirCi,) -
Then, by (1) and (2), we have
[j-‘! - j1]4g = <Ci3’ cj1>
= [KCjys Cuiip) + LCuiigr € F {Ciy C1iipY + LCuiipy €5 )iy
= [{Cis Cutirn1) + {Cuiips €5 + LClirntyyr Crr) + LCriipy €014y -
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Using (2) and (6), we see
[{e. Cz([i+1]¢,)> + <C[1+1]4,y sz>]4a
= [<e, C[t+1]4,> + <c[i+1]4g, Cl([i+1]4g)> -+ <C[¢+1],,, ¢y + i Ca) g
=[- <cl([i+1]4g)9 C[z+1]4,> — ey Cz>]4a .

Hence we have

(7) Js =4, — <ct<[i+1],,); c[i+1]m> + <Cl(j2)) Cj2> — LCyay € + <cl(il)’ cj1>]4a .
By the use of Tables 1 and 2, we have the following Table 4.
Value of J,
[<]s
0 1 2 3
[k

1 [4:— 4l * [3: + 4l *

2 % * * *

3 * [4: + 4l * [41— 4l

TABLE 4

For instance, in the case where [i1], =0 and [k], = 1, first we see
[+ +1], =1 and Table 2 shows [4,],=1 and [j.]. =2 and next we see
{euips € = 2 and {ey;y, C;,» = 49 — 2 from Table 1. Hence (7) gives
Js = [, — 4],,» In other cases, similar arguments give the values of j,
in the above table.

LEMMA 5. Let c;c,, -+ be the Nielsen development of { on 0D and set
L(c,.lc,-z cee) = fk(L(cilciz XD I

Then c;c;, -+ s also the Nielsen development of f,(€) on oD.

PROOF. As is easily seen from Lemma 1, c¢;c;,--- is an infinite
admissible symbol. From the construction of the interval [c.c;, - - ¢;,]
we have

fk([cilcig tee cz‘,,]) = [Chca'z MR 7

Hence f.(§) = filNr=i[enCsy - -+ €:,]) = Doy fullesey, - + - €1,]) = Na=i[es65, -+« €5,
Therefore c;c;, - -+ is the Nielsen development of S+ on oD.

3. Proof of Theorem in the case [k], = 0. First assume that a
point £ on oD is a transitive point under I". Let c,gc,, -+ be the Nielsen
development of {. Take an arbitrary finite admissible symbol ¢;¢;, -+« ¢
and set

in
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f;g—k(L(cilcjg ce Cj,,)) = L(cilciz trr Gyl e
Lemma 1 shows that ¢,c,, -+ ¢, is an admissible symbol. Since [k], = 0,
we have [49 — k], = 0 and Corollary of Lemma 2 implies ¢, = [, + 49 —
kly, =i, — kl,, d = r =n). By Theorem B, there exists an N such that
Coprs = Cipp Copy = Cipy ** 5 Coy, . = C, . Since 4, = [, — k], we have j, =
[¢, + k], Therefore, by Corollary of Lemma 2, we see

JelLCy €y * * * CopCifCiy =+ + €i,)) = L{CyCr, + +  €13C5.C5, ** €y,

for some finite admissible symbol c¢,¢c,, - ¢c,,. Hence [f,(L(c,c,,
ConCisCip *** CinCayinyy ***)) = L(cs s, + + + €iy€siCiy -+ CinCinpmpr ") Noting
Lemma 5, we see that the Nielsen development of f,({) includes the
sequence c;c;, **- ¢;,. Theorem B implies that f,({) is a transitive point
under 1.

Next assume that { is a hyperbolic fixed point of I". Then, by
Theorem A, the Nielsen development of { is of the form ¢,c,, - - - ¢,,¢:C5, < -+
€i,Ci,Ciy * * * Ci,Ci,Cip » ++ fOr some N and for some finite admissible symbol
€, Cqy **+ i Corollary of Lemma 2 implies

(Lo Cay = * * CopCilCiy * ** €1, CiCiy = * * €4,CiCoy * =)

= L(C;,00, * * * CepCifCiy = * * €5,85Ciy =+ * €5,C5Ci " **) s

where j, = [7, + kl, A < r = n). This means that the Nielsen develop-
ment of f,({) is of the formc,c,, - c.pc;¢5,- - ¢j.c5¢5,0°¢; +++. Theorem
A shows that f,(¢) is a hyperbolic fixed point of I.

