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Introduction. Let @« = 0, and let m and » be nonnegative integers.
Disk polynomials R%,(z) are defined by

R;a,m—n)(z,’ﬂ _ l)ei(m—n)cp,’.m—-n if m g n ,

(a —
Rm‘)'n.(z) - Rs’?,n—m)(z,rz . 1)ei(m—n)¢,rn——m lf m < n ,

where z = re” and R*?(x) is the Jacobi polynomial of degree » and of
order (a, B) normalized so that R®#(1) = 1.

Denote by A the space of absolutely convergent disk polynomial
series on the closed unit disk D in the complex plane, that is, the space
of functions f on D such that

o

f@) = 3 0, B2 with 3 |a..]< e,

m 0 m,n=0

and introduce a norm in A“ by
171 =3, lawal.

The space A consists of continuous functions on D, since if 3 |a,..| <o
then the series 3] a, R%.(2) converges uniformly on D by the inequality;

(1) |IR@.(2)] <1 on D (Koornwinder [5; (5.1)]) .

Our purpose is to study some structure of the algebra A“.

Let A“#? be the space of absolutely convergent Jacobi polynomial
series f(x) = 32, a,R*P(x), 3w, |a,| < o on the closed interval [—1, 1].
The space A“? has the structure of a Banach algebra with pointwise
multiplication of functions. This is proved by the nonnegativity of the
linearization coefficients of products of Jacobi polynomials (see Gasper [2])
Igari and Uno [3] and Cazzaniga and Meaney [1] studied some structure
of the algebra A*P, that is, the maximal ideal space, Helson sets,
spectral synthesis, ete. For the space A, we will consider some of these
problems. In §§1 and 2, we will show that A is a Banach algebra by
the nonnegativity of the linearization coefficients of products of disk
polynomials that is proved by Koornwinder [6], and then determine the
maximal ideal space of A®. Moreover, we will show that if « =1 and
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2, is in the open unit disk D then the singleton {z} is not a set of
spectral synthesis for A, In §8, we will give a characterization of a
set of interpolation with respect to A“, a > 0. The structure of A“®
seems simpler than that of the algebra of absolutely convergent Fourier
series and is similar to that of the algebra A‘“®, but we will use sharper
asymptotic formulas and apply delicate calculus.

I would like to thank Professor S. Igari for useful advice.

1. The Banach algebra A“. First we mention some properties of
disk polynomials R{.(z) (cf. [5], [6]):

(i) R®.(2) is a polynomial of degree m + » in x and y, where z =
x + 1y.

(ii) Let m, be the probability measure on D defined by

dm,(z) = atl 1 — z* — y)*dady .
T
Then {R{.}m .= is a complete orthogonal system in L¥D, m,), that is,

S_R::?,,(@R;ﬂ:z(z) dmo(z) = RO 0,0, ,
D

where
peo — (mA+mt+a+ Hlm+a+ DI +a+1)

(@ + 1)I'ae + 1)I'(m + 1)I'(n + 1)

Z =2 — 1y and 0,, is Kronecker’s symbol. Moreover, Fom, n) = 0 for all
m, n implies f = 0, where

Fom, m) = |_f@RS.@dm.(@) .

(iii) The linearization coefficients of products are nonnegative, that
is,
RY.(2)RE(2) = 3 ¢,y 0(m, m; k, DA R(2)
p,q

with ¢, ,(m, n; p, ¢) = 0 [6; Corollary 5.2].
(iv) If «=0,1,2,---, then disk polynomials are the spherical functions
on the sphere S**** considered as the homogeneous space U(a+2)/U(a+1).

Let I' be the Banach space of absolutely convergent double sequences
b = {bn,u}m.nm With norm [[b|| = 3 |b,..|. Then the space A“ is a Banach
space isometric to I' by the mapping f — {f(m, MR Y im0 Of A® onto '
We now claim that A“ is a Banach algebra.

