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Introduction. Let a ^ 0, and let m and n be nonnegative integers.
Disk polynomials R%)n(z) are defined by

{R{

n

a>m-n)(2r2 - i y e » - ^ r

m - n if m ^ n ,

- l)e ί ( m"n ) ί*r7 l~m if m < ^ ,

where z = reiφ and R{

n

a'β)(x) is the Jacobi polynomial of degree w and of
order (α, /3) normalized so that R}?'β)(l) = 1.

Denote by A(α) the space of absolutely convergent disk polynomial
series on the closed unit disk D in the complex plane, that is, the space
of functions f on D such that

/(*) = Σ a^RHUz) with Σ Iαw,n| < - ,
m,n=0 m,n=0

and introduce a norm in A(α) by

11/11= Σ lα.,.1.
m,n=0

The space A{a) consists of continuous functions on D, since if Σ | α w , n | <°°
then the series Σ Q<m,nRm]n(z) converges uniformly on D by the inequality;

( 1 ) |Λίί? (s)l ^ 1 on D (Koornwinder [5; (5.1)]) .

Our purpose is to study some structure of the algebra A(α).
Let A{"*β) be the space of absolutely convergent Jacobi polynomial

series f(x) = Σ£=*a>»Rn'β)(P)f ΣΓ=o \an\ < oo on the closed interval [ - 1 , 1].
The space A{"tβ) has the structure of a Banach algebra with pointwise
multiplication of functions. This is proved by the nonnegativity of the
linearization coefficients of products of Jacobi polynomials (see Gasper [2])
Igari and Uno [3] and Cazzaniga and Meaney [1] studied some structure
of the algebra A{"tβ), that is, the maximal ideal space, Helson sets,
spectral synthesis, etc. For the space A(α), we will consider some of these
problems. In §§1 and 2, we will show that A{a) is a Banach algebra by
the nonnegativity of the linearization coefficients of products of disk
polynomials that is proved by Koornwinder [6], and then determine the
maximal ideal space of A(α). Moreover, we will show that if a ^ 1 and
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z0 is in the open unit disk D then the singleton {z0} is not a set of
spectral synthesis for A{a). In §3, we will give a characterization of a
set of interpolation with respect to A(α), a > 0. The structure of A{a)

seems simpler than that of the algebra of absolutely convergent Fourier
series and is similar to that of the algebra A{0Cfβ), but we will use sharper
asymptotic formulas and apply delicate calculus.

I would like to thank Professor S. Igari for useful advice.

1. The Banach algebra A{a). First we mention some properties of
disk polynomials R{£]n(z) (cf. [5], [6]):

( i ) Rn]n{z) is a polynomial of degree m + n in x and y, where z —
x + iy.

(ii) Let ma be the probability measure on D defined by

drπM = - ^ U ( l - x2 - fYdxdy .
π

Then {i2ϊ,Um,n=o is a complete orthogonal system in U(D, ma), that is,

\_R%]n{z)R[%z) dma(z) = ΛίCT.Ai ,

where

h{a) = (m + n + a + l)Γ(m + a + l)Γ(w + « + 1)
h =

(α + l)Γ(α + l)T(m + ϊ)Γ(n + 1)
z = x — iy and δmfc is Kronecker's symbol. Moreover, /(m, w) = 0 for all
m, ^ implies / = 0, where

/(m, w) = \f{zW«]n{z)dma{z) .
Jz>

(iii) The linearization coefficients of products are nonnegative, that
is,

z) = Σ eM(m, n; fc, ΐ)K«qR£q{z)
V,q

with cPfq(m, n; p, q) ̂  0 [6; Corollary 5.2].
(iv) If α = 0,1, 2, , then disk polynomials are the spherical functions

on the sphere S2a+3 considered as the homogeneous space U(a + 2)/U(a + l).

Let I1 be the Banach space of absolutely convergent double sequences
b = {bmJZ,n=o with norm | |6 | | = Σ \bm,n\. Then the space A[a) is a Banach
space isometric to I1 by the mapping / M> {/(m, ^)Λ^)

n}~>n=0 of A(α) onto I1.
We now claim that A{a) is a Banach algebra.

