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Introduction. We shall adopt the notation of Griffiths [2] throughout
this paper. A holomorphic mapping between manifolds induces a holo-
morphic foliation on the domain manifold. In particular, for a complex
manifold Mn immersed in CN, we have

Γ(n,N):Mn--->G(n,N) ,

where Γ=Γ(n, N) is the generalized Gauss map which is a holomorphic
mapping and Γ* has constant rank off a set of measure zero. Thus,
ker^*) is an integrable subbundle almost everywhere. In fact, if E
denotes the universal bundle of G(n, N), then Γ*(E) = TM, and the Chern
forms on E pullback to the Chern forms on TM. Therefore, we are
interested in studying the Chern forms on the universal bundle along
submanifolds of G(n, N).

In this paper we will give conditions in terms of the Chern forms
on the universal bundle of the Grassmannian which imply that a sub-
manifold of sufficiently high dimension has a parallel subbundle in the
universal bundle.

Let cό(ΩE\M) denote the j-th Chern form on the universal bundle of
G(n, N) restricted to M. Let Cj{Ωq\M) denote the first Chern form on CP9.

We shall prove the following:

THEOREM 2.8. Assume that Mr is a complex submanifold of G(n, N),
with r ^ 2. // ck(ΩE\M) Φ 0, and ck+1(ΩE\M) = 0, for

k^(r + N-n- 2)I(N - n) ,

then there exists a constant (n — k)-subbundle of E\M.

The following Corollary is a direct result of the Theorem.

COROLLARY 2.9. Assume that Mr is a submanifold of G(n, N), with
r ^ 2, and c2(ΩE\M) = 0. Then M is contained in G(l, N — n + l ) c
G(n, N).
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We will also investigate some special cases: For example, the case
given by requiring the fc-th Chern form to be positive definite.

THEOREM 4.1. Assume that Mk+1 is a complex submanifold of
G(n, n + 2). Suppose that ( — V)kck(Ω E\M) is positive definite on M, and
ck+1(ΩE\M) = 0. Then M is a complex submanifold of G(k, k + 2 ) c
G(n, n + 2).

THEOREM 5.1. Assume that MczG(n, N) as a complex manifold, and
2 ^ dimC/kf). Then c2(ΩE\M) = c^Ω^)2 if and only if MczCPn(zG(n, N),

where c1 is the Chern form on CPq, (q = ( j — 1).

We remark that ΛfcG(l, N - n + ΐ)<zG(n, N) means that G(l, N -
n + 1) is the subset of G(n, N) given by all complex w-planes which
contain a fixed plane of dimension (n — 1). In general, when we write
MaG(k, N - n + k)czG(nf N) we shall mean that G(fc, N - n + k) is the
subset of G(w, iV) given by the set of all w-planes in CN which contain
a fixed fc-plane in CN. This convention will be assumed throughout the
paper.

1. Some Preliminaries. We will assume the following convention
on indices throughout the paper:

1 ^ A, B^N; 1 ^ i, j ^ n; n + 1 ^ μ, v ^ N

l ^ α , β ^ k; k + 1 ^ Ύ, δ ^n .

We let PU{CN) denote the principal unitary bundle over CN. We have
the following structure equations

(1.1) dz = ωAeA , dωA = ωB A ωi ,

dωB

A = α>2 Λ (θBc , - ω 2 = ώ |

where the ωf are the connection forms on the principal bundle, and the
ωA are the cannonical forms. For the projection map,

π: PU0(CN) -> G(n, N) = U(N, C)/U(n, C) x U(N -n,C) ,

given by π: (o, elf , e^) -> P(ex Λ Λ en), where P is defined by P: Ck —
{0} -* CP*"1, such that P(z) = {c2;|c e C}. The 1-forms α>f are constant along
fibres of the map π, and they are of type (1, 0), so they push down to
a coframe for T%G(n, N), where T+ is the (1, 0) tangent space. In fact,
T+G(nf N) = Hom(Cn, CN~n).