Assume that f(z) = 3} a,, ,.R.(2) and g¢(z) = 3 b, R%)(z) are in A“.
Then we have
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f(2)g(z)

Dk 1 R (2) R} (2)
> CponbiiCy o (m, m; E, DR R(2)

»,q m,nik,l

m,n3k,l
{

Ll

and
11l S 545 [Gmnl el cplm, ms b, DR} < 11 £ 11 lg ]

since >, 1¢pm, n; k, DRy, =1 by (iii) and R,(l) = 1. Thus we have
the following:

PROPOSITION 1. The space A is a commutative Banach algebra
with pointwise multiplication of functions.

2. The maximal ideal space of A, Let m be the maximal ideal
space of A, The maximal ideal space is identified with the space of
multiplicative linear functionals, that is, nonzero complex homomorphisms.
Since the mapping [+ f(z) defines a multiplicative linear functional on
A“ every z in D corresponds to a maximal ideal ¢(z) in m such that
F@) = f(z) for all f in A, where f is the Gelfand transform of f.
Thus we have a mapping ¢ 2+ ¢(z) of D into m.

THEOREM 1. The maximal ideal space m of the algebra A 1s homeo-
morphic to the closed unit disk D by~ the mapping ¢ and the Gelfand
transform f of f in A is given by f((2)) = f(z) for z in D.

LEMMA 1. Let a=0, 0<6<mw and p>1. Then there exist positive
constants C and K mnot depending on B, n which satisfy the following:
If n and B are positive integers such that n > KB, then

<cosﬁ%>R;¢x;ﬁ)(cos 0) = {(0/sin 0)”2<sin‘“%>Ja(N0) + R}/(n ,: a)

where |R|SCo*n—KQ)™, N=n+(@+8+1/2, (2)=pp—1)---(p—n+Djn)
and J, is the Bessel function of the first kind of order a.

This lemma is essentially the asymptotic formula of Szego [7; Satz
I1], but gives an estimate of the error term with respect to the parameter
B which we need for our purpose. We omit the proof since it follows
from term by term application of Szego’s method.

LEMMA 2. Let =0, 0<6<m o>1 and k be positive integers.
Then there exist positive integers N and tt such that o*/“*? >\ >1 and

lirkn sup |eos(N@ + 7)| >0,

where N =\ + (a + 2pk + 1)/2, v = —axn/2 — ©/4.
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PROOF. Since
; k
COS(Nﬁ Fy) = Re[e“‘““”’/””e“‘ +yk)0] ,

it suffices to show that there exist positive integers A and g such that
@M > 3 > 1 and that the sequence {¢*****¥?}> has more than two
accumulation points. Put § = 2z7. First we suppose that 7 is a rational
number, and write » = ¢/p, where positive integers p and ¢ are relatively
prime. Since 0 <7 < 1/2, we have p > 2. Let »=p and let ¢ be a
positive integer such that ¢*#*** > p and ¢ and p are relatively prime.
Then {¢***+#¥%)=  has p accumulation points. Next we suppose that 7 is
irrational. Let ) and g be integers such that ¢/ >\ > 1 and let
the accumulation points of {e‘****¥%)= be {s}. Assume that Card{s} =
Q@ < . We write

ei(1k+1+2yk)0 — ei(2k+1+,u(k+1))0ei(l—l)ykﬁe-—i,u0

The accumulation points of {e!®**'+#¥0}= are £ g2 ... £ On the other
hand, {¢**"#}  is dense in the unit circle |z| = 1, since % is irrational.
This contradicts the finiteness of {g,}. q.e.d.

PROOF OF THEOREM 1. Since two different points in D separate
functions in A, the mapping ¢ is one to one from D into m. It follows
from the definition of the Gelfand topology that the mapping ¢ is continu-
ous. Since D and m are compact, it suffices to show that ¢ is surjective.

