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Introduction. We shall adopt the notation of Griffiths [2] throughout
this paper. A holomorphic mapping between manifolds induces a holo-
morphic foliation on the domain manifold. In particular, for a complex
manifold M* immersed in C¥, we have

I'(n, N): M*---»>G(n, N),

where I'=I"(n, N) is the generalized Gauss map which is a holomorphic
mapping and I, has constant rank off a set of measure zero. Thus,
ker(I",) is an integrable subbundle almost everywhere. In fact, if E
denotes the universal bundle of G(n, N), then I'*(E) = TM, and the Chern
forms on E pullback to the Chern forms on TM. Therefore, we are
interested in studying the Chern forms on the universal bundle along
submanifolds of G(n, N).

In this paper we will give conditions in terms of the Chern forms
on the universal bundle of the Grassmannian which imply that a sub-
manifold of sufficiently high dimension has a parallel subbundle in the
universal bundle.

Let c¢;(2;|y) denote the j-th Chern form on the universal bundle of
G(n, N) restricted to M. Let ¢,(2,/,) denote the first Chern form on CP’.

We shall prove the following:

THEOREM 2.8. Assume that M™ is a complex submanifold of G(n, N),
with r = 2. If ¢,(Qzx) # 0, and ¢,,(2zlx) = 0, for

k=(r+N-n-2)/N-mn),
then there exists a constant (n — k)-subbundle of E|y.

The following Corollary is a direct result of the Theorem.

COROLLARY 2.9. Assume that M is a submanifold of G(n, N), with
r=2, and ¢, (2zy) =0. Then M is contained in G, N —n + 1)C
G(n, N).
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We will also investigate some special cases: For example, the case
given by requiring the k-th Chern form to be positive definite.

THEOREM 4.1. Assume that M*™ is a complex submanifold of
G(n, n + 2). Suppose that (—1)kc,(2y) 18 positive definite on M, and
Cri1(2zlx) =0. Then M is a complex submanifold of Gk, k + 2)C
Gn, n + 2).

THEOREM 5.1. Assume that MCG(n, N) as a complex manifold, and
2 = dim(M). Then c,(2gly) = ¢.(2,]y)? of and only if McCP"CG(n, N),

where ¢, 1s the Chern form on CP?, (¢ = < n> —1).

We remark that McG(A, N — n + 1)cG(n, N) means that G(1, N —
n + 1) is the subset of G(n, N) given by all complex n-planes which
contain a fixed plane of dimension (n — 1). In general, when we write
McGk, N— n + k)CcG(n, N) we shall mean that G(k, N — n + k) is the
subset of G(n, N) given by the set of all n-planes in C¥ which contain
a fixed k-plane in C¥. This convention will be assumed throughout the
paper.

1. Some Preliminaries. We will assume the following convention
on indices throughout the paper:
1= A B=EN;1=s4,j=smn+1spgv=N;
1=, B=kk+1=70=n.
We let PU(CY) denote the principal unitary bundle over C¥. We have
the following structure equations
1.1) dz = wle, , do* = 0® \ 03,
dwf = 05 A\ @F, —wj = @3
where the @wZ are the connection forms on the principal bundle, and the
w* are the cannonical forms. For the projection map,
n: PU,(CY) — G(n, N) =U(N, C)/U(n, C)x UN — n,C) ,

given by w: (o, e, ++-, ey) — Ple, A -++ A e,), where P is defined by P: C*—
{0} — CP*, such that P(z) = {cz|c€C}. The 1-forms w/ are constant along
fibres of the map «, and they are of type (1, 0), so they push down to
a coframe for T*G(n, N), where T, is the (1, 0) tangent space. In fact,
T.G(n, N) = Hom(C"*, C¥~™).

We would like to study the following bundle over G(n, N):

E(n, N)={(z, T)|TeGn, N), and ze€T},
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where T is an n-dimensional complex linear subspace of C¥. We shall
call E(n, N) the universal bundle of the Grassmann manifold. Every
Hermitian holomorphic vector bundle has a corresponding complex Hermitian
connection with the following properties,

(i) D=D + D",

(ii) D" = @ on functions

(iii) Dh(v, v,) = h(Dv,, ) + h(v,, Dvy),
where h(,) denotes the Hermitian metrie.