We would like to study the following bundle over G(n, N):

E(n, N) = {(z, T) I Te G(Λ, ΛΓ), and z e Γ} ,
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where T is an w-dimensional complex linear subspace of CN. We shall
call E(n, N) the universal bundle of the Grassmann manifold. Every
Hermitian holomorphic vector bundle has a corresponding complex Hermitian
connection with the following properties,

( i ) D = D' + Ό'\
(ii) D" = 3 on functions
(iii) Dh(vlf v2) = h(Dv19 v2) + h(vlf Dv2),

where h( , ) denotes the Hermitian metric.
The 1-forms ω{ are defined on E(n, N) and we have,

dω{ = ωΪΛωί + Ω{

and

Ω{ = α)?Λωj = -ωfΛώ?

by (1.1).
Let Z[A, B] denote the set of integers between A and B inclusive.

Let e($C\ denote the sign of the permutation (Q []]' ^ Y where (J) =

O'l> •> Jk) and (i) = (il, , ifc) are fc-tuples of distinct elements taken
from the set Z[l, n]. We define Chern forms in the following way

Det(ίl + (i/^ϊβπWs) = Σ tn

fc=0

or

ck(ΩE) = ( i / ^

- (1/fc! )(v/^I/2ττ) f c(- l)fc Σ eI ^l) cog A ώjί / Λ ώfk

\0)/
where the summation is over the set of all fc-tuples (ΐl, •• ,ifc), with
distinct elements taken from the set Z[l, n] and over all possible per-
mutations (j) of each fc-tuple. Now, let r = k(k + l)/2. Then

ck(ΩE) = (-l)r(i/^ϊ/2π)*/fc! Σ εf ^ W Λ Λ α ) ^ ^ 1 Λ Λ ώfk .
\( j )/

We drop the summation over the permutations assuming that 1 <; i l <
• < ik ^ n, and define

(ωg Λ Λ ωfky = < Λ Λ ω?fc

fe

where σ denotes the permutation such that vσ{i) = μi. We also replace
the permutation (j) with a permutation σ2 to obtain
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ck(ΩE) = {-iγiy^lβπYlkl Σ (ωff Λ Λ ω$Γ Λ (ώff Λ Λ ώ{?Γ ,

where the summation is over the set of all distinct ordered Λ -tuples with
elements in the set Z[l, n], and over the set of all permutations σl, and
σ2.

Now we define,

(1.2) A£::::;ff = Σ (ωff Λ Λ ωSr .

Then

Aff .v.ϊtf1 Λ &£:::::& = Σ Σ « Λ Λ α>S)Λ Λ (ώ£ Λ Λ ώSf)Λ .
σl σ2

Finally, we have,

(1.3) ck(ΩE) = ( - l ) * ^ ^ ! / ^ ^ ) * / * ! Σ Ag ^ Λ A$:::::ff .

It is now clear that the Chern form has a special property, which we
define in the following way:

DEFINITION 1.4. A (fc, &)-form a is said to be strongly positive when
it satisfies the following relation:

a = (-l)Λ(fe-1)/2(v/

where βx is of type (jfc, 0).

It is straightforward to show that a strongly positive form is a real
valued form which is positive semi-definite. We immediately have the
following from (1.3):

PROPOSITION 1.5. The form (—l)kck(ΩE) is strongly positive.

On the other hand, we define

F(n, N) = {(z, T)\Te G{nf N), and ze T1} .

2. Chern Forms on G(n, N). Recall that ω? give a coframe for

TXG(n, N), and we know that

(2.1) dωΐ = ω{ A ωμ

s = (8μM - δiωζ) A ω) .

Thus,

(2.2) ωliί = (ω&ζ - δ{ωζ)

is the connection form on TG{n, N) as can be seen from (1.1). Similarly,

dωi\ζ = ω\\ΐ A α>ί# + Ω\fy .

