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Introduction. In this note, we shall consider the topological degree
of symmetry of a manifold M with a map f: M — (SY)" x(S?®° of non-zero
degree. Here the topological degree of symmetry of a manifold is, by
definition, the maximum of dimension of compact connected Lie groups
which act on the manifold topologically and almost effectively.

This note is motivated by recent works on the degree of symmetry
of manifolds with large low homotopy groups or cohomology groups such
as K(rz, 1)-manifolds, A,-manifolds or hyper-aspherical manifolds ([2], [5],
[6], [8] or [9]). Moreover the results in this note are generalizations of
results in [8].

In the following, we shall consider only topological almost effective
action.

We shall prove the following

THEOREM A. Let M be a closed topological mamnifold with a map
i M — (S8Y)"%x (8% of non-zero degree. Then S® is the unique, up to local
1somorphism, compact connected simple Lie group which can act on M.

THEOREM B. Let M be as in Theorem A and G a compact connected
Lie group which acts on M. Then G is locally isomorphic to T*x (S%)?,
where v<s. Moreover if the Euler characteristic of M is non-zero, then
we have w + v = s.

A typical example of a manifold as in Theorem A is a connected sum
((SH" % (S**) ¢ L, where L is a closed topological manifold of dimension
r 4+ 2s. As for such a manifold we have the following

THEOREM C. Let L be an orientable closed manifold of dimension r -+
2s and M the connected sum L% ((S)" x(S?%). Assume an n-dimensional
toral group acts on M. Then we have n < r + s.

THEOREM D. Let M and L be as in Theorem B and Theorem C,
respectively. If L is mot a rational homology sphere, then X = M4 L
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admits no action of S®. In other words, the topological semisimple degree
of symmetry of X is zero. Here the topological semisimple degree of
symmetry of X s, by definition, the maximum of dimension of compact
connected semisimple Lie group which acts on X.

The author would like to thank the referee for his valuable
suggestions.

In this note, “manifold” means always “compact connected topological
manifold” and we use the following notations;

1. H,(X)and H*(X) denote ¢-th homology and i-th cohomology group
of X with rational coefficients, respectively.

2. T" and T denote n-dimensional and 1-dimensional toral group,
respectively and we call a 1-dimensional toral group a torus.

1. Preliminaries. In this section, we shall recall some rusults about
the Leray spectral sequence of the orbit map and prove some Propositions
which are needed to prove Theorems A, B, Cand D. Let G be a compact
connected Lie group and act on a compact connected space X. Let
7: X — X/G be the orbit map and {E?, d,} the Leray spectral sequence
of . Then we have E?? = H*(X/G, H'-’(rcj’), where H%rx) is the sheaf
generated by the presheaf U* — HYzx'(U*)) for open set U* in X/G.
Recall that the stalk of H%z) at x* = m(x) is HYG(x)) and the edge
homomorphism e: H(X)— E* is given by e(a)x*) = i¥(a), where
2. G(x) — X is the inclusion (see [1] for the details).

We have the following

PROPOSITION 1 (see [2]). Let k be the dimension of a principal orbit
of the action of G on X. If the action has a singular orbit, then the
edge homomorphism e: H¥(X) — Ey* is trivial. In particular, we have
E% =0,

See [8] for the proof.

By the same argument as in Proposition 1, we can prove the
following

PROPOSITION 2. Let k be as in Proposition 1. If there is a point
2 wn X such that 1} HW(X) — H*(G(x)) s trivial, then the edge homomor-
phism e: HW(X) — E3* 48 trivial.

The following Propositions 3, 4 and 6 are generalizations of results
in [8] (see Propositions 3 and 5 in [8]).

PROPOSITION 3. Let M be a closed manifold with a map f: M—
(SH"x (8% of mon-zero degree. Assume K = SU2) acts on M with «a
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finite principal isotropy subgroup. Then there is a point x in M whose
1s0tropy subgroup is a torus.