The 1-forms w! are defined on E(n, N) and we have,

doi = W* Aol + 2!

and

by (1.1).
Let Z[A, B] denote the set of integers between A and B inclusive.

Let e<8))> denote the sign of the permutation (;’]i’ o ;Ili)’ where (j) =
(41, -+, jk) and (4) = (41, ---, k) are k-tuples of distinct elements taken
from the set Z[1, n]. We define Chern forms in the following way

Det(t] + (V' =1/21)2;) = ,,Z; t" ke, (2p)
or
(9
(¥)
= (1/k)(V =1/20)(—1)* X 6(

¢.(2s) = (V' =1/27)"/k! Ze< )Q{i/\-'-/\.@iﬁ ,

()
)
where the summation is over the set of all k-tuples (¢1, ---, ik), with

distinct elements taken from the set Z[1, n] and over all possible per-
mutations (j) of each k-tuple. Now, let » = k(k + 1)/2. Then

(¥)
)
We drop the summation over the permutations assuming that 1 <71 <
«++ < 1k < m, and define

(WA AN s AN@R)° =0 N\ - N\ 0

where ¢ denotes the permutation such that vo(i) = pi. We also replace
the permutation (j) with a permutation ¢2 to obtain

>w§? A @8 / A @

¢(25) = (—1)' (V' —1/2r)*/k) 25( >wé‘f A e NOENDSN -0 N\ @f .
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Q) = (=17(V =120 k! S (@8 A -+ A @) A (@A - A ™,

where the summation is over the set of all distinet ordered k-tuples with
elements in the set Z[1, n], and over the set of all permutations ¢1, and
2.

Now we define,
(1.2) Al =20 (0 A o N o)
oe Sy
Then

Aot N Al = S (@A e A @) A (@A e A BT

ol o2
Finally, we have,
(L3 (@) = (=D TT2m) k) S A A Attt

It is now clear that the Chern form has a special property, which we
define in the following way:

DEFINITION 1.4. A (k, k)-form « is said to be strongly positive when
it satisfies the following relation:

a = (=120 =120 3. B, A B, ,
where g3, is of type (%, 0).

It is straightforward to show that a strongly positive form is a real
valued form which is positive semi-definite. We immediately have the
following from (1.3):

PRrROPOSITION 1.5. The form (—1)*c,(R2z) s strongly positive.
On the other hand, we define
Fn,N)={k T)|TeG(n, N), and zeT+‘}.

2. Chern Forms on G(n, N). Recall that w? give a coframe for
T*G(n, N), and we know that

2.1) do! = wi A\ w4 = (0*@w! — diwt) A\ o} .
Thus,
(2.2) il = (0l — dlwl)

is the connection form on T'G(n, N) as can be seen from (1.1). Similarly,
doit = by A ol + 20t .

Consequently,

2.3) 208 = of(wi’ N\ ol) — 0wl A @) .
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Therefore the Chern forms on G(n, N) are determined by the Chern forms
on E(n, N) and F(n, N). We now have:

LEMMA 24. If f:M"— G(n, N) is a holomorphic mapping with
rank(f,) = r, then the matrix of 1-forms (w¥) has exactly r linmearly
independent forms.

Proor. This follows since w? give a coframe for T*G(n, N).

LEMMA 2.5. Let U be a unitary transformation on the unitary frame
{ey + -, ex} in CY, such that

where U, = Ui is a unitary transformation on spanie, ---, e} and U,= U
18 a unitary transformation on span{e,,, *--, ex}. Then
ot =Ulw:T, .
ProoOF. We have
Wi = dULUZ + Uiw3 U5,
but U =U} = 0, and so we obtain the lemma.

‘We now have:

THEOREM 2.6. Assume M" CC" and rank(I",) = r. Then M is holo-

morphically Foliated by totally geodesic submanifolds which are totally
geodesic submamnifolds of C¥.