Consequently,

(2.3) Ωί ζ = 8ζ(ωϊ A ωl) - 8{{ωk

v A ωμ

k) .
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Therefore the Chern forms on G(n, N) are determined by the Chern forms
on E(n, N) and F(n, N). We now have:

LEMMA 2.4. // / : Mn —• G(n, N) is a holomorphic mapping with
rankί/*) = r, then the matrix of 1-forms (ω?) has exactly r linearly
independent forms.

PROOF. This follows since ω? give a coframe for T%G{n, N).

LEMMA 2.5. Let U be a unitary transformation on the unitary frame
{e19 - , eN) in CN, such that

0

0 u2

where U1 = U{ is a unitary transformation on spanle^ , en} and U2= Uζ

is a unitary transformation on span{#n+1, •••, eN}. Then

P R O O F . We have

but C/J = Ui = 0, and so we obtain the lemma.

We now have:

THEOREM 2.6. Assume Mn c CN and rankCΓJ = r. Then M is holo-
morphically foliated by totally geodesic submanifolds which are totally
geodesic submanifolds of CN.

PROOF. A proof of this fact can be given, if we observe that the
kernel of the Gauss map is exactly the relative nullity space, but we shall
give here an alternate proof which makes use of a lemma which we will
need later.

We first observe that kerCΓ*) is a holomorphic subbundle and that
for a suitable choice of unitary frames ker(Γ#) = span{er+1, , en}. More-
over, De.er - Όφ = [et, er] e TM, thus 0 = ωξ(er) = ω?(et), where ΎeZ[r +
1, n] and ieZ[ί, n\> since Γ*{er) — (α>f(er)) = 0. Finally we can write

o)μ

a

0

where a e Z[l, r], and μ e Z[n + 1, N], We will need the following lemma
to complete the proof.

LEMMA 2.7. Assume Γ* has rank r. Then ω"{eδ) — 0, for each 7, δ e
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Z[r + 1, n], and for each a e Z[l, r].

PROOF. Notice that if ωn

a

+ι = ω%+2 = = ω% = 0, then ea e ker(ΓJ,
for aeZ[l, r ] . But this is not possible, since kerCΓ*) = span{er+1, , en}.

Now let us assume that ωΓ+1, •••, ft>n+1 make up a maximal linearly
independent set for the 1-forms in the (n + l)~st column. However,
ωn

sίΆ can be written as a linear combination of the others. In fact, after
a suitable choice of unitary frames for spanf^, , er) we can assume
that ω^+\ is a multiple of ωΐ+1. In other words,

ωX+\ = c(x)ωΐ+1 .

Therefore we consider the following unitary transformation:

(2.7a) er = (e, + cβfl+1)/(l + cc)1/2 ,

ef1+1 = {-ce, + e.1+1)ia + cc)1/2 ,

so that ω?+1* = (1 + cc)1/2α>Γ+1, and ω?f+ϊ = 0. If we repeat this process
on the forms α>?i+2, , ft)"+1 we will obtain ωΐί+i = = ω?+1 = 0. On
the other hand, ωΐtl = 0, so that

dα)?ίί = α>r+i Λ ωl+ 1 = 0 (sum over A)

= ft>r+i Λ ωn

a

+ι = 0 (sum over a e Z[l, r]) .

We conclude Cartan ' s lemma t h a t ωl+lf , ωj+i can be w r i t t e n as a linear
combination of the set {ωΐ+\ •••, ω?i+1}, and consequently

tt)J+1(er) = = ω'r+iieγ) = 0 .

Moreover,

ω\(eδ) = . . . = <(β,) - 0 ,

for each 7 , ί e Z [ r + l , 4 Now from the set {ωΐi?lf •• ,α>;+2} we can
choose a maximal linearly independent set, say {ώii+u " sfi>?2

+2} If we
repeat the above process we will have ω\(eδ) = - = α>J2(e3) = 0. Finally,
observe that we can continue this process until ωΐ is among a maximal
linearly independent set, since otherwise ω?+1 — = ωξ — 0, which
implies that er 6 kerCΓ*). This completes the proof of the lemma.