PrOOF. Assume the contrary. Then we have H'(K(x)) =0 for
3 =1,2 and for every point x in M. Then the Vietoris-Begle Theorem
shows that n*: H{(M/K) — H‘(M) is an isomorphism for 4 =1, 2, where
w: M — M/K is the orbit map. It follows from the existence of f that
there are elements a,, :---,a,€ H(M) and b, --+,b,€ H*(M) such that
the cup product a, -+ a,b, - -+ b, is non-zero. The above argument shows
that all a,’s and b,’s are in the image of #*. Put @, = 7*(ai) and b, =
7*@®;) for ¢=1,---,rand =1, .-+, 5. Then we have

0#a,:-~ab -b,=n* - ab;---b)=0,
since a; +-- a,b; - -+ b, e HY=¥(M/K) = 0, which is a contradiction.

PROPOSITION 4. Let M be a closed manifold with o map f: M—
(SH" % (8% of mon-zero degree. Assume G = SU(B) or Sp2) acts on M
with a finite principal isotropy subgroup. Then there is a singular
orbit.

To prove this Proposition, we need the following Lemma.

LEMMA 5. Let X be a closed manifold. Assume a compact connected
simple Lie group G acts on X almost freely, i.e. all isotropy subgroups
are finite. Then we have dim E)®* <1, where {E?? d,} is the Leray
spectral sequence of the orbit map n: X — X/G.

Proor. It follows from the argument of the proof of Theorem 1
in [3] that the sheaf H%r) is locally constant, i.e. for every point z* in
X/G, there is a neighborhood U* of x* such that the restriction H*x)|U*
is isomorphic to the product U* X HY(G(x)). Thus we have E}*=the vector
space of all sections of H%x)<S H¥G(x)) = Q. q.e.d.

PROOF OF PROPOSITION 4. Assume the contrary. Consider the Leray
spectral sequence {E?'% d,} of the orbit map =n: M — M/G. It follows
from the assumption that H(G(x)) = 0 for ¢ = 1,2 and for every point,
2 in M. This shows that Ef* = E?* = 0 and that z*: H{(M/G) — H'(M)
is an isomorphism for ¢ =1,2. Hence we have the following exact
sequence;

00— B3 — H¥(M)— E%*—— 0

e ¥

HMG) .
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It follows from Lemma 5 that dimE%* <1, which implies that
dim H3M/G) = dim E%" = dim H*(M) — 1. Let a, :---,a,€¢ H(M) and
b, +++,b,€ H(M) such that a,:--a,b,-+- b, #0. We may assume that
by +++, b, are in Imz*. Since H{(M/G) = H(M) via n* fori =1, 2, we
have

0O+#a,--ab, b, =a*a;---ab,---b._)=0,

because a; - -+ a,b; + -+ b;_, € H***"(M/G) and dim M/G < dim M — 8, which
is a contradiction. g.e.d.

We shall prove the following

PROPOSITION 6. Let M be as in Proposition 4. Assume the group
K = 8SU(@2) acts on M almost freely. Then H*(M) is isomorphic to
H*(M/K)Q H*(S% as rings. In particular, for every point x in M, the
homomorphism i}: H (M) — H¥K(x)) is non-trivial.

ProoF. Consider the Leray spectral sequence {E?% d,} of the orbit
map w: M — M/K = M*. Assume the edge homomorphism e: H¥(M) — E*
is not surjective. Then it follows from Lemma 5 that e is trivial, which
implies that E%* = 0. It is easy to see that z*: H'(M*) — H'(M) is an
isomorphism for ¢+ = 1,2 and 3. The same argument as in Proposition
4 leads a contradiction. This proves that e is surjective. Since the map
w: M — M* behaves as if it were a fiber bundle in rational coefficients,
the argument of the Leray-Hirsch Theorem shows that H*(M) is isomor-
phic to H*(M*) ® H*(S*) as rings (see also [2]). The second part follows
from Proposition 2 and the fact that e is surjective. q.e.d.