Let X be a multiplicative linear functional on A“. Since the norm
of a multiplicative linear functional is at most 1, we have |X(R{%)| <1
and |X(R)| < 1. Pick points se* and te”¥ in D such that X(R{®) = se*
and X(R{®) = te”¥. By the identity

R@Rw = 211 pa 1 cf. Szego [8)]),
RS = 1,1+a+2 ( zego [8])

we have
2 st ettty — & + 1x R®) + 1
(2) o (Ri%)

a+2°

Let A{® be the closed subalgebra of A generated by the set {R<*}:..
Then A{® is identified with the algebra A“® of absolutely convergent
Jacobi polynomial series of order (a, 0). The maximal ideal space of 4«
is identified with the closed interval [—1, 1] and the Gelfand transfrom
of fin A“” is f(-) [3; Theorem 1]. Thus, restricting X to A we have
a unique point » such that 0 <r =<1 and X(R{)= R{®(r). Since R (r)=
{(a + 2)@27r* — 1) + a}/2(a + 1), (2) implies that » = —¢ and st = 7%
Next we show that s =¢. By the identities R, = (R{®)™ "R®m-"




BANACH ALGEBRA 399
@RGSR — 1) for m = n and =(R)" "Ry" ™ 2R%HRY — 1) for m < n,
we have
(se**)m"Ri$™™(2st — 1) for m=mn,
(te'=#)»—mRien—m)(2st — 1) for m=<n.
Since |X(R¥,)| =1 for all m, n, we have
(4) s* | Re™ " (2st — 1)| = 1

for m = »n and

(3) X(Ra) =

t" | Rer™2st — 1) =1
for m < n. If we show that (4) implies s < ¢, we have s = ¢ by symmetry.
The condition (4) with ¢ = 0 implies s = 0 by the equality R&*™"(—1) =
(—1)"(2)/(” * a). Suppose that ¢t+#0. Put cosd=2st -1, 056 < 7.

n
Then the condition (4) is equivalent to

(5) (cos %/t)m*n<cos’"'" %) | R@™ " (cos §)| < 1

for m = n. If 6 =0, we have obviously t=1and s=1. If 0<8<m,
we put ¢ = t'cos (/2) and 8@ =m — n. Suppose that ¢ > 1, and choose
» and # as in Lemma 2. Let o be a positive constant such that p > 1
and p* < \”:. By Lemma 1 with this p and a well known asymptotic
formula

J.(2) = V'2[nzcos(z + 7) + O(z?)

as z — oo, where v = —an/2 — ©/4, we have
o* cos? —g-Rﬁ:""”(cos )

= o-ﬁ(n -1n— a)‘lN—uzl:(Z/ﬁ sin 0)1/2<sin*“%>{cos(N0 +9) + R} + N‘”zR]

for n> KB, where N=n+(a+8+1)/2, |[R|=Co*(n— KB)™, and |R'| <
C'(Ng)™* for N0 =1 with a positive constant C' not depending on N and
6. Put n=\* and B =2uk, and let k—c. Then R'—0, N7*R — 0

-1
and a”(n Z a) N* — o, and thus
lim sup a"(cos‘9 -Z-) | R*P(cos )| = oo
k=00

by Lemma 2. This contradicts the condition (5). Thus we have ¢ =
t~*cos(d/2) < 1. This implies s < ¢t since st = cos*(4/2) < ¢
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By (8) and s =t = r, we have
(re?)m"Rem—m(2r* — 1) for m

RS, =
(B) = (pgt-py-mRus-mor 1) for m

A%

Thus for every f = >, a,,.R%, in A we have
Xf) = X annBun(z) = f20)
where z, = re**. The proof is complete.
By the Wiener-Lévy theorem we have the following:

COROLLARY. Suppose that a = 0,
f@) = 3 . Buin@), 3 [tna <o,

and F s a holomorphic function on an open set containing the range of
f. Then
F(f@) = 3. b REWR) with >, |bu,] < oo .
m,n=0

m,n=0

By Theorem 1 the algebra A' is semisimple. Repeating integrations
by parts we may show that the infinitely differentiable functions on a
neighborhood of D belong to A“. This implies that the Banach algebra
A is regular.