Assume that f(z) = Y,am>nR^]n{z) and g(z) = Σ δ*.iΛΩ(2) are in A(α).
Then we have
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f(z)9(z)= Σ
m,n\k,l

= Σ { Σ α.,A,ιC,,t(m, »; k,
p,q m,n\k,l

a n d
I I Λ I I ^ Σ ί Σ \amj\bk>ι\\cp,q(m,n;kj)h£q\} ^\\f\\\\g\\ ,

p,q m,n;k,l

since ^p>q\cPyq(mf n; kf l)hp

a

>q\ = 1 by (iii) and Rl£n(l) = 1. Thus we have

the following:

PROPOSITION 1. The space A{a) is a commutative Banach algebra
with pointwise multiplication of functions.

2. The maximal ideal space of A{a}. Let m be the maximal ideal
space of A(α). The maximal ideal space is identified with the space of
multiplicative linear functionals, that is, nonzero complex homomorphisms.
Since the mapping / h-> f(z) defines a multiplicative linear functional on
A{a), every z in D corresponds to a maximal ideal c(z) in tn such that
f(c(z)) =f(z) for all / in A{a\ where / is the Gelfand transform of /.
Thus we have a mapping c: z H* C(Z) of D into tn.

THEOREM 1. The maximal ideal space m of the algebra A{a) is homeo-
morphic to the closed unit disk D by the mapping c and the Gelfand
transform f of f in A{a) is given by f(c(z)) = f(z) for z in D.

LEMMA 1. Let α^O, O<0<ττ and <o>l. Then there exist positive
constants C and K not depending on β, n which satisfy the following:
If n and β are positive integers such that n > Kβ, then

-α A)Ja{Nθ)

where \R\^Cρβ{n-Kβ)~\ N=n + (a+β + l)/2, (ζ) = p(p-l) - -(p-n + l)/n\

and Ja is the Bessel function of the first kind of order a.

This lemma is essentially the asymptotic formula of Szego [7; Satz
II], but gives an estimate of the error term with respect to the parameter
β which we need for our purpose. We omit the proof since it follows
from term by term application of Szego's method.

LEMMA 2. Let α ^ O , 0 < θ < π, σ > 1 and k be positive integers.
Then there exist positive integers λ and μ such that 0 2///(α+1/2) > λ > 1 and

lim sup I cos(Nθ + 7) | > 0 ,
fc->oo

where N = Xk + (α + 2μk + l)/2, 7 = -aπ/2 - τr/4.
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PROOF. Since

cos(Nθ + 7) = Re[ei{la+1)d/2+ΐ}emk+μk)θ] ,

it suffices to show that there exist positive integers λ and μ such that

σ2μ/io+i/2) > λ > i a n d that the sequence {ei{χk+μk)θ}^=1 has more than two
accumulation points. Put θ = 2πη. First we suppose that rj is a rational
number, and write η = q/p, where positive integers p and q are relatively
prime. Since 0 < η < 1/2, we have p > 2. Let λ = p and let μ be a
positive integer such that σw

{a+v2) > ̂  and μ and p are relatively prime.
Then {ei{χk+μk)θ}ΐ=1 has p accumulation points. Next we suppose that ΎJ is
irrational. Let λ and μ be integers such that σ

2fi^a+1^) > λ > 1 and let
the accumulation points of {eίαfe+^)<?}r=i be {£„}. Assume that Card{fJ =
Q < oo. We write

__ eί{λk+1+μik+l)}θei(λ-l)μkθe-iμθ

The accumulation points of { e ^ ^ 1 * ^ } ^ are & & ••-,££• On the other
hand, {eiU~1)μkθ}ΐ=1 is dense in the unit circle \z\ — 1, since ^ is irrational.
This contradicts the finiteness of {fj. q.e.d.

PROOF OF THEOREM 1. Since two different points in D separate
functions in A{a), the mapping c is one to one from D into m. It follows
from the definition of the Gelfand topology that the mapping c is continu-
ous. Since D and m are compact, it suffices to show that c is surjective.