4. More several lemmas for the proof in the case [k], = 0.

4.1. We need more several lemmas for the proof of our theorem in
the case [k], = 0.

LEMMA 6. Let c;c,, -+ ¢;, be a finite admissible symbol. Then there
exists an 1,4, such that c, ¢, -+ + €;,Cq,, €:1.Cip v+ + €y ANA Ci L+ * €1,C4, 1 €1 CLiy411,,C0
are both finite admissible symbols.

ProoF. First assume that c,,_,, +iCinsgrs t " C, (M — 29 +121) is
arranged in order O, (or 0,). We choose ¢, ,, out of 29 — 1 letters suc-
ceeding ¢;;' in order O, (or O,) such that ¢,,,, # c;;'. Here, if ¢;c;, -+ ¢,
is arranged in order O, (or O,), then ¢, , c, must not be arranged in order
O, (or O0,). There are 29 — 3 such choices of ¢;, .. Since g = 2, it follows
that such a ¢, ,, exists. By this choice of ¢,  , the sequences c,¢c;, ---
€i,CinsiCisCiy = ** €, ANA €105y + ¢ €1, Ci CiCriy 1, €y become finite admissible
symbols.

Next assume that » <29 —1 or that ¢,_,, c,_,,., "¢, is not
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arranged in order O, or O,. There are 4g — 3 choices of ¢, ., such that
¢, # ¢} and ¢, ¢, ., is not arranged in order O, or O,. Among these
49 — 3 ones, we choose a ¢;,, such that ¢, ¢, is not arranged in order
O, or O,. Since there are 4g — 5 choices of ¢, ,, satisfying these condi-

tions and since g = 2, we can choose a desired c,,,.

4.2. Let ¢;c;, -+ c;, be an arbitrary finite admissible symbol and set
Fio—i(Llejies, -+ €;,)) = Licy s, -+ - ¢4,)

For this ¢;¢;, - ¢;,, we choose ¢, , as in Lemma 6 and set A =c¢,c,, -
CCi,,,- We see that AA-.-- A, Ac,Ac, -+ Ac,A and Ac,cp 0y
ACi Criy11,,C1 * * * ACyCriin, 0, A are all finite admissible symbols. Evidently,
we have fi(L(cc,, - ¢,) = L(c;c;, -+ ¢;,) so that f(L(A)) = L(c;e;, * -+
¢;,Ci,.,) for some j,.,. Consider a finite admissible symbol ¢,c,, - ¢, A.
As was stated in §2.2, we may write as fi(L(c,c,, - - ¢, A)) = L(c, ¢, - - -
¢, A4,) for a p determined by c,c,, --- ¢,, and k, where A, = ¢;,;,Cjym ***
Cinriw and 7,(p) = [4, + k + 4p],. In particular, we see j, = [1, + k], =
7:(0) and hence j,(p) = [t, + k + 4pl,, = [5.(0) + 4pl, = [4, + 4p],. More-
over, we may set fi(L(c,c,, - ¢, Ac;)) = L(c,Cs, + - €, ArCie) for a g
determined by ¢,¢c,, - ¢,,Aand k (0 =¢g=g—1).