PRrROOF. A proof of this fact can be given, if we observe that the
kernel of the Gauss map is exactly the relative nullity space, but we shall
give here an alternate proof which makes use of a lemma which we will
need later.

We first observe that ker(I",) is a holomorphic subbundle and that
for a suitable choice of unitary frames ker(I",) = span{e,,,, - -, ¢,}. More-
over, D, e — Derei = le, e;] € TM, thus 0=wi(e;) = wi(e;), where v e Z[r +
1, n] and 7€ Z[1, n], since I'.(e;) = (w4(e;)) = 0. Finally we can write

O
0

where a € Z[1, r], and e Z[n + 1, N]. We will need the following lemma
to complete the proof.

r,=

LEMMA 2.7. Assume I’y has rankr. Then w%(e;) = 0, for each v, d €
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Z[r + 1, n], and for each a€ Z[1, r].

PrROOF. Notice that if w?*' = @?** = --- = w) = 0, then ¢, e ker(I",),
for a e Z[1, r]. But this is not possible, since ker(I",) = span{e,,,, **-, €,}.

Now let us assume that w?*, ---, ®%™ make up a maximal linearly
independent set for the 1-forms in the (n + 1)-st column. However,
oty can be written as a linear combination of the others. In fact, after
a suitable choice of unitary frames for spanie, ---, ¢,} we can assume
that w7t} is a multiple of w?*'. In other words,

oy = c(@)witt .

Therefore we consider the following unitary transformation:

(2.7a) er = (e, + Ceyuy)/(1 + cC)'”,
ehiy, = (—ce, + e,4,)/(1 + ce)'”,
so that wi*™ = (1 + ¢¢)”wi", and i’y =0. If we repeat this process
on the forms w3, ---, ' we will obtain w*}i = +-+- = @!**=0. On
the other hand, w*i! =0, so that
dwiii = oty A @5 =0 (sum over 4)
=@y A0 =0 (sum overac Z[1, r]) .

We conclude Cartan’s lemma that wl,, ---, ®¢, can be written as a linear
combination of the set {w?*, ---, %™}, and consequently
Wr(er) = o0 = @thae) = 0.
Moreover,
wie) = -+ = wi'(e;) =0,

for each v,0eZ[r + 1, n]. Now from the set {wX, ---, ®!*?} we can
choose a maximal linearly independent set, say {wX?%, ---, w%?. If we
repeat the above process we will have wi(e;) = -+ = w¥(e;) = 0. Finally,
observe that we can continue this process until w# is among a maximal
linearly independent set, since otherwise w?™ = .-- = w¥ = 0, which

implies that e, eker(/",). This completes the proof of the lemma.

Using the lemma we see that w%(e;) = w¥(e;) = 0, for v, 6 € Z[r + 1, n]
and a € Z[1, r]. Therefore, along the integrable submanifolds of ker(I",)
the second fundamental form is zero. This completes the proof of the
theorem.

THEOREM 2.8. Assume that M" is a complex submanifold of G(n, N),
with r=2. If ¢,(2zly) # 0, and ¢,.,(2z|x) = 0, for

k=s(r + N—n —2)/(N —n),
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then there exists a constant (n — k)-subbundle of E|,.

COROLLARY 2.9. If M" is a submanifold of G(n, N), with r = 2,
and c,(2zy) = 0, then M is contained im G(1, N — n + 1)CG(n, N).

PrOOF. Because of the complexity of the proof of Theorem 2.8 we
will first give a proof of Corollary 2.9 and then sketch the proof of Theorem
2.8. We begin by observing that the matrix of forms (w¥) has at least
two linearly independent forms. We assume without loss of generality
that ™' is a nonvanishing form in some neighborhood. Now using the
transformation of (2.7a), we can assume that w7™ = .-. = @?*! = 0, since
otherwise ¢, = 0. Now observe that

At =0, for each peZ[n + 2, NJ.
In fact w* A wi™ =0 for each 7eZ[2, n] and each peZ[n + 1, N].
Therefore we can assume without loss of generality that @w?*? is nonvanish-
ing and linearly independent of w?*'. By the same reasoning as above
@}t = -+« = @ = 0. Moreover, w/ =0, for each veZ[2,n], and pe
Z[n + 1, N]. Now we have

(a) 0=dor = w, N\ o,

(b) 0=dw;™ = w; \ or*.