Let X be a multiplicative linear functional on A(α). Since the norm
of a multiplicative linear functional is at most 1, we have \X(Rί%)\ ̂  1
and |X(i2$)l ^ 1. Pick points seίφ and ίe'* in D such that %(#$) =
and Z(JB£S) = te*^. By the identity

1 (cf. Szegδ [8]) ,
a + 2 α + 2

we have

si X(igί1) ++ 2 ' α + 2

Let AJα) be the closed subalgebra of A{a) generated by the set {JBSί,}?̂ .
Then A{

o

a) is identified with the algebra A{a>0) of absolutely convergent
Jacobi polynomial series of order (α, 0). The maximal ideal space of A(α>0)

is identified with the closed interval [ — 1,1] and the Gelfand transfrom
of / in A(α'0) is /(•) [3; Theorem 1]. Thus, restricting 1 to A{

o

a) we have
a unique point r such that 0 ̂  r ^ 1 and X(R$) = R[%r). Since R[%r) =
{(α + 2)(2r2 - 1) + α}/2(α + 1), (2) implies that ψ = -φ and st = r2.

Next we show that s = ί. By the identities Λjft, = (JB{f0

))m"n-B?t'm"-n)



BANACH ALGEBRA 399

&}Λfcί - 1) for m ^ n and =(R$)n-mR{«>n-m\2R§R$ - 1) for m ^ n,
we have

X(R" ) = ί ( ^ ) ^ ( 2 s ί « for m ^ n ,

' ( ( ί e i ( -^ ) ) n - m i e^ ' 7 l " m ) (2s ί - 1) for m ^ n .

Since | X(R%n) | ^ 1 for all m, w, we have

( 4 ) s w " n I R{

n

a'm~n)(2st - 1)

for m ^ n a n d

for m^n. If we show that (4) implies s <; t, we have s = £ by symmetry.
The condition (4) with t = 0 implies s = 0 by the equality R{

n

a'm-n)(-l) =

( - 1 ) " ( ! J ) / ( W ^ α ) Suppose that t^O. Put cosff = 2βt - 1, 0 ^ ^ < TΓ.

Then the condition (4) is equivalent to

( 5 ) (cos -|yV)W~n(cosw-" - | ) I Λ? *-n)(cos ί) | ^ 1

for m^n. If ^ = 0, we have obviously ί = 1 and 8 = 1. If 0 < Θ < π,
we put σ = t~ι cos (0/2) and β = m — n. Suppose that σ > 1, and choose
λ and μ as in Lemma 2. Let p be a positive constant such that p > 1
and jθ2/i < λ1/2. By Lemma 1 with this p and a well known asymptotic
formula

Ja(z) = i/2/πzcos(z + 7) + O(z-3/2)

as z —• oo, where 7 = — aπ/2 — π/4, we have

) [ / sin 0)1/2(sin-α^-){cos(iV0 + 7)

Δ

- σβ(n

for n>Kβ, where N = n + (a + β + l)/2, |Λ| ^ C ^ ( w - ϋΓ/SΓ1, and |JS'| ^
C\Nθ)~1 for Nθ^l with a positive constant C not depending on JV and
0. Put n = λfc and /3 = 2jwfc, and let fc -> oo. Then i2' -> 0, iV-1/2i2 -* 0

and σ ^ + α ) " V " 1 / 8 -> oo, and thus

lim sup <W"cos'—
Λ-*oo \ 2

by Lemma 2. This contradicts the condition (5). Thus we have σ =
r1cos(0/2) ^ 1. This implies s ^ ί since si = cos2(0/2) ^ f.
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By (3) and s — t — r, we have

'*)—*Λ? —n )(2r I - 1) for
V mtnJ {(rei{-φ))n-mR%'n-m)(2r2 1) for

Thus for every / = Σ α*,»#ίί?« in A(αr) we have

= Σ
where z0 — reiφ. The proof is complete.

By the Wiener-Levy theorem we have the following:

COROLLARY. Suppose that a ^ 0,

/(*) = Σ am,nR%n(z) , Σ K,J < - ,
m,n—0 m,n=0

and F is a holomorphic function on an open set containing the range of
f. Then

F(f(z)) = Σ bm)nR%n{z) with Σ \KJ < -
m,π=0 m,7i=0

By Theorem 1 the algebra A{a) is semisimple. Repeating integrations
by parts we may show that the infinitely differentiable functions on a
neighborhood of D belong to A{a). This implies that the Banach algebra
A{a) is regular.