Using the lemma we see that ω%eδ) — ωf(eδ) = 0, for 7, δ e Z[r + 1, n]
and aeZ[l, r]. Therefore, along the integrable submanifolds of ker(r*)
the second fundamental form is zero. This completes the proof of the
theorem.

THEOREM 2.8. Assume that Mr is a complex submanifold of G{n, N),
with r:>2. If ck(ΩE\M) Φ 0, and ck+1(ΩE\M) = 0, for

k^(r + N - n - 2)/(N - n) ,
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then there exists a constant (n — k)-subbundle of E\M.

COROLLARY 2.9. If Mr is a submanifold of G(n, N), with r ^ 2,
and c2(ΩE\M) = 0, then M is contained in G(l, N — n + ΐ)aG(n, N).

PROOF. Because of the complexity of the proof of Theorem 2.8 we
will first give a proof of Corollary 2.9 and then sketch the proof of Theorem
2.8. We begin by observing that the matrix of forms (α>?) has at least
two linearly independent forms. We assume without loss of generality
that o)i+1 is a nonvanishing form in some neighborhood. Now using the
transformation of (2.7a), we can assume that ω%+ι = = α>;+1 = 0, since
otherwise c2 Φ 0. Now observe that

An+i,μ _ o f for each μ e Z[n + 2, N] .

In fact ωμ

Ί A ω?+1 = 0 for each ΊeZ[2,n] and each μeZ[n + l,N].
Therefore we can assume without loss of generality that α>Γ+2 is nonvanish-
ing and linearly independent of α>Γ+1. By the same reasoning as above

ωn+2 - . . . . - . ωn+2 = Qβ Moreover, o>? = 0, for each 7 e Z[2, ri\, and μ e
Z[n + 1, N]. Now we have

(a) 0 = da)?+1 = ω\ Λ α>Γ+1,
(b) 0 = dω?+t = ω\ A ω?+\

By Cartan's Lemma ω) = 0, and so der = α)Jββ and the universal bundle
contains a constant (n — l)-dimensional subbundle which implies that
MnaG(l,N- n + l)cG(n, N).

PROOF OF THEOREM 2.8. We say that {il, « ,ifc} and {^1, ---,μk}
satisfy condition (*)fc whenever,

1 ^ il < <ik^n

and

Now, since cfc(i2£|M) ^ 0, there exist the sets {il, , ik) and {μl, ,
μk) satisfying condition (*)fc, such that Afί Sf ^ 0, where A is defined
by (1.2). On the other hand ck+1(ΩE\M) = 0 at each point of Mf so that
for any set of indices satisfying (*)k + 1, we have

and in particular

Aμl,'",μl — 0
<i, ,i(*+i) — U

In other words, ωξi A Λ ωft+υ — 0, for each μl e Z[n + 1, ΛΓ]. There-
fore, the matrix (α>0 can have at most k linearly independent forms
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in any one column. Now, since dim M — r, the matrix contains exactly
r linearly independent forms. If each column contains no more than
(k — 1) linearly independent forms, then there would be at most (N — n)x
(k — 1) linearly independent 1-forms. However,

(N - n)(k - 1) ̂  r - 2

implies that there are at least two columns containg k linearly independent
1-forms from the set of r linearly independent 1-forms. We assume
without loss of generality that ωΐ+\ •• ,α)£+1 are linearly independent.
Then ωltl can be written as a linear combination of ω?+1, , ωl+1. But
by (2.7a) we can choose unitary frames so that ωltl = = ωl+1 = 0.
And if we assume that the (n + 2) — nd column contains k linearly
independent forms, then ck+1(ΩE\M) = 0 implies

or,

ωltl Λ ωΐ+1 Λ Λ ωl+1 = 0 ,

since ωϊ+\ = 0. In fact, since a)γ+2 is a linear combination of the set
ωΐ+\ , ωl+1. Therefore, we may assume that ωΐ+2, , ωΐ+2 are linearly
independent and ωϊ+l must be a linear combination of the set ω?+2, , ft>*+2.
We conclude that ωΐ+l = = ωl+2 = 0. By the same argument we have
just given we obtain that co? = 0, for ΎβZ[k + 1, ri\. Now we write