By Cartan’s Lemma w; = 0, and so de; = wle, and the universal bundle
contains a constant (n — 1)-dimensional subbundle which implies that
M*cG(1, N —n + 1)cG(n, N).

Proor oF THEOREM 2.8. We say that {i1, ---, ik} and {el, .--, pk}
satisfy condition (*)k whenever,

151K <tk=n
and
n+lspls---=sphk<N.

Now, since ¢,(2z|x) # 0, there exist the sets {¢1, - - -, ik} and {g1, ---,
pk} satisfying condition (*)k, such that A4 + 0, where A is defined
by (1.2). On the other hand c¢,.,(2;]y) = 0 at each point of M, so that
for any set of indices satisfying (*)k + 1, we have

At =0,
and in particular
ARy = 0.
In other words, w4 A--+ A @4y = 0, for each ple Z[n + 1, N]. There-
fore, the matrix (w?) can have at most k linearly independent forms
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in any one column. Now, since dim M = r, the matrix contains exactly
r linearly independent forms. If each column contains no more than
(k — 1) linearly independent forms, then there would be at most (N — n) X
(k — 1) linearly independent 1-forms. However,

N—m)k—-1D=r-—2

implies that there are at least two columns containg % linearly independent
1-forms from the set of » linearly independent 1-forms. We assume

without loss of generality that w?*, ..., ;™ are linearly independent.
Then w;{} can be written as a linear combination of w?*, -.-, wp*'. But
by (2.7a) we can choose unitary frames so that wiji= -.-- = @' = 0.

And if we assume that the (n + 2) — nd column contains %k linearly
independent forms, then ¢,.,(2;|,) = 0 implies

Aﬁf‘l‘y"k';,in+1,n+2 — 0
or,
GEEAGTA - Aot =0,

since w;f; =0. In fact, since w}™ is a linear combination of the set
ot -, wp*t. Therefore, we may assume that o?*? ..., @;** are linearly
independent and w%}? must be a linear combination of the set w?*?% -- -, wp*2.
We conclude that w312 = .-+ = w*™ = 0. By the same argument we have
just given we obtain that w? =0, for ve€ Z[k + 1, n]. Now we write

(@) 0=doi'" = A oi",

(b) 0=dw" = wi A o3 (sum over A)
However, by Cartan’s lemma 2 is a linear combination of w?*, ---, wi™,
as a consequence of equation (a), but ®? is also a linear combination
of wr*?, ..., wi*?, as a consequence of (b).

We conclude that w2 is identically zero for each a e Z[1, k], and v ¢
Zk +1,n]. We have shown that

de; = wle; .
In other words, the span of {e,,, *--, ¢,} is constant along M. This com-
pletes our proof.

THEOREM 2.10. Assume that M" is a submanstfold of C", and rank(I",)=
r. Furthermore, assume that c,(2gzly) =0, and ¢, (2zly) = 0. Then r<
k —1)(N —n) + 1.

Proor. If r does not satisfy the inequality, we shall have a constant
subbundle of E,,, which pulls back to TM as a subbundle of ker(l",),
which is parallel for the connection on C¥. In fact, w(e;) = w!(e,) = 0,
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for each a€Z[1, k], and each veZ[k + 1, n]. Therefore, e,cker(l",).
However, the subbundle has dimension (n — k), and ker(I",) has dimension
(m — r). Therefore, n — k < n — r, implies that

0sk—7r; or, k—1(N—n)+1<r=k=k-1)N-n)+1.

But this is a contradiction. Consequently r must satisfy the inequality
which proves the theorem.

We end this section with a direct application of Theorem 2.8, and
Corollary 2.9.

COROLLARY 2.11. Assume M" is a submanifold of C¥. Ife, # 0, and
¢, =0, then rank(l",) =1, and if M is a complete manifold, then M 1is
cylindrical.

ProOF. To see that M is cylindrical we use Theorem 7 from Abe [1].