LEMMA 7. Let A =c;c; - ¢, be the finite admissible symbol as
stated above and let p and q be integers determined for a finite admissible
symbol c,c,, -+ ¢, Ac;, as above. Suppose that p =q and that B =
ColCoy * * * CoyAc; Acy -+ Ac, A 18 a finite admissible symbol, where A appears
g times. If (4], [k]) = (0, 2), (0,3), (1,1) or (1, 2), then

fk(L(B)) = L(ctlctg e CtNAp’cjl(p')A[p’—ﬂgcil([p’—l],,) o
A[p’—y+2],c:i1([p'—a+2]g)A[p’—g+1]g)
Sfor some p' (0 =9 =g —1) and for some c,c,, -+ ¢;y,. Furthermore, if
([4.)o [kl) = (2, 2), (2,3), 3,1) or (3, 2), then
Ju(L(B)) = L(c,ce, + - ctNAp'cjl(p')A[p’+l]gcj1([p'+1]g) cee
A[p’—i—g-—?]ycjl([p’+ﬂ—2]g)A[p'+g—1]a)
Sfor some p' (0 < p' =g — 1) and for some c,c,, - C;pe

ProOOF. First we consider the cases ([,],, [k]) = (0, 2), (0, 3), (1, 1) or
1, 2). Set fi(L(c,c,, -+ €)) = L(cyc, -+ ¢,,). By Lemma 2, there exists
a p' determined by c,c, ---¢c,, and k such that f.(L(c,c,, - ¢,,4)) =
L(c,c,, -+ ¢;,A,). We set fi(L(e,e,, -+ ¢,,Ac,)) = Lic,c,, * - ConApCiygn)-
Then, Lemma 4 shows <¢; g, ¢j;m) = {Cj ;e Ciywn)- The assumption p = q
implies p" = ¢q'. Hence we see fi,(L(c,C,, * - - ¢, Ac,)) = L(c, .y, * * CopyApCiion)-



118 S. MOROSAWA AND M. NAKADA

By Table 3, we have fi(L(c,C,, " * * ¢,y Ac, ;) = L€y s, * * CopyApiCiioCliyinn—ai,,)-
Since 7,(»") = [4, + k + 4p'],,, we see 5,([p" — 1],) = [¢, + k + 4[p" — 1],],, =
[3, + k + 4@ — D], = [5,(p") — 4],,» So we have fi(L(c,c,, *** ¢, Ac.,c:)) =
L(c ey * * * CoyApCi 0 Ciytr—11,) and hence fi(L(c, 6, « « - ¢,, A A)) = Lic,c,, - -
CeyApCionArp—,).  Now assume fi(L(c,ec,, - ¢, Ac, Ac,)) = Lic,c,, -+ -
CoyApCiyonArp—11Ciyen). Then, using Lemma 4 and the assumption p = ¢
again, we see j,([p' — 1],) = j.(¢") and hence fi(L(c,c,, - - - ¢, Ac; Ac,)) =
L{c, 60, * ** CoyApCiionAtp—1,Ciyip—11,)- Continuing this procedure, we have
the desired formula.

In the cases ([7.], [k]) = (2, 2), (2,3), B,1) or (8,2), we have the
desired by the argument similar to the above.

LEMMA 8. Let the finite admissible symbol A =c,c, ¢, ., and
integers p and q be those im Lemma 7. Suppose that p = q and that
B = ¢,C,, *** CoyACi 0L 411, 0, ACi CLnL Oy * + ACiCliy i, 6 A 1S admissible,
where A appears g times. If ([1.], [k]l) = (0, 1) or (8, 3), then

Su(L(B)) = L<ctlct2 cee ctNAp'cfl(p')cmlcjl<[p'—1],)A[p'—1]g te
A[ﬁ’—g+2],cj1([p’—ﬂ+2]g)cmg_lcjl([p'—a+1]g)A[P’—a+1]g)

Sfor some p' (0 =p' < g —1) and for some c,Cy,** Cpy Cmpp ***y Cmyyr If
([7:1]4’ [k]4) = (1, 38) or (2,1), then

fu(L(B)) = L(ctlctg e ctNAp’cjl(P’)cmlcﬁ([z)’+1]g)A[p’+1]g t
A[p'+a—2]ycj1([ﬂ’+ﬂ—2]g)cm,,_lcjl([p’+g—l]g)A[p’+a—1]g)

for some p' 0=p =g —1).