(a) 0 = dωΐ+1 = ωf Λ ωn

A

+1,

(b) 0 = dωγ2 = ωf A ωn

A

+2. (sum over A)

However, by Cartan's lemma a)" is a linear combination of α>Γ+1, , (*)k+1,
as a consequence of equation (a), but ω? is also a linear combination
of ωΐ+2, •••, ωΐ+2, as a consequence of (b).

We conclude that ω" is identically zero for each α e Z [ l , k]9 and 7 6
Z[k + 1, ri\. We have shown that

der = ωδ

reδ .

In other words, the span of {ek+1, , en} is constant along M. This com-
pletes our proof.

THEOREM 2.10. Assume that Mn is a submanifold ofCN, and rankCΓJ =
r. Furthermore, assume that ck(ΩE\M) Φ 0, and ck+1(ΩE\M) = 0. Then r<*
(k - ΐ)(N - n) + 1.

PROOF. If r does not satisfy the inequality, we shall have a constant
subbundle of EΓ{M), which pulls back to TM as a subbundle of ker(Γ*),
which is parallel for the connection on CN. In fact, ωi(er) = ω$(ea) = 0,
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for each aeZ[l, k], and each τeZ[fc + l, n]. Therefore, e reker(Γ*).
However, the subbundle has dimension (n — k), and kerCΓ*) has dimension
(n — r). Therefore, n — k ^ n — r, implies that

0 ^ k - r; or , (fc - ΐ)(N -n) + l<r^k^(k- 1)(N - n) + 1 .

But this is a contradiction. Consequently r must satisfy the inequality
which proves the theorem.

We end this section with a direct application of Theorem 2.8, and
Corollary 2.9.

COROLLARY 2.11. Assume Mn is a submanifold of CN. If c1 Φ 0, and
c2 — 0, then ranker*) = 1, and if M is a complete manifold, then M is
cylindrical.

PROOF. TO see that M is cylindrical we use Theorem 7 from Abe [1].

We remark that results similar to Theorem 2.8 and Corollary 2.9 hold
for the bundle F(n, N).

3. A Preliminary Result. We begin with:

PROPOSITION 3.1. Let {Xλ, •••, Xm+k} be a frame on a vector bundle
over a manifold M. Let {θ\ , βm+k} denote the corresponding coframe.
Let BeGL(k, C), IeGL(n, C) and assume that Xf = B{X5, for each ie
Z[l, fc], and Xf = Xδ for each 8 e Z[k + 1, k + m]. Then

for each ieZ[l, k] and (θk+1)* = θk+\ , (θk+m)* = θk+m.

The proof is left to the reader.

PROPOSITION 3.2. Assume that M is a complex submanifold of G(n, N),
such that

for some X1 A Λ l ^ O , Then there exists a change of frames on
E\M such that

(AΓ+V " * 1 ) * Φ 0 .

P R O O F . Consider the uni tary transformation

(en + 1)* = tλenJrl + + t8en+s ,

wi th t h e other elements of t h e frame given by t h e Graham-Schmidt
process. We have assumed above t h a t {n + 1, , n + s} includes all the
indices given by {μl, •••, μk). In addition, we assume t h a t lίj2 + ••• +
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\t8\
2 = 1. Then

(α>?+1)* = ί > ? + 1 + + t8ωΐ+8 .

Thus we have

(AΓ+.V,ΓW+1)* = tiAi+ϊ:;ϊ'n+1 + + tlω tV8)A^:;pn+s

+ ... + 1 iAϊχ: rn+a,
where n + j occurs in the superscript r(j) times. Now, observe that the
right hand side is nonzero for some choice of tί9 •••,*,.