Let E be a closed subset of D. Denote by I(E) the closed ideal in
A{a) consisting of all / in A{a) such that f=0 on E, and by J(E) the
ideal of all / in A{a) such that / = 0 on a neighborhood of E. If J{E)
is dense in I{E) then E is called a set of spectral synthesis for A{a). By
an argument similar to that used for Schwartz's example in the Euclidean
space R* (cf., also, [1]), we have:

THEOREM 2. If a ^ 1 and z0 is in the open unit disk D, then {z0}
is not a set of spectral synthesis for A{a).

PROOF. Let k be the greatest integer not exceeding a and let z0 be
in D. By (1) and simple calculations, there exist a positive constant C
and a neighborhood V of z0 in D such that

dxpdy9

)
'n (z)

9

<C

on V for 0 ^ p -\- q ^k and all m, %. This implies that the functions in
A{a) have k continuous derivatives on D and the functional
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on A{a) is continuous. Let I, = {fe A{a); f(zQ) = 0} and I2 = {fe A(α); f(z0) =
(3f/dx)(z0) = 0}. Then /x and J2 are distinct closed ideals for a ^ 1. This
proves the theorem.

3. Sets of interpolation with respect to A{a). A closed set E in
5 will be called a seί of interpolation with respect to A(α), if every
continuous function on E is the restriction of a function in A(α) to E.
Vinogradov [9], Kahane [4; Ch. XI §4] and [3] suggest the following
observations.

A finite subset of D is evidently a set of interpolation with respect
to A{a). Let T be the circle group RβπZ and A(T) be the algebra of
absolutely convergent Fourier series f(t) = Σπ=-oo ane

ίnt, Σn=-oo \an\ < oo,
A closed set E in T is called a Helson set, if every continuous function
on E is the restriction of a function in A{T) to E (cf. [4; Ch. IV]). The
image of a Helson set by the map t\-*eu will be called a Helson set on
the boundary 3D. For f(t) = Σ?=-oo αne ίnί in A(Γ), put /(z) - Σ r = 0 αnΛ#(s) +
Σn=iα_n#oΓn(z). Then f(z) belongs to A{a). Thus a Helson set on the
boundary 3D is a set of interpolation with respect to A(a). Also, the
union of a finite set in D and a Helson set on the boundary 3D is a set
of interpolation with respect to A(α). We will consider the converse.

THEOREM 3. Suppose that a > 0. Then every set of interpolation
with respect to A{a) is the union of a finite set in the open unit disk D
and a Helson set on the boundary 3D.

LEMMA 3. Let a, β ^ 0 and 0 < Θ < π. Then

\R{°>β)(cosθ)\^ Can-a{sin-a(θ/2)}{cos-?(θ/2)} ,

where Ca is a positive constant depending only on a.

PROOF. Let F(w) be the generating function for Jacobi polynomials
of the form F(w) = 2a+βΦ(w)Ψ(w)/Q(w), where Q(w) = (1 - 2w cos θ + wψ\
φ(w) = {l - w + Q(w)}-" and Ψ{w) = {1 + w + Q(w)}~β with the branches
of Q(w), Φ(w) and Ψ(w) being chosen positive for w — 0. Then, for
0 < θ < π, Jacobi polynomials are given by the formula

in +
( c o g ί )

V n I 2πi

where the path of integration is a small closed curve around the origin
in the positive direction. Thus

θ) = lim M
2
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for 0 < Θ < π, where w = e~u. From this and the inequality (n ^ aj <;

Can~a with a constant Ca depending only on α, it suffices to show that

\Φ(w)\^{2sm(θ/2)}~a and \Ψ(w)\ ^ {2cos(0/2)}"', which follow from the

inequalities;

( 6 ) 11 - w + Q(w)\ ^ 2 sin(0/2)

(7 ) 11 + w + Q(w)| ^ 2 cos(0/2)

for w - e~u, t G (-0, 0) U (0, 2π - 0). Write

1 - w + (1 - 2w cos 0 + w2)1/2

= e-^/^e"/2 - e-
ίt/2) + [e-"{(e" + e"") - 2cos0}]1/2

= e~it/22i sin(t/2) + e"iί/2(2 cos ί - 2 cos 0)1/2

for te( — θ,θ). Then a branch of (2 cos t — 2 cos θ)1/2 should be chosen
positive for t = 0. Thus we have