Proor. We assume ([,],, [k],) = (0, 1) or (3, 8). Set fi(L(c, sy Cyp))=
L(c,c,, *+* ¢,y). By Lemma 2, there exists a p’ determind by e¢,c,, - ¢,,
and k such that fi(L(c,¢c,, - - - ¢,,4)) = L(c; ¢y, ** * €,y Ap). From the proof
of Lemma 7, we see fi(L(c,c,, *** C,yAcC;)) = L(CsCsy + * + CyApCiypy). Table
4 implies fi(L(c,c,, * * - caNAcilc[11+1]4gcil)) = L(c,ce, + - ctNAp’cjl(P')cmlc[jl(p')-4]“)9
where m, is determined by c,c,, .- ¢,,Ac;, and k. As was seen in the
proof of Lemma 7, we have [j,(p") — 4], = 7.(p’" —1],) and hence
JilL(Co,Cap® * * Coyy AL CLi111,4Ci,)) = L€ Cry* + + €4y Ay (1 Cm €yt —11p)- BY Table 3, we
see fiu(L(Cy,Cy* * * CopACiCriy11,,CisC))) = Li(CyCp * + ConAprCiy (91 Cm,Ciy o' 119 Ciy ' —11))
and hence f,(L(c,c,, - - CaNActlc(i1+1]4”cilA)) = L(cyCy, + + ctNAp’cjl(p’)cmlcjl([p'—l]g)
Apy_y,). By using Lemma 4 and the assumption p = q again, we have
Se(L(csCyy **+ csNAcilc[i1+1]4gci1Acil)) = L(cyC4, * ctNAp’cjl(p')cmlcjl([p'—llg) A[P'—l]g
C; ap—1,)- Repeating this procedure, we have the desired.

The similar argument gives also the desired in the cases ([¢,],, [k])=
1, 3) or (2, 1).
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Let a finite admissible symbol A = ¢,¢,, --- ¢;,,, and integers p and
q be those in Lemma 7. If p # g, then Lemma 4 gives {c;, ), ¢j,m) = 47
for some »r (1 £ r < g — 1), where r is independent of p and q. Let m
be the smallest natural number satisfying [rm], = 0. Obviously we see
1=m<yg.

LEMMA 9. Let a finite admissible symbol A = c,c,, - -+ ¢;, ., and inte-
gers p and q be those in Lemma T and let B=c,c,, -+ ¢, ,AA--+ A be a
finite admissible symbol, where A appears g times. Suppose that p #* q
and that m given in the above is equal to g. Then

Ju(L(B)) = L<ctlct2 tee ctNAp’A[p'M]g te A[p’+(g-1)r],)
for some p’, where [p" + url,, v =20,1,---,9 — 1 are all distinct.

PrOOF. By Lemma 2, there exists a p’ determined by c,c,, - ¢,
and k such that f.(L(c,c,, -+ ¢,,A)) = L(c,c, * + - €y Ap). Set fi(L(c,c,,
CyAc,)) = L(c,C, + ** CoyApcCigy). Lemma 4 implies {c; 4, Cjpn) = 4r for
some r (1 =r=g—1), so 5(¢) = [51,(0) + 4rl,. Since 5,(@) =[i, + k +
4p'l,,, we have 7,(¢") = [%, + k + 4[p" + rl,), = 7.([p" + r],). Hence we see
Ju(L(e, e,y + * + €y ACs)) = L(CCyy + * * €y ApiCiypr401,) @0A fi(L(e, 04, + -+ €,y AA)) =
L(c,cy, ++* €1y ApArpin,). Repeating this procedure, we have the desired
formula. The assumption implies [p’ + w,r], # [p" + u,r], for wu,, u, (# u,)
with 1 < u, 4, =g — 1.

LEMMA 10. Let a finite admissible symbol A = c,c;, -+ ¢, ., and
integers p and q be those in Lemma T and let r be the one stated before
Lemma 9. Suppose that p # q and that m, the smallest natural number
with [rm], = 0, is smaller than g. Let B =c,c,, - ¢, ,AA - Ac, be a
finite admissible symbol, where A appears m times. Then

Su(L(B)) = L(Ct10z2 T C:NAp'A[p'+r], v A[P'+(m—1)r]gci1(9’))

Jor some p' (0=p =g —1), where [p' + ur],, vu=20,1,---,m — 1, are
all distinct.