4. Submanifolds with vanishing Chern forms. We are interested
in the consequences of the vanishing of the Chern forms on the universal
bundle. We shall show that under special circumstances the assumption
that the Chern forms vanish implies that the universal bundle contains
a constant subbundle.

THEOREM 4.1. Assume that Mk+1 is a complex submanifold of G(n,
n + 2). Suppose that ( — l)kck(ΩE\M) is positive definite on M, and
tffc+iOOJjf) — 0. Then M is a complex submanifold of G(kf k + 2)aG(n,
n + 2).

PROOF. By Proposition 3.2, we have that for any choice Xu , Xk e
TM satisfying I j Λ Λ l ^ O , we can choose a frame {e19 , en+2\
for G(n, n + 2) x Cn+2 which gives

Therefore, we can assume that there are exactly k linearly independent
forms in the (n + l)-th column. Using the transformation of (2.7a), we
can assume that ωΐ+l = = col+1 = 0. The linearly independent forms
span a Λ-plane in the cotangent bundle, and so we assume that Xlf , Xk

span the associated plane in the tangent bundle. Let Xfcfl be orthogonal
to the plane generated by X1 Λ Λ Xk, then ω%(Xk+1) = 0, for each
δ e Z[k + l,n], and each μ e Z[n + 1, n + 2]. Furthermore, ωn

a

+\Xk+1) = 0,
for each α e Z [ l , k].

We claim that ωn

δ

+2 = 0, for each δeZ[k + l,ri\. To prove this,
observe that ωUl = Σ« ααα>2+1. Otherwise,

which contradicts our assumption on ck+1(ΩE\M). By using an appropriate
transformation on {elf " , 4 we can assume that ω?+2(Xk+1) Φ 0, and
0 = ω%+2(Xk+1) = = ωl+2(Xk+1). Note that this transformation does not
effect the span of α>?+\ , ωk

+1. Now, choose Yx e spanfXi, , Xk}, such
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that ωζ+1(YJ = = α>ϊ+1(YΊ) = 0, and choose r.GspanjX,, , Xk}9 such
that {Ylf •••, Yk] are linearly independent, and mutually orthogonal.
Let Yk+1 = Xfc+1. If Λi ̂  0, then

/\n+l,"-,n+l,n+2,n+2f\r y \

- 2ωΓ+2( r4+1)α>?+1( Y.) ωϊ+1(Y 4)ωίΐί(YΊ) Φ 0 ,

where we have assumed for simplicity that ω%+1 Λ Λ cok

+1( Y29 , Yk) =
ωl+\Y2) ••• α)fc+1(Γfc). We conclude that αx = 0. However, since ck(ΩE\M)
is positive definite there exist aeZ[2,k], such that cϋ«+2(YΊ) =£ 0. We
assume that α = 2. By an appropriate transformation on {e2, , e j , we
can assume that ωl+\Yx) Φ 0, and α>ί+2(Yi) = = ωϊ + 2 (y j = 0. Now,
we can repeat the above procedure to obtain α2 = 0, and eventually at =
a2 = = ak = 0. This proves the claim, and we have α>£ = 0, for an
appropriate choice of frame.

We now apply Cartan's Lemma to
(a) dωn

δ

+1 = ft)? Λ ωn

a

+1 = 0,
(b) dω?+2 = ω? Λ ω;+ 2 = 0.

We observe that by (a): ωa

δ is a linear combination of α>Γ+1, , α>ί+1, and
by (b): ft>? is a linear combination of ft>?+2, , ωk

+2. However, ω°(Xk+1) =
0, by (a), and consequently ω\ = 0. Now observe that ω" is a linear
combination of ω?+\ •> β>ί+1, and therefore α)^!^) = 0. This implies that
ω] = 0. We repeat this analysis to obtain that

α>; = 0 .

This gives our result.