Let E be a closed subset of D. Denote by I(E) the closed ideal in
A" consisting of all f in A“ such that f=0 on E, and by J(E) the
ideal of all f in A" such that f = 0 on a neighborhood of E. If J(E)
is dense in I(F) then E is called a set of spectral synthesis for A“. By
an argument similar to that used for Schwartz’s example in the Euclidean
space R® (cf., also, [1]), we have:

THEOREM 2. If a =1 and z, is in the open unit disk D, then {z,}
1s not a set of spectral synthesis for A“.

PrROOF. Let k be the greatest integer not exceeding a and let 2z, be
in D. By (1) and simple calculations, there exist a positive constant C
and a neighborhood V of z, in D such that
ap+qR;:)n
0x?oY*
on V for 0<p+q=k and all m,n. This implies that the functions in
A have k continuous derivatives on D and the functional

@|=c

orref
([ 0.
4 0x?0y* (=)
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on A is continuous. Let I, = {fe A“; f(z) = 0} and I, = {fe A"“; f(z,) =
(0f/ox)(z,) = 0}. Then I, and I, are distinet closed ideals for @ = 1. This
proves the theorem.

3. Sets of interpolation with respect to A“. A closed set E in
D will be called a set of interpolation with respect to A, if every
continuous function on E is the restriction of a function in A% to E.
Vinogradov [9], Kahane [4; Ch. XI §4] and [3] suggest the following
observations.

A finite subset of D is evidently a set of interpolation with respect
to A“. Let T be the circle group R/2nZ and A(T) be the algebra of
absolutely convergent Fourier series f(t) = Din—w @,e™, 32 _.|a,| < oo.
A closed set E in T is called a Helson set, if every continuous function
on E is the restriction of a function in A(T) to E (cf. [4; Ch. IV]). The
image of a Helson set by the map ¢+ e will be called a Helson set on
the boundary oD. For f(t)= 7. a.e™ in A(T), put f(z)= 37, a,R%)(2) +
S a_,R®(2). Then f(2) belongs to A. Thus a Helson set on the
boundary oD is a set of interpolation with respect to A. Also, the
union of a finite set in D and a Helson set on the boundary oD is a set
of interpolation with respect to A”. We will consider the converse.

THEOREM 3. Suppose that o > 0. Then every set of interpolation
with respect to A 1is the union of a finite set in the open wunit disk D
and a Helson set on the boundary oD.

LEMMA 3. Let a,83=0 and 0 <60 <=m. Then
| Ri#(cos 0) | = Con~*{sin~*(0/2)H{cos~?(6/2)} ,
where C, 18 a positive constant depending only on a.

ProOF. Let F(w) be the generating function for Jacobi polynomials
of the form F(w) = 2*"@(w)¥ (w)/Q(w), where Q(w) = (1 — 2w cos 6 + w?)"?,
Ow) = {1 —w + Qw)}™ and ¥(w) = {1 + w + Qw)}* with the branches
of Qw), ®(w) and ¥(w) being chosen positive for w = 0. Then, for
0 < # < m, Jacobi polynomials are given by the formula

(” + a)R;"‘"”(cos 9) = —I—,SF(w)w‘"“dw ,
n 21

where the path of integration is a small closed curve around the origin
in the positive direction. Thus

"+ Q\pe,p — lim L So_e SM_(H” 2g+p@(’w)§V('w) —int
( n )R" (COS 0) l.l_l"gl 271'{ —(0—¢) + f+e } Q(w) € dt



402 Y. KANJIN

for 0 <6 <m, where w = e~*. From this and the inequality (n-;a <

C,m~= with a constant C, depending only on e, it suffices to show that
|@(w)| < {25sin(0/2)} and |¥(w)| < {2 cos(6/2)}#, which follow from the
inequalities;
(6) 11— w + Q(w)| = 2sin(6/2)
(7) 11+ w + Qw)| = 2 cos(6/2)
for w =e %, te(—6,0)U@,2r — §). Write
1—w+ (1 —2wecosf + w)”*

