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0. Introduction. In the previous paper [5], we derived a dimension
formula for the spaces of cusp forms of SU(p, 1) in a closed form in the
case of neat lattices in SU(p, 1). With the use of this formula, we shall
give, in the present paper, more explicit expressions for such dimensions
in the case of the congruence subgroups Γ(N) with N ^ 3 in terms of
the arithmetic quantities.

For SU(2,1), explicit description of such dimensions was given by
Cohn [3] for Γ(l) defined for the base field QiV-ϊ). There he calculated
the volume of Γ(1)\SU(2,1) and explained in detail how elliptic elements
contribute to the dimension formula. On the other hand, for SU(p, 1)
Zeltinger has calculated the volume of Γ(l)\SU(p, 1) in [12]. Thus, in
our case, in view of the result in [5] (Theorem 1.1 in this paper), we
have only to describe in terms of the arithmetic quantities the contribu-
tion of unipotent elements to the dimension formula. We shall obtain
such a description in this paper.

In § 1, we shall recall the definitions and the results in [5] and state
the main theorem in this paper. In § 2, we explain the relation between
certain quantities related to the Γ(l)-inequivalent cusps and the theory
of adele groups and investigate the adelized group SU(p, 1)A, following
the method of Arakawa [1, § 3]. We also give another proof of the result
concerning the number of Γ(l)-inequivalent cusps obtained in Zeltinger
[12]. (By a similar method, one can also prove a more general result
concerning SU(p, q), conjectured by Zeltinger. See Corollary 2.7.) The
third section is devoted to a proof of the main theorem.

The author would like to express his deep gratitude to Professor T.
Arakawa for kindly giving him many valuable comments. He also
expresses his heartfelt gratitude to Professor Y. Ito and Professor F. Sato
for helpful advice and encouragement.

NOTATION. We denote by C, R, Q, Z and N, respectively, the field
of complex numbers, the field of real numbers, the field of rational num-
bers, the ring of rational integers and the set consisting of all natural
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numbers. In the following, we mean by k an imaginary quadratic field
and by O the ring of integers of k. For a commutative ring S with an
identity element, we denote by GLn(S) and SLn(S) the group of invertible
elements in the full matrix ring Mn(S) and the group of all elements in
Mn(S) with determinant one, respectively. By 0 and ln, we denote the
zero matrix and the identity matrix of Mn(S), respectively. We also
denote by i the complex number V — 1 and by z the complex conjugate
of zeC. For Z=(zj)eCn, we denote by \Z\ the norm (Σ;=i IZ; I2)1/2 o f

Z. The cardinality of a set X is denoted by *X We denote by ζ(z) the
Riemann zeta function.

1. Statement of the main results. Let G denote an algebraic group
defined over Q such that one has

with peN and

~ \0 - 1 /

Let D be a bounded domain in Cp defined by

D = {ZeCp; \Z\ < 1)

The group GR acts on D naturally by

gZ = (gnZ + g12)(g21Z + c

where

g =

with blocks corresponding to those of R, and ZeD. Set
g21Z + g22 with geGR and ZeD. We denote by K the subgroup of
consisting of those elements which fix the origin OeD:

(1.1) K={geGR;g0 = 0} .

The group JΓ is a maximal compact subgroup of GR and we have

Put

h eSLp+1(C); nλe U(p), u2eC, \u2
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(1.2) A =
I _ _ _ _

a(v) = \ 0 (y/v +V/v~1)/2 {Vv - \Sv-

\ 0 (yΊΓ - VT-χ)β (v/T +

e G L P + 1 ( C ) ; v > 0

(1.3) iNΓ = |[z „] = Γ r ! - I^V2% * 1*172 - *
1*172 - iy)

xeC'1]

Then we have the Iwasawa decomposition g — {x, y]a(v)k e GR =
By d# we denote the Haar measure on GΛ normalized by

dg = 2-1v~{p+1)dxdydvdk .

Here dx is the standard Euclidean measure on Cv~γ (=jR2{p~1}), dt/ and dv
stand for the Euclidean measure on R and dk is the Haar measure on

K normalized by I dk = 1. We denote by P the normalizer of JV in GR

and by PQ (resp. JVρ) the group Pf]G (resp. iVnGρ).
Let L be the lattice Dp + 1 in kp+1. Following Shimura [11], we mean

by the congruence subgroup Γ(N) of GQ, the subgroup

(1.4) Γ(N) = {7 6 GQ; L(Ύ - l)ciVL}

with NeN. The group Γ(N) is a normal subgroup of Γ(l), and is a
lattice in GR, that is, a discrete subgroup of GR such that the volume
of Γ(N)\GB with respect to the measure dg is finite. With meZ, let
Sm(Γ(N)) denote the space of holomorphic functions F(Z) on D satisfying
the following conditions:

(i) F(ΎZ) = μ(Ί, Z)mF(Z) for 7 e Γ(N), ZeD.
(ii) (1 - \Z\2)m/2F(Z) is bounded on D.