We remark that results similar to Theorem 2.8 and Corollary 2.9 hold
for the bundle F(n, N).

3. A Preliminary Result. We begin with:

PROPOSITION 3.1. Let {X,, -+, X,..x} be a frame on a vector bundle
over a manifold M. Let {¢, ---, 8™} denote the corresponding coframe.
Let Be GL(k, C), I e GL(n, C) and assume that X} = BiX;, for each i¢€
Z[1, k], and X} = X; for each 6€ Z[k+1,k + m]. Then

0* = (B™)ig?
for each i€ Z[1, k] and (0*)* = 6+, ..., (¥T™)* = g+t™,
The proof is left to the reader.

PROPOSITION 3.2. Assume that M is a complex submanifold of G(n, N),
such that

Ayt (X, oo, X)) # 0

for some X, A +++ AN X, 0. Then there exists a change of frames on
E|, such that

(Apthyomty* £ 0 .,
ProoF. Consider the unitary transformation
(en+1)* = tlen+1 + et + tsen+a ’

with the other elements of the frame given by the Graham-Schmidt
process. We have assumed above that {n + 1, --+, » + s} includes all the
indices given by {1, ---, p#k}. In addition, we assume that [t,[* + --- +
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|t,|* = 1. Then
(@i™)* =ttt + -0 + L0
Thus we have
(Apthiomtiy* = TEATIL o o vee 70 e BT AT ot
4+ e TEAREmYe
where n + j occurs in the superscript 7(j) times. Now, observe that the
right hand side is nonzero for some choice of ¢, ---, ,.

4. Submanifolds with vanishing Chern forms. We are interested
in the consequences of the vanishing of the Chern forms on the universal
bundle. We shall show that under special circumstances the assumption
that the Chern forms vanish implies that the universal bundle contains
a constant subbundle.

THEOREM 4.1. Assume that M*™ is a complex submanifold of G(n,
n + 2). Suppose that (—1)kc,(Rz,) %8 positive definite on M, and
Cr1(2zly) = 0. Then M is a complex submanifold of Gk, k + 2)CG(n,
n + 2).

PrROOF. By Proposition 3.2, we have that for any choice X, ---, X, €
TM satisfying X, A --- A X, #0, we can choose a frame f{e, ---, e,.,}
for G(n, n + 2)xC"** which gives

Arthyomt X, -, X)) # 0.

Therefore, we can assume that there are exactly % linearly independent
forms in the (» + 1)-th column. Using the transformation of (2.7a), we
can assume that wifi = --- = w**' = 0. The linearly independent forms
span a k-plane in the cotangent bundle, and so we assume that X, ---, X,
span the associated plane in the tangent bundle. Let X, ., be orthogonal
to the plane generated by X, A --- A X,, then w4(X,,) =0, for each
6eZlk+1,n], and each e Z[n + 1, n + 2]. Furthermore, w;*(X,,,) =0,
for each a e Z[1, k].

We claim that w;™ =0, for each de Z[k + 1,n]. To prove this,
observe that w}f? = >, a.w2™. Otherwise,

+1,..-' ’ 2
AIL,"',k+1n+1 mt (Xl’ t ch+1) * O ’

which contradicts our assumption on ¢,,,(2:|y). By using an appropriate
transformation on {e, ---, ¢}, we can assume that w?**X,,) # 0, and
0 = 0" (Xpyy) =+ = wi"*(X,,,). Note that this transformation does not
effect the span of w?*, ---, w;™. Now, choose Y, espan{X,, .-, X}, such
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that w;*(Y,)) = -+ = w;*(Y,) = 0, and choose Y, € span{X,, -+, X;}, such
that {Y, ---, Y.} are linearly independent, and mutually orthogonal.
Let Yk+1 = Xk+1. If a, + 0, then

REEETY, e Vi)
= 207" (Y1) @3 ™H(Yy) -+ 0 (Y)witi(Y) # 0,
where we have assumed for simplicity that w;™ A« A @™ (Y, --+, Y) =

0™ (Y,) - 03t (Y,). We conclude that a, = 0. However, since ¢, (2.l,)
is positive definite there exist a € Z[2, k], such that o2** (Y, =0. We
assume that @ = 2. By an appropriate transformation on {e, ---, ¢}, we

can assume that w;**(Y,) # 0, and w;**(Y) = -+ = 0}™*(Y,) = 0. Now,
we can repeat the above procedure to obtain a, = 0, and eventually a, =
a, = +-+ =a, = 0. This proves the claim, and we have w? =0, for an

appropriate choice of frame.
We now apply Cartan’s Lemma to
(a) dwi™ = wi A 0t =0,
(b) dwit* = wi A ozt = 0.