= e (" — e~"?) + [e*{(e” + e™*) — 2cos 6}]'*

= e~ %24 sin(t/2) + e **(2 cos t — 2 cos §)'~
for te(—0,6). Then a branch of (2cost — 2cos#)* should be chosen
positive for £ = 0. Thus we have

11 —w + Qw)| = [{2sin(t/2)) + 2 cost — 2 cos §]* = 25sin(4/2)
for te(—0,6). Also, write
1—w+ (1 —2wcosb + wd)”*

= ¢~"*2¢ 8in(0/2) + e~ **i(2 cos § — 2 cos t)"*
for te (@, 2n — 6). Then the branch of (2cos# — 2 cos t)"* should be posi-
tive, since the branch of (1 — 2w cosé + w?"* is positive for w = —1.
This shows that

1 —w + Qw)| = 2sin(t/2) + (2cos § — 2 cos t)”* > 2sin (4/2)
for te(,2r — 0). Thus we have (6). Similarly, we have (7) by the
identities;
1+ w+ Qw) = e *2cos(t/2) + e **(2cost — 2 cos )"
for te(—4, 6), where the branch of (2 cost — 2 cos #)"* is chosen positive,
and
1+ w+ Qw) = e "2 cos(t/2) + e **1(2 cos § — 2 cos t)V

for te (6, 2r — §), where the branch of (2cos# — 2cos t)* is chosen posi-
tive. q.e.d.

PrOOF OF THEOREM 3. Let E be a set of interpolation with respect
to A. Any closed subset E is also a set of interpolation with respect
to A and the restriction of a function in A to 8D can be regarded
as a function in A(T). Thus ENoD is a Helson set on the boundary
oD.
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Next we will show that END is finite. Suppose that the assersion
does not hold. Then there exist a sequence {z;}%, in E such that 0 <
lz;] <1 for 5 =1,2,8, -+ and 2, ##; for © # j, and a point 2z, in D such
that {z,;} converges to z,, Let A“(E) be the quotient algebra A“/I(E)
with quotient norm || ||,z and C(E) be the Banach algebra of continuous
functions on E with uniform norm | :||s. Since E is a set of interpo-
lation with respect to A“, we have A“(FE) = C(E), and the norms in
A?(E) and in C(E) are equivalent. Let g, be a function in C(¥) such
that g.(z;) =1 and g,(2,;_) =0 for 7 =1,2,3, .-+, k, gu(2;) =0 for j =
2k + 1,2k + 2, --- and || gillosy = 1. By the norm equivalence we can
choose a function f, = > a, . (k)RY, in A® for every k=1,2,8, .-+ so
that f, = g, on E and || f;|| =C, where C is a constant not depending
on k. Let ¢, be the space of double sequences {c, .} .- Vanishing at
infinity. Since A is isometric to ', A" is identified with the dual of
¢,. This implies that there exists a subsequence {f;.}s-, of {fi}i-; which
converges to a function f = >} a, R%, in the weak = topology (4@, ¢,).
Let z be in D and put z = e¢* cos(/2). By Lemma 3, we have

] |R@.(2)| < {C,,’n“’ sin~*(0/2) for m=zn>0,
( ) m,n ? = Cum““ Sin—a(0/2) fOI' n > m > 0 .

since |Rer(cos )| < (" 1 B) /(" @) for Bz a (see, [8; (7.32.2)]) and

(n ;i; B) /<n ;t a) <C,.B" with a constant C,, not depending on B, we

have
C, .(m — m)*{cos(4/2)}™" for m —n=a,

(9) ‘Rﬁf}n(Z)l = {Ca,m(n — m)™{cos(6/2)})*™ for n—m=a.

Thus, if a>0, then the complex sequence {R[’.(2)}m .-, belongs to ¢, for
every z in D by (8) and (9). By the definition of the weak * topology,
we have that f,,(2) coverges to f(z) as p — o for every z in D. In
particular, we have that f(z,;) =1 and f(z;_,) =0 for 7=1,2,8, --.,
which contradicts the continuity of f in D. The proof is complete.
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