Let M be as in Theorem A. As in [8], we shall construct a principal
T-bundle M over M as follows. Let N, = (S x(S%)ix(S)* 4 =0, -, s).
Put N,=N and N,=N. Consider N,,, as a principal T-bundle over
N, t=0,---,8s—1). Let M, be the pull-back of the bundle N, — N by
the map f and fi: M, — N, the bundle map covering f. It is easy to see
that f, is a map of non-zero degree. Inductively we can construct a
sequence of manifolds M, = M, M,, -+, M, = I and a sequence of maps
fo=1 fo -+, f.=F such that f,: M, — N, is a map of non-zero degree
and p;: M, — M,_, is a principal 7T-bundle which is a pull-back of
q:N;—> N,_, by fi_, for i=1,.--,8. Put p=p,opo---0op,and ¢=
q,0¢q,° -+ oq, It follows from a result in [7] (Theorem 4.1 in [7]) that
every action of T" on M can be lifted over M;. Let a,, :--, a,. € H(N,),
byy *++y by € H(N,) and ¢, + -, ¢;; € H¥(N,) be generators of H*(N,) for
1=0,--+,8. Put a,= f*(ay,) and b; = f*(b,;). These notations are used
in the following sections.
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We shall prove the following

PROPOSITION 7. Let M be as im Theorem A. Assume T" acts on
M and there is a point x im M such that the homomorphism
evi: T (T, e) —» w, (M, ), where ev®: T"— M defined by ev*(t) = tx, s
trivial. Then we have n < s.

ProOOF. Note that the homomorphism ev%: 7,(T", e) — x,(M, x) is trivial
for every point x in M, because of pathwise connectedness of M. Since
the action of 7" on M is lifted over I, we have the following diagram;

- g &
|

™ - N
where x = p(%). It follows from the assumption and the above diagram
that (ev*)*: H(M) — H*(T") and (ev®)* f*: H¥(N)— H*T") are trivial, be-
cause q*(b,;) =0 for j=1,---,s. Thus (ev*)*f*: H¥(N)— H*T") is trivial
for any k. This implies that 4} f*: H¥(N)— H*T"(x)) is trivial for every
point # and k. Now consider the Leray spectral sequence {E?* d,} of
the orbit map z: M — M/T* = M*. Since 1}: H*(M) — H*(T"(x)) is trivial
on Im{f*: H*(N)— H*(M)}, the edge homomorphism e: H*(M) — E* is
trivial on Im f* and hence every element of Im f* has filtration = 1
(this implies that Im f* S J“*!, where H*M) = J**DJ"*1D...DJ*),
In particular, a,eJ** (¢=1,--+-,7) and b;eJ"(j=1,:--,5). Hence
@, - ab, --- b, has filtration = » + s. If dimM* < r + s, then E?? =0
for p = r + s, which means that a,:--- a,b, -+ b, is zero. This shows
that dim M* must be greater than » + s — 1. Thus we have dim M* =
r+ 28 —n=r-+ s and hence n < s. q.e.d.

REMARK. As shown in the proof of Proposition 7, we can replace
the hypothesis that evi: 7, (T", e) — (M, ) is trivial by the statement
that (f o ev?),: © (T", e) — w,(N, f(x)) is trivial.

COROLLARY. If the action of T" has a fixed point, then we have
n = s.

This follows from Proposition, because ev% is trivial for a fixed
point x.

2. Proof of Theorem A. In this section, we shall prove Theorem A.
To prove it, it is sufficient to show that G = SU(8) or Sp(2) cannot act
on M, because the exceptional group G, and simple Lie group of rank = 3
contain SU(3) or Sp(2). Since the case of Sp(2) is completely parallel to
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the case of SU(8), we shall prove only that SU(8) cannot act on M.
From now on, we assume M admits an action ¢ of G = SU(3). Let
K = SU(2) be the standard subgroup of SU() and +: KxM — M the
restriction of the action ¢. Let M, be as before and ¢, (resp. ) the
lifting of ¢ (resp. +) over M,. Put ¢, = ¢ and +, = 4.
First we shall prove the following

LEMMA 8. The action + has a finite principal isotropy subgroup.

PROOF. Assume the contrary. Then every isotropy subgroup contains
a torus and hence the center C of K is contained in every isotropy sub-
group. This implies that every isotropy subgroup of the action of G
contains C and C is contained in the ineffective kernel of the action ¢.
Hence C is contained in the center of G, which is easily seen to be
impossible. q.e.d.

We shall prove the following

PROPOSITION 9. The action + is almost free.

To prove this, we need the following two Lemmas.

LeMMA 10. There is a point x tn M such that the homomorphism
¥ f* HY(N) — H*(K(x)) 1s non-trivial.