A function in Sm(Γ(N)) is called a Γ(N)-cusp form of weight m. Set,
for any heΓ(l)\GQ/PQ and NeN,

and wΛ = [Γ(l)*: Γ(l)λ]. In [5], we obtained the following dimension
formula for Sm(Γ(N)), using the Selberg trace formula.
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THEOREM 1.1 ([5, Corollary 4.9]). Suppose m > 2p and i\Γ:> 3. Then
the following dimension formula for Sm(Γ(N)) holds.

dim Sn(Γ(N)) = [Γ(l): Γ(N)]
π"(m — p —

• vo\(Γ(l)\GR)

), /TO) ,
where

moo(Γ(l), Γ(N)) = Σ
heΓ(l)\Gn

with vN>h = min{6 > 0; [0, b] eΓ(N)h}.
In particular, if the number p is odd and greater than one, then

we get

dim Sm(Γ(N)) = [Γ(l): Γ(N)]
τrp(m — p — 1)!

REMARK 1.2. By Borel [2], the number of double cosets of Γ(Ϊ)\GQ/PQ

is equal to the number of Γ(l)-inequivalent cusps. On the other hand,
the number mJJΓQ), Γ(N)) depends only on Γ(l) and Γ(N) (cf. [5, p. 473]).

The "Euler volume" of Γ(1)\D (i.e., the volume with respect to the
p-th Chern form) was calculated by Zeltinger [12].

THEOREM 1.2 (Zeltinger [12]). The Euler volume of Γ(ΐ)\D is given by

(-l)'(p , d)c(p, d) f[ L(-r,X) Π C(-r) ,
r=l r=l

rsθ(2) rsi(2)

where

(1.5)

, d) = -
Q

P\D

--(p+l)/2

(1.6)

and

c(p, 1) =

(Ί (p s 0 (2))

2 (p = 1 (4))

4 (p = 3 (4)) ,

β(p, 3) =

1

1
1

!

2

3

6

9-(p+D/2

(P

(P

(ί>

(P

— -I
— •*•>

= 2

( P =

(-Ϊ-

4 (6))

3 (6))

(6))

(6)),

0

1

2,

1

1

(2))

(2)

3 (4)

(2)\

(4)Γ
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ί
l if p splits in k/Q

— 1 if p neither splits in nor is ramified for k/Q

0 if p is ramified for k/Q.

It is easy to see that the Euler volume of Γ(1)\D is equal to
( — 1)P((P + l)!/πp)vol(Γ\GΛ). Thus, to derive a more explicit formula
for the dimension of the space Sm(Γ(N)), we need to calculate the follow-
ing two quantities:

(I) «ftvol(Γ(l)ΛΛO (heΓ(l)\GQ/PQ),
(II) ΈiheΓiDXGQ/PQ^h1

for an even integer p. We shall calculate these quantities explicitly in
§ 3 and show that the quantities (I) do not depend on h. Our final result
is the following:

THEOREM 1.3. Suppose m > 2p and N ̂  3. Then, the following
dimension formula for Sm(Γ(N)) holds.

dim Sm(Γ(N)) = [Γ(l): Γ(N)]2~*(m - 1)! ((m - p - l)!)

xa(p,d)c(p,d) Π U-r,X) f[ ζ(-r)
l

): Γ(N)]2ΨN-pd{p-1)/2ζ(l - p)e(pf d) ,

where
J>-2 (2>-2)/2

e{pt a) = Δ it xx r\\u\ *ΛJ-> ΛJ H l^ycr -r i> Ajc^rj ,
r=0 r=i

D is ίfee discriminant of k, δ is 1 or 2 according as — d = 1 (4) or
—d Ξ= 2, 3 (4), ί is ίΛe number of primes which divide the discriminant
of k, and a(p, d), c(p, d) and X(p) are given by (1.5), (1.6) and (1.7),
respectively.

REMARK 1.4. The quantity e(p, d) in Theorem 1.3 is the inverse of
the volume of the stabilizer U^p^, in the adelized group U(p — 1)A of the
lattice £)p~\ with respect to the measure dU{p — 1)A normalized suitably:

e(P'd) = (\nm ^VtP- ^ Γ '
(Cf. §3).

2. The structure of Γ(1)\GQ/PQ. In this section, we study the
structure of Γ(1)\GQ/PQ. We keep the notations introduced in § 1.