We observe that by (a): ®% is a linear combination of w?*, -.-, w*, and
by (b): w§ is a linear combination of w!*?, -, wi™. However, w$(X,,,) =
0, by (a), and consequently w} = 0. Now observe that ®? is a linear
combination of w;*, ---, wi™, and therefore w$(Y,) = 0. This implies that
@’ = 0. We repeat this analysis to obtain that
w;=0.

This gives our result.

In general we have:

THEOREM 4.2. Assume that M™ is a cor G(n,
n+p) for p=2. If (—1)kc,(Rg|y) 18 Dositive de glu) =

0, for m = 2k, then Mc Gk, k + p)cG(n, n +

ProOF. Following the proof of the previous theorem, and applying
Proposition 3.2 we have

Artem (X, e, X)) # 0,

and 0¥ X,.) = -+ = 04(X,,) =0, where X,,,, -+, X,, are orthogonal to
X, +++, X,. Moreover we can choose frames so that

ATt ( Xy 00y Xo) # 00
Now apply Cartan’s Lemma to obtain the theorem.

COROLLARY 4.3. Let M be a complex submanifold of G(n, n + p) for
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» = 2. Suppose that there exists a vector subbundle V of TM such that
dim V= 2k, and (—1)kc,(2z|y) s positive definite on V with ¢;,.,(25|x)=0.
Then M 1s a complex submanifold of Gk, p + k)cG(n, n + D).

Proor. We shall apply the same procedure as in Theorem 4.2 to
obtain that w4 = 0. Now since (—1)*c, is positive definite on ¥V we can
apply Cartan’s lemma to obtain the corollary.

5. Results in Projective Spaces. In general, projective spaces do
not yield results analogous to those of Section 4. The problem arises
from the fact that in the projective case we can only apply Cartan’s
lemma once. This fact allows us to conclude that ®? is a linear com-
bination of {w#}, but this is all that we can reasonably expect. The
Chern forms on the tangent bundle of submanifolds of a complex pro-
jective space can be written as products of powers of the Chern forms
on the universal line bundle E and the Chern forms of the vector bundle
F = E* restricted to the manifold. From this point of view we are
interested in the question: When is a submanifold of complex projective
space CP? contained as a submanifold in a complex Grassmann submanifold
of CP.

Of course, if M is a submanifold of CP? <q = <JX> — 1), then the
basis for C**' can be given by
IéilA".Aé’iny 1§7/1<<’WL§N

where {&,, -+, &y} is a standard basis for C¥. Therefore, M is a sub-
manifold of G(n, N) if and only if each T € McCP? satisfies

T:Xl/\.../\Xn,

where {X,, ---, X,} is a set of linearly independent vectors in C". In
general

T= Z igeeein€is N\ 200 N\ €y
and so Te G(n, N) if and only if
)
Qigoeetn = 24 e<( ) )a,u St Qg
()
has a solution in terms of the variables a, ---, ay. This is a nonlinear

algebraic system of <ZX> equations in N unknowns.

Consider G(n, N)cCP? and let E(n, N) denote the universal bundle
of G(n, N). Let E(1,q + 1) denote the universal bundle of CP?. Then
EQ,q+ 1)|gwm = A"E(m, N). The problem encountered in evaluating
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the Chern forms of E(n, N) in terms of the Chern forms on E(1,q + 1)
is that E(n, N) has no natural generalization to a bundle over CP".