PrOOF. Assume the contrary. It follows that the edge homomor-
phism e: H¥ (M) — E* of the Leray spectral sequence of the orbit map
w: M — M/K is trivial on the Im f*. This implies that f*(H*N)) is con-
tained in the kernel of ¢, which equals #*(H*(M/K)). Since n*: H(M/K) —
HYM) is an isomorphism by the Vietoris-Begle Theorem, a,---a,b, -+ b,
is zero, which is a contradiction. q.e.d.

Choose # in M such that 4}f* is non-trivial. We may assume
1¥(b;) #+ 0. In fact, we have }¥(a,a;) = i¥(a,)t5(a;) =0, because H'(K(zx)) = 0.
Consider the lifting 4, and put p,(x,) = 2. Then we have the following

LEMMA 11. The homomorphism 1} : H*(M,) — H¥K(x,)) is non-trivial.

ProOF. Since 4}(b) # 0, K(x) = S* and p7'(K(z)) — K(x) is a non-
trivial principal T-bundle, which implies p;*(K(x)) = K(x,). Then Lemma
follows from the following commutative diagram;

H¥N) —— HN,) — HYN)
7| | 7|
H¥M) — H*M,) —— H'M)
@l “1 ¢l

H*(K(x)) — H*K(2,))— H*(K(x)) ,
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where each horizontal sequence is the Gysin sequence. q.e.d.

Now we shall prove Proposition 9. Assume the contrary. Then 4 has
a singular orbit and hence +, has a singular orbit. Since 4, has a finite
principal isotropy subgroup, the edge homomorphism e,;: H*(M,) — E3* of
the Leray spectral sequence of the orbit map =z;: M, — M,/K is trivial,
because of Proposition 1. Therefore the homomorphism i : H*(M,) —
H3*K(y,) is trivial for every point ¥, in M,, which contradicts Lemma 11.
This completes the proof. q.e.d.

It follows from Propositions 6 and 9 that, for every point x in 7,
the homomorphism 4¥: H*(M) — H*K(x)) is non-trivial. Consider the
following commutative diagram;

B —— HG@)

N /

aN,

H(K(x)) -
By the above argument, we can conclude that the homomorphism 7} is
non-trivial for every point x in I, which implies that H¥G(x)) = 0. It
follows from a result in [8] (Proposition 8 in [8]) that G, is finite for
every point « in I, which contradicts Proposition 4. This completes the
proof of Theorem A.

REMARK. One can prove Proposition 8 in [8] for Sp(2) by a similar
way as in [8].

3. Proof of Theorem B. In this section, we shall prove Theorem B.
Let M be as in Theorem B. If a compact connected Lie group G acts
on M, then G must be locally isomorphic to T“x(S?%°, because of Theorem
A. Now we shall prove v £s. Let G, =(S%" and 7" a maximal torus
of G,. Since evi:w (T", ¢) — n,(G,, e) — (M, x) is trivial, it follows from
Proposition 7 that we have v < s. The last part of Theorem B follows
from Corollary to Proposition 7. This completes the proof of Theorem B.

4. Proof of Theorem C. Consider the case where the fundamental
group 7,(L) is non-trivial. If dim M = 2, the result is well known. Hence
we may assume dim M = 3. Then =x,(M) has trivial center, because
(M) = (L) = =,((SH)7). Since the image of the homomorphism
evi: (T e) > (M) is contained in the center of z, (M) (see [4] section
4), ev% is trivial. It follows from Proposition 7 that n <s. Next
consider the case where x,(L) is trivial. Let K = kernel of ev%: n,(T", ) —
(M) = 7,((S)") and put ¢t = rk K. It is clear that » — ¢t < r. We can
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decompose T" as a product T = T*x T"* such that evi: z,(T? e) — w (M)
is trivial. It follows from Proposition 7 that ¢ < s. This implies that
n < r + s and completes the proof of Theorem C.