Proor. By the same manner as in the proof of Lemma 9, we
have fk(L(cclcaz v csNAA e A)) = L(ctlctz e CtNAp’A[p“H']g e A[p'+(m—1)r],) for
some p' (0=p' =g —1). Set fi(Lcc,--*c, AA -+ Ac,)) = Lic,cq, -+
ctNAp’A[p’—i—r]g ce A[p’+(m—1)r]gcj1(q’))' Then we see {Ciyans le<[p'+(m—1)r],>> = 4r
and hence 5,(¢") = [4,([" + (m — Dr],) + 4rl,. From j,([p' + (m — L)r],) =
[iy + & + 40’ + (m — D), we see j.(¢) = [i, + k + 40’ + mr],], and
hence ¢’ = [p’ + mr],. The assumption [mr], = 0 implies p’ = ¢’. Since
m is the smallest natural number with [mr], = 0, we see that [p" + ur],,
#=20,1,---,m — 1, are all distinct.
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5. Proof of the first half of the theorem for [k], = 0. Let {ecoD
be a transitive point under I" and let ¢,c,, - -+ be its Nielsen development.
Suppose that ¢;c,, - - ¢;, is an arbitrary finite admissible symbol. As in
§ 4, we write f,,_,(L(c;c¢;, -+ - ¢;,)) = L(c; iy - -+ ¢;,). We also choose a ¢,

as stated in Lemma 6 and determine ¢; , by

fk(L(Cilciz T cincin+1)) = L(c;j, *** €inCinyy) +

We set A =c¢,c, - ¢C,,- As stated in §4, we see that A4 ..- 4,
Ac, Ac, -+ Acy A and Ac;pin, CiA <+ AciCriin, i A are all finite admis-
sible symbols.

Theorem B implies that there exists an M such that the Nielsen
development of { is of the form c,¢c,, - -+ ¢,,A4¢C0\,(pins, *°- Hence, as
was stated in §2.2, there exist » and ¢ (0 =< p,q =g — 1) with the
property

fk(L(081082 U c‘MACi103M+(n+2)+1 00)) = LleoCoy  +* CoyAnCisoConpinrnen ") -

Here we recall 4, = c;c;, -+ ¢;,,,-

Now we prove the first half of our theorem in the case [k], # 0 by
dividing the case into the following six cases (i)~(vi).

(i) »=qand ([u.l, [k]) = (0,2), (0,3), 1,1) or (1,2).

We denote the admissible symbol Ac; Ac; --- Ac; A by A, where A
appears g times. Since { is a transitive point under I", there exists an
N such that its Nielsen development is of the form c,gc, ---

ConACsy, mingig—n+: * -+ BY Lemma 7, we have

fk(L(calcsz te csNA)) = L(Czlctz tt ctNAp’cjl(p')A[P'—l]gcil([p’—l]g) tee
A[r’—n+2]gc.7’1([p’—y+2],)A[ﬂ’—u+1]g>

for some p' (0 < p' < g —1). Since the integers {[p' — u],}i=t are all
distinct, we have [p'—u],=0 for some u with 0=u=<g—1.
Hence the Nielsen development c;c,, «+* €\AyCi pnArpy-11,Citp—11p *°
A[P'—ﬂﬂ]gcix([ﬂ"-ﬂ+2]a)A[P'—0+1]ac‘N+(n+1)y+(y—1)+1 -++ of fi0) includes 4, = CiiChp **
cincinﬂ'

(ii) p=q and ([1.], [k]) = (2, 2), (2, 3), (3,1) or (3, 2).