In general we have:

THEOREM 4.2. Assume that Mm is a COΊ G(n,
n + p) for p^2. If { — l)kck(ΩE\M) is positive dev E\M) =
0, for m ^ 2fc, then MaG(k, k + p)cG(n, n +

PROOF. Following the proof of the previous theorem, and applying

Proposition 3.2 we have

Λn+l, ,n+l( Y . . . y \ /. Λ

and ωμ

δ(Xk+1) = = ft>?(X2jb) = 0, where Xk+19 , X2fc are orthogonal to
X19 •••, Xfc. Moreover we can choose frames so that

Now apply Cartan's Lemma to obtain the theorem.

COROLLARY 4.3. Let M be a complex submanifold of G(n, n + p) for
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p ^ 2. Suppose that there exists a vector subbundle V of TM such that
dimcV^2k, and (—ΐ)kck(ΩE\M) is positive definite on V with ck+1(ΩE\M)=O.
Then M is a complex submanifold of G(k, p + h)<z.G(n> n + p).

PROOF. We shall apply the same procedure as in Theorem 4.2 to
obtain that ωμ

δ = 0. Now since ( — l)kck is positive definite on V we can
apply Cartan's lemma to obtain the corollary.

5. Results in Projective Spaces. In general, protective spaces do
not yield results analogous to those of Section 4. The problem arises
from the fact that in the projective case we can only apply Cartan's
lemma once. This fact allows us to conclude that ω" is a linear com-
bination of {<*)£}, but this is all that we can reasonably expect. The
Chern forms on the tangent bundle of submanifolds of a complex pro-
jective space can be written as products of powers of the Chern forms
on the universal line bundle E and the Chern forms of the vector bundle
F = E1 restricted to the manifold. From this point of view we are
interested in the question: When is a submanifold of complex projective
space CP9 contained as a submanifold in a complex Grassmann submanifold
of CP9.

Of course, if M is a submanifold of CPq (a = (^) - lV then the

basis for C9+1 can be given by

e tl A - - Λ e in , 1 ^ i l < < in ^ N

where {elf ---,eN} is a standard basis for CN. Therefore, M is a sub-
manifold of G(n, N) if and only if each TeMaCP" satisfies

Γ = ί i Λ Λ l , ,

where {Xlf •• ,-Xn} is a set of linearly independent vectors in CN. In
general

T = Σ ««...<»«« Λ Λ e ίn ,

and so Γ e G(nf N) if and only if

has a solution in terms of the variables alf •••, aN. This is a nonlinear

algebraic system of ί ) equations in N unknowns.

Consider G(n, N)aCP9, and let E(n, N) denote the universal bundle
of G(n, N). Let E(lf q + 1) denote the universal bundle of CP9. Then
2?(1, q + V)\G{n,N) = ΛnE(n, N). The problem encountered in evaluating
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the Chern forms of E(n, N) in terms of the Chern forms on E(l, q + 1)
is that E(n, N) has no natural generalization to a bundle over CPq.

However, since G(n, N) is embedded in CPq we can restrict the
universal line bundle over CPq to G(n, N). For {e19 •••, eN] a frame for
CN, we have that ex A Λ en is a frame for the universal line bundle.
Differentiating this, we get

d{ex A Λ en) = (-lγ-'ωfa A Λ et^ A eμ A et+1 A Λ en .

From this we easily obtain the Chern form for the line bundle

Cl = (-V^lβπ) Σ ωζ A ώζ .

For the remainder of this section we will assume that M is a sub-
manifold of G(n, N) (of dimension greater than one) embedded in CP9.
We note that G(n, N) = G(N — n, N) and therefore we will also consider
G(n, N) as embedded in CPq', where q' = (j^^γ) - 1. We will denote
by Ωq (resp. Ωq) the curvature of the universal line bundle of CPq (resp.
CPqf). We now have the following:

THEOREM 5.1. Assume that MaG(n, N) as a complex manifold, and
2 ^ dim(ikf). Then c2(ΩE\M) = cγ{Ωq\Mf if and only i/McG(l, N - n + l ) c

, N).