5. Proof of Theorem D. Let M and L be as in Theorem D and
X=M%L. Let g: M— N = (S x(S*°® be a map of non-zero degree and
¢: X — M the collapsing map. Then the composition g o ¢ has non-zero
(iegree. As before, we can construct a T°-bundle X over X and a map
F: X - N = (89" % (8%° of non-zero degree. We have the following diagram
of fibre bundles and bundle maps;

g N
x> u-LnN.
where M is the T*-bundle over M constructed from g and f = §¢.
We have the following observations.
(1) X is homeomorphic to the space
(M —intD"xT*) U (L—intD™xT*,
SMm—1xps
where m = dim M.
(2) Consider the following commutative diagram;

HX, (L — int D™ x T*) = H*II — int D™x T*, S™*x T*)

j;,kl }*/ ji*l
H¥X, M —int D*xT*) — HX) —-> HYII — int D™x T°)
= o

H¥(L—int D™) x T*, S™* x T*) — H*(L—int D™) x T*) —— H*S™'x T*) .

Here the vertical and horizontal sequences are exact and ¢q and 7 are
collapsing maps: X — X/(M — int D»x T*) and X — X/(L — int D™)x T,
respectively and the other maps are inclusions. Then it follows that
Im f* is contained in Im r* = Ker 4.

(8) Letr = min. {+’; H"(L) +#+ 0}. Since L is not a rational homology
sphere, we have 1 <r <m — 1. Choose elements o’ € H"(L) and b’ e
H™"(L) such that a'd" 0. Note that o' x[T*]e H**"((L — int D™)x T*)
and b'xX1e H™"((L — int D™)x T*) are in Ker . Then there exist ¢ and
b in H*(X) such that i¥(a) = o' x[T°] and 45() = b'x1. Then we have
ab # 0.

These observations are slight generalizations of results in [8] (Obser-
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vations (1), (2) and (3) in [8]). We omit their proof.

Now we assume K = SU(2) acts on X. Consider the action 4 of
K over X which is a lift of the action 4 of K on X. We have the
following

PROPOSITION 12. The action + is almost free.

PrOOF. First we shall prove that 4 has a finite principal isotropy
subgroup. Assume the contrary. Then a principal isotropy subgroup
Hy is a torus or the normalizer N, of a torus 7. If Hj = N, then
H*(X) = H*(X/K) via the homomorphism #* induced by the orbit map
#: X — X/K, because H{(K(@&) =0 for i =1 and #e X. This is easily
seen to be a contradiction. Thus Hj is a torus and it is easy to see
that a principal isotropy subgroup H, is also a torus. If 4 has an
exceptional orbit or singular orbit, then it follows from Proposition 2
that E%* = 0, where {E?, d,} is the Leray spectral sequence of the orbit
map 7: X — X/K. This implies H*(X/K)= E%*= H*X). Since H(X/K) =
EL* = HY(X) by the Vietoris-Begle Theorem, it is easy to lead a contradic-
tion. Thus 4 and 4 have a unique orbit type S*. If there is a point x
in X such that the homomorphism 4}: H*(X) — H*K(x)) is trivial, then
this holds for every point # in X, which implies that the edge homo-
morphism e: HXX) — E* is trivial. This is a contradiction as shown
above. Thus the homomorphism ¢ is not trivial for every point z in
X. We may assume %}f*(b,) # 0. Consider the T-bundle p;: X, — X,
which is the pull-back of N, — N by f. It is easy to see that p;(K(x))
is K-invariant and equals S°® Since the action + has a torus as a
principal isotropy subgroup, +», must have a fixed point, which is a con-
tradiction. This shows that 4 and hence 4 has a finite principal isotropy
subgroup. The proof of the fact that + is almost free is completely
parallel to the proof of the Proposition 9. q.e.d.

It follows from Proposition 6 that H*(X) is isomorphic to H*(X/K)®
H*(S®) as rings. We have the following observation.

(4) There is an element @ in H*X) such that @ is contained in
Im f*, but not in Im 7*.

In fact, we have the following exact sequence;

0— E%— HY(X)— E%*—0

=~

HYX/K) .
Let @ e H¥X) be the element corresponding to a ggnerator of H3(S%.
Since Im{f*: HYN) — H¥X)}¢Im{z*: H(X/K) — H*X)}, we can choose
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W in Imf*.

It follows from observation 2 that 4#@) =0. Since H*X) =

H*X/K)® wH*X/K) and i¥(@) = 0, @ and b can be chosen from Im 7*,
in other words, a = #*(a") and b = Z*(b"), where a” and b"” are in
H*(X/K). This implies that ab = #*(a”’b”) = 0, which is a contradiction.
Thus we have completed the proof of Theorem D.
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