Using Lemma 7 and the fact that {[p’ + u],}i=; are all distinct, we
see similarly to the case (i) that the Nielsen development of f,({) includes
A,

(iii) » = ¢ and ([7.], [k]) = (0, 1) or (3, 3).
Set A = Ac;Cri411,Ci,ACi,Criy 411,81, * * * ACy,Clip4n, 01 A, Where A appears g
times. Since ¢ is a transitive point under I, there exists an N such

that its Nielsen development is of the form ¢,c,, * -+ ¢,,AC, ., (0 iiorsoonss ** "
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By Lemma 8, we have
fk(L(cslcsz tee CsNA)) = L(c, ¢, -+ CzNAp’le(p')cmlcjl([p’—ﬂ,,)A[p’——l]g tr
A[?'—y+2]gcj1([p’—a+2]g)cm,,_.lcjl([p’-y+1]g)A[p’—y+1]g) .
The integers {[p’ — u],}i=h are all distinct so that the Nielsen develop-
ment ¢,c,,- - oy ApCi 0 Cm Ciyity 11 Aty —13, "+ Alp/—g421,Chy1p 9421 Cm g Ciy Ip'—g+11)
A[p’—ﬂ+1]gct1v+(n+1>g+3(a—n+1 -+« of fi(§) includes 4, = C3iCip *** €inCi

(iv) »=q and ([u], [K]l) = @, 3) or (2, 1).

Using Lemma 8 and the fact that {[p" + u],}i=% are all distinct, we
see similarly to the case (iii) that the Nielsen development of f,({)
includes A,.

Next we consider the remained two cases with p # q. In these cases,
we set (¢, q» Ciym) = 4r 1 =7 =g —1). Let m be the smallest natural
number satisfying [rm], = 0.

(v) p+#*gqand m=g.

Set A= AA --- A, where A appears g times. Since { is a transitive
point under I, there exists an N such that the Nielsen development of
¢ is of the form c,c,, ¢, ,Ac By Lemma 9, we have

nt1°

SN+glatn+1 C
fk(L(calcsz st CsNA)) = L(ctlctz e ctNAP'A[p’+r]g ce A[p’+(a—1)r]y)

for some p’, where {[p’ + ru],}it are all distinct. Therefore [p’ + ru], = 0
for some v (0 =u =g —1). Hence the Nielsen development c,c,, - -
CoyApAtpirty At m—r1Coy gimings *° OF Su(£) includes A,.

The final case (vi) p #q and 1 <m < g — 1 is further divided into
four cases (vi)-(1)~(vi)-(4). Set A = AA .-- A, where A appears m times.
Since ¢ is a transitive point under I', there exists an N such that its
Nielsen development is of the form c,c,, * -+ ¢,yAC;Coy\ nipsy = *+ Then
Lemma 10 implies

fk(L(c,lc,z ce CaNAcil)) = L(ctlctz T ctNAp’A[p'-l-r]g te A[p’+(m—1)r]gc.'i1(p’))

for some p’ 0 < p' <9 —1). Now we set B= A and have Jiu(L(e,,e,,
oy Bey)) = L(C oy +  CoyByCy (o)), Where B, = Ap Aty Alprrm-nrl,
(v)-)  ([@ls [X]) = (0, 2), (0, 3), (1,1) or (1, 2).
Set B = Be,Be, ++- Be,B, where B appears g times. Since { is a
trar_lsitive point under I, its Nielsen development is of the form ¢,gc,, - --
¢, Be --- for some positive integer K. By Lemma 7, we

have

8K+gm(n+1)+(g—1)+1

fk(L(cslcsz vt C,KB)) = L(ctlctg o ctKBP”ch(I"')B[P"—l]gcfl([p"—I]g) e
B[p"—-y+2]gcj1([p”-—a+2]g)B[p"—a+1],)

for some p” (0 < p” = g — 1), where
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Biyr—u1, = Apr—ayAtte—adgiel, 0 Aty —idgrm-nry, for 0=u=g-—1.

Therefore the Nielsen development c,c,, -« ¢, ByCj 1 Bror—11,Cirtnr 11 ***
B[P"—y+2]gc]'1([1”/—ﬂ+2]g)B[P"—ﬂ+1]gct1{+am(n+1)+(9_1)+1 e Of f’k(C) iHCIudeS {A[P”—-M]g}i;h'
We have [p” — u], = 0 for some (0 < u = g — 1) and the Nielsen develop-
ment of f,({) includes A,.