PROOF. We begin with the case ikfcG(2, 4). We observe that one
direction is obvious. Therefore, we assume that c2 = c\. Cancelling equal
terms on either side, we obtain

(5.2) Λ = Π

where

A = ωΐ+1 A α)2

n+2 Λ ωΓ+2 Λ ώ£+1 + ωΐ+2 A ωl+1 A ώΐ+1 A ώΐ+2

and

77 = coΐ+i A ωl+2 A ώΐ+1 A ώ2

n+2 + ωΓ+2 Λ ω2

n+1 Λ ώΓ+2 Λ ώ2

n+1

+ 2ωΓ+1 Λ ωΓ+2 Λ ώΓ+1 Λ ά)Γ+2 + 2ω2

n+1 Λ ω2

n+2 Λ ώ2

n+1 Λ ώ2

n+2 .

We assume without loss of generality that ωΐ+1 Φ 0. Let θ± = α>Γ+1,
and let X1 denote the associated vector field.
(Case I) We assume that we can choose X2 orthogonal to Xx such that
ωΐ+1(X2) = 0, ωl+\X2) Φ 1, and ωl+\Xx) = 0. Now we can write

α)»+« = aΐ^θ, + bΐ+2θ2 + θ5 ,

where 02(X2) = 1 and θ2 = ω2

+1 and θs is orthogonal to ^x and 02. Likewise
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where θ4 is orthogonal to θx and θ2. We compute

Λ(X19 X29 Xl9 X2) = 2Re(αΓ+26?+2)

Π(X19 X2, X19 X2) = 6?+Iδ?+ϊ + αί+ 2αί+ 2 + 2&ί+2δϊ+2 + 2α2

n+2ά?+2 .

Therefore (5.2) holds if and only if θ3 = θκ = 0 and

(5.3) bϊ+z = aΐ+2 a n d bΐ+2 = α 2

n + 2 = 0 .

(Case II) We assume that ωΐ+1 = θlf and ω2

+1 = 0. In this case

A(X19 X2, JL19 JL2j<iΠ{Xlf X29 X19 A 2 ) .

We conclude that this case is not possible.
We consider the following transformation:

(en+ir = (en+i + αΓ+2βn+2)/(l + αΓ+ία?+ί)

(en+2)* = (-aΐ+2en+1 + βn+ϊ)/(l + αΓ+2αΓ+2)

and observe that (α>Γ+2)* = (ω2

+2)* = 0. We apply Cartan?s Lemma to the
equation:

0 = dωΐ+2 = ωΓ+1 Λ α>:ί?,

0 = dωn

2^ = α)2

n+1 Λ ωϊίϊ .

We conclude that den+2 = ωn

n%\en+2. Therefore, ΛfcG(l, 3)cG(2, 4). Thus,
the theorem holds for G(2, 4). To obtain the result in general we need
only observe that

Λ(Xl9 X2y X19 X2)^Π(Xlf X2, Xlf X2) f

with equality holding if and only if each copy of G(2, 4) in G(n, N)
satisfies the relation (5.3) above.

THEOREM 5.4. // c2(ΩE\M) = cx{Qq\My9 then

ck(ΩE\M) = c.ψ^γ

PROOF. If c2(ΩE\M) = C^Ω^M)2, then for an appropriate choice of frames
we have

0 = ωΐ+2 = α>?+3 = = ω? (ie Z[l, n]) .

Let r = k(k + l)/2. Then

ck(ΩE\M) = (-iy(v/^Λ/2π)kk\ Σ ω?x

+1 Λ Λ ωΐk

+1 A α)?x

+1 Λ Λ ώtf1 ,

where 1 ̂  i l < i2 < < ik ^ n. We also have

Ci(Λf|jf)* - (-l)r(v/^Ί/2π)kkl Σ ooT Λ Λ ωn

ίk

+1 A ώ£+1 Λ Λ ώn

ik

+1 ,

where 1 ̂  i l < i2 < < ik ^ n. This concludes the proof.
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