However, since G(n, N) is embedded in CP? we can restrict the
universal line bundle over CP? to G(n, N). For {e, ---, ey} a frame for
C”Y, we have that e, A --- A e, is a frame for the universal line bundle.
Differentiating this, we get

d(el/\ M /\en) = (—l)iﬂlw?el/\ ce /\ei——l/\eﬂ/\ei+1/\ e /\e’n'
From this we easily obtain the Chern form for the line bundle

¢, = (—V =1)27) 3, ot N\ @ .

For the remainder of this section we will assume that M is a sub-
manifold of G(n, N) (of dimension greater than one) embedded in CP?.

We note that G(n, N) = G(IN — n, N) and therefore we will also consider
G(n, N) as embedded in CP¥, where ¢’ = ( Y n) — 1. We will denote
by 2, (resp. 2,) the curvature of the universal line bundle of CP? (resp.
CP?). We now have the following:

THEOREM 5.1. Assume that MCG(n, N) as a complex manifold, and
2 < dim(M). Then ¢,(2zly) = ¢.(2,]x)* of and only if McGA, N — n + 1)C
G(n, N).

ProoF. We begin with the case McG(2,4). We observe that one
direction is obvious. Therefore, we assume that ¢, = ¢2. Cancelling equal
terms on either side, we obtain

(5.2) A=1
where
A= A ot A ot A @3 + oA 07T A @7 A @t
and
H — w;&+1 /\ w;l+2 /\ a—)'{l.+1 /\ d');+2 + w;t+2 /\ a);l+1 /\ (D;H-Z /\ (D;H-l
+ 2a);z+1 /\ w;t+2 /\ (B;L+1 /\ ('l");l+2 + 2w;+1 /\ w;l+2 /\ d‘);z+l /\ (D;L‘FZ .

We assume without loss of generality that w;*' = 0. Let 6, = @},
and let X, denote the associated vector field.
(Case I) We assume that we can choose X, orthogonal to X, such that
oYX, = 0, w3t (X,) # 1, and w;™(X,) = 0. Now we can write

it = a??h, + b0, + 6, ,
where 6,(X,) = 1 and 6, = w;™ and 6, is orthogonal to ¢, and g9,. Likewise

w;H_z = a;+201 + b;+202 + 64 ’



284 P. COULTON

where 6, is orthogonal to 6, and 4,. We compute
A(X, X,, X, X,) = 2 Re(@;**o;+?)
(X, X, X, X;) = by**01** + arap*™ + 261701 + 2a3%a@;* .
Therefore (5.2) holds if and only if 4, = 6, = 0 and
(5.3) byt =ar and bt =gt =0.
(Case II) We assume that o? = 6,, and w;™ = 0. In this case
AX, X, X, X)<I(X, X, X, X.) .

We conclude that this case is not possible.
We consider the following transformation:

(enr)* = (s + a7%,.0)/(1 + aZt’ar?™®)
(€n1n)* = (—@2 %,0, + €,40)/(1 + a?™@r+?)

and observe that (w?*?)" = (w2*?)' = 0. We apply Cartan’s Lemma to the
equation:

0 = d(l)"+2 = G)IH-I /\ (0:1—% y
0 =dwr*t* = ot A\ 0.

We conclude that de,., = w"{%,.,. Therefore, MCG(1, 3)cG(2, 4). Thus,
the theorem holds for G(2,4). To obtain the result in general we need
only observe that

AX, X, X, X)X, X, X, Xo)

with equality holding if and only if each copy of G(2,4) in G(n, N)
satisfies the relation (5.3) above.

THEOREM 5.4. If ¢,(2zly) = ¢.(2,]x), then
c(2zel) = 01(~quu)k

PROOF. If ¢,(2z|y) = ¢,(2,]y)? then for an appropriate choice of frames
we have

O=w=w= ... =@ (1eZ[1,n]) .
Let » = k(k + 1)/2. Then
e(2ely) = (=170 =1/2z)k! 3, @it AT ANOFTN e N\ OFT,
where 1 <41 <2< --» <tk <n. We also have
(2t = (=10 =1/2n)k) T, witt A - oyt N ot <A\ @,

where 1 £141 <42 < +-+ < %k < n. This concludes the proof.
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