(vi)-@2) (uly [Kl) = (2, 2), 2,3), (3,1) or (3, 2).

Set B = Be, Bc,, - -+ Be, B, where B appears g times. Applying the argu-
ment in (i) to B, we see fi(L(c,C,," * * ¢, B)) = L(Ct,Ce,* * * Co By i€y Brprray,
Bty sg-21,Cirto +9-219 Bipr4g-n,).  Hence the Nielsen development of f©
includes A, as in the case (vi)-(1).

(vi)-3)  ([@dy [K]) = (0, 1) or (3, 3).

Set B = Bc;,C1i,111,,€1,BC:,Cti 111,,C1, * * * BC:i,Cliy111,,¢1,Bs where B appears g
times. Applying the argument in (iii) to B, we see

Ju(L(Cy €4y + =+ €apB)) = L(Cy 0ty + * + CoreByiCsip01Cm Ciytp 13 Brprr a1y * * *
B[p"—y+2]gcj1([p"—y+2],)cm,_1ch([p"—a+1],)B[p”—v+1]g) .

Hence the Nielsen development of f,({) includes A,.

(vi)-(4) ([4.)e [K]) = (1, 8) or (2, 1).

We apply the argument in (iv) to B and see as in the case (vi)-(3)
that the Nielsen development of f,({) includes A,.

Thus, in all cases (i)~(vi), we see that the Nielsen development of
f(€) includes an arbitrary finite admissible symbol ¢;c;, -+ ¢;,. Theorem
B shows that f,({) is a transitive point under I'.

6. Proof of the second part of the theorem for [k], + 0. Let { be
a hyperbolic fixed point of I". Then, by Theorem A, the Nielsen develop-
ment of { is written as c,c,, ---¢,,AA -+ by some finite admissible
symbol A = ¢,c,, + - ¢;, and some integer N. Set

f'k(_L(C”C82 e caNAA. . .)) — L(ctlctz ‘e (3‘1\714_’,1141,2 . .) ,

where A,, = ¢;,5,C00 *** Cinwy- Lemma 4 shows (¢, Ciip,_p) = 4T
for some r (0 = r =g — 1), which is independent of ». If » =0, then
7.(p,) = 7.(p,_;) and the Nielsen development of f,() is of the form
Ci\Csy *** CeyAy A, - -+ Hence, by Theorem A, f,({) is a hyperbolic fixed
point of I'. If r #0, we denote by m the smallest natural number
satisfying [mr], =0. Set B= AA--- A, where A appears m times.
Then, by Lemma 10, we have

fk(L(celcsz s caNBcil)) = L(ctlctg s ctNAplA'fPfl-f]g e A[p1+(m—1)r]gcj1(pl)) .

The Nielsen development of { can be also written as ¢,c,, - ¢, , BB -
and Lemma 4 gives
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fuLe,Coy + -+ ¢oyBB - -+)) = Licyey, * - - €1y By By, -+ +)

where B, = A, Ay, in, ** Ayt m-nry,- Hence, by Theorem A, f,(€) is a
hyperbolic fixed point of I'.

7. An example. Consider the case where ¢ =3 and k¥ = 6. The
mapping f, is the rotation of angle = about the origin. We take the
symbol

A = CyLsCiCCsCLICLCCLLCCCs * * *

By definition, this is an infinite admissible symbol. Moreover, it does
not contain any cyclic part. Hence the point {€oD, whose Nielsen
development is A, is not a hyperbolic fixed point of I". On the other
hand, this symbol does not contain the finite admissible symbol ¢,. There-
fore, { is an intransitive point under I". Hence our Theorem shows that
fi©) is an intransitive point under I". Set

Jo(L(A)) = L(cilciz crc Gyt ‘).

By (8), we see [i,], = [0 + 6], or [3,], = [8 + 6],. Therefore, i, =1, 2, 5,
6, 9 or 10. This fact also implies the intransitivity of the point £;({).
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