11 - w + Q(w) I = [{2 sin(*/2)}2 + 2 cos t - 2 cos 0]1/2 = 2 sin(0/2)

for te(-θ,θ). Also, write

1 - w + (1 - 2w cos θ + w2)1/2

= e-ίί/22i sin(0/2) + e"ίt/2i(2 cos β - 2 cos ί)1/2

for 16 (0, 2π — θ). Then the branch of (2 cos θ — 2 cos ί)1/2 should be posi-
tive, since the branch of (1 — 2wcos0 + w2)1/2 is positive for w = — 1.
This shows that

11 - w + Q(w) I = 2 sin(ί/2) + (2 cos θ - 2 cos t)1/2 > 2 sin

for te(θ, 2π - θ). Thus we have (6). Similarly, we have (7) by the
identities;

1 + w + Q(w) = e"it/22 cos(ί/2) + β"it/2(2 cos t - 2 cos 0)1/2

for te(—θ,θ), where the branch of (2 cos t — 2 cos θf/2 is chosen positive,
and

l + w + Q(w) = e~it/22 cos(ί/2) + β"ίί/2ί(2 cos θ - 2 cos £)1/2

for t G (0, 2π — 0), where the branch of (2 cos θ — 2 cos £)1/2 is chosen posi-
tive, q.e.d.

PROOF OF THEOREM 3. Let £ b e a set of interpolation with respect
to A{a). Any closed subset E is also a set of interpolation with respect
to A{a) and the restriction of a function in A{a) to 3D can be regarded
as a function in A(T). Thus Ef]dD is a Helson set on the boundary
dD.
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Next we will show that EnD is finite. Suppose that the assersion
does not hold. Then there exist a sequence {zd}f=1 in E such that 0 <
Zj I < 1 for j — 1, 2, 3, and zt Φ z5 for i Φ j , and a point z0 in 5 such

that {Zj} converges to z0. Let A{a\E) be the quotient algebra A{a)/I(E)
with quotient norm || \\A(a)iE) and C(E) be the Banach algebra of continuous
functions on E with uniform norm || ||σ(J&). Since E is a set of interpo-
lation with respect to A{a\ we have A{a)(E) = C(JE'), and the norms in
A{0C)(E) and in C(E') are equivalent. Let gk be a function in C(E) such
that gk(z2j) = 1 and ^ f e ? -i) = 0 for j = 1, 2, 3, , fc, ^(z,-) = 0 for j =
2k + 1, 2fc + 2, ••• and ||flrfc||<7<*) = l By the norm equivalence we can
choose a function Λ = Σ (^m,n(k)R{£n in A(α) for every fc = 1, 2, 3, so
that Λ = #* on 1? and | |/*|| ^ C, where C is a constant not depending
on fc. Let c0 be the space of double sequences {cm>j~>n=o vanishing at
infinity. Since A(a) is isometric to I1, A{a) is identified with the dual of
c0. This implies that there exists a subsequence {fk(p)}p=1 of {fk}k=1 which
converges to a function / = Σ α«,J8ί?,}» in the weak * topology <7(A(α), c0).
Let 2; be in D and put 2 = eiφ cos(0/2). By Lemma 3, we have

(Cα^-α sin"a(^/2) for m ^ n > 0 ,
( 8 ) I R S U z ) I ^ J α m _ α g i n _ α ( β / 2 ) f o r n > m > θ 9

Since | i 2 ^ ) ( c o s ^ ) | ^ ^ + / 3 ) / ( " + α ) for /5 ^ α (see, [8; (7.32.2)]) and^ )/(

)l( n ) ~ Ca>nβn w i t h a c o n s t a n t c«.» n o t depending on β, we
have

for m - n ^ a ,

w,nV l _ \ C { n m ) {cos(β/2)}— for

Thus, if α>0, then the complex sequence {R{£n(z)}m,n=o belongs to c0 for
every z in D by (8) and (9). By the definition of the weak * topology,
we have that fk{p)(z) coverges to f(z) as p-^00 for every z in D. In
particular, we have that f(z2j) = 1 and /fe^) = 0 for j = 1, 2, 3, ,
which contradicts the continuity of / in D. The proof is complete.
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