Let L be any D-lattice in kp+1. We mean by the norm of L the
Z-ideal generated by the elements ιxRx with xeL. If L is maximal
among the O-lattices with the same norm, it is called a maximal D-lattice.
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Clearly Όp+1 is a maximal D-lattice. For any prime number p, set Lp ==
L(g)zZp. The adelized group GA of G acts naturally on the lattice L:

Lff = n (LP^P n /c*+1) (</ = (gP) 6 GA) .
P

By U we denote the stabilizer in GA of the lattice L:

H = {g G G^; Lg = L} .

In the following, we assume that L = O p + 1 . By the definition of
Γ(l), we see immediately that Γ(l) = G c Πtl.

LEMMA 2.1. Lei ίfee m a p Φ: Γ(1)\GQ/PQ -> U\GA/PQ be defined by

Φ(Γ(l)gPQ) = tt#PQ /or £ e GQ. Tfeen Φ is bijective.

PROOF. By Shimura [10, Theorem 5.19], the number of double cosets
in U\GA/GQ is one. Hence the surjectivity of Φ follows. On the other
hand, the injectivity is an easy consequence of the relation Γ(l) = 1XΠGQ.

q.e.d.

For any prime number p, we denote by Gp the group of Qp-rational
points of G and by Up the group Gp n GLP+1(DP) with £)p = £)®ZZP. Let
PA be the adelized group of PQ. We shall deduce the following lemma
from a Iwasawa decomposition of Gp (cf. Satake [8]).

LEMMA 2.2. U\GJPQ = (UnPΛ)\PJPQ: namely, as a complete set of
representatives of VL\GA/PQ, one can take a complete set of representatives
of (UnPA)\pjpQ.

PROOF. We note that Gp is isomorphic to SLP+1(QP) in the case where
p splits in k/Q, and that Gp is isomorphic to SUp+1(k(S)Qp) otherwise.
Then, since L is a maximal D-lattice, we see easily that, for any g =
(UP) € GA, there are up e Up and hp e PQp such that gp = uphp, in view of
Satake [8, Chapter III §8.4 and §9.2]. Take the element h = (hp)ePA

with ho* — goo, as a representative of UgPQ. Now our assertion follows
easily. q.e.d.

Let H (= U(p — 1)) be an algebraic group defined over Q such that

HQ = {g eGLp_M; '99 = ίp~i) -

Let LH denote the ©-lattice D^"1 in kp~\ HA the adelized group of H and
VLH the stabilizer in HA of the lattice LH:

UH = {g 6 HA; LHg = L^} .

By Lemmas 2.1 and 2.2, it is possible to choose an element h of PA as a
representative of each double coset in Γ(1)\GQ/PQ. As is seen easily,
moreover, one may assume that the element h is of the following form:



DIMENSION FORMULA FOR A CERTAIN SPACE OF AUTOMORPHIC FORMS 577

la 0 0

\0 (y _ ϊJ-1)/2 (p + y-1)

with some aeHA and some vekA. Here kA is the adelized group of kx,
where kx is regarded as an algebraic group defined over Q.

Now we shall recall some facts from class field theory. Let C be
the ideal class group of k. I t is well-known that C is isomorphic to
kx\kA/U0, where 1XO is the stabilizer in kA of D. Let α be any ideal of
k and c the ideal class containing α. By α we denote the complex con-
jugate of α and by c the ideal class containing α. Then the set Ak =
{c = c; ceC} is a subgroup of C, whose element is said to be an ambig
class of k. It is known that the number of ambig classes of k is 2t~1.
Here t is the number of primes which divide the discriminant of k.

The following lemma will be used in the proof of Proposition 2.4.

LEMMA 2.3. (i) The following maps φ19 φ2 are surjective:

φx\ HQ 3 a H* det a e k1 = {/cek; N(κ) = 1} ,

Ψ2\ UH 3 a H-* det a e UJ = {u e Uo; N(u) = 1} ,

with N(v) = vv for vekA.
(ii) Let

be an element of PA, and D δβ an element of some ambig class of k.
Theny there exists an element aΩ of HA such that a0 e VLHaHQ and

laD 0 0 \

0 (vO + ( ϊ ϋ ) - 1 ) ^ (»© - (wD)-1)^ e P i t

\0 (vD - (ϋD)- 1)^ (yίO + (vD)-1)^/

PROOF. For any /cefc1 (resp. ^ G U J ) , put

ί/c 0 \ ί (u 0
α = resp. α =

\0 W \ \0 lp_
Then, the first part of the lemma follows from aeHQ (resp. aeUH).

Next, noting that D is an element of some ambig class, write

" 1 = ua for some α e k x and some % e l l 0 .

Then, since N(u)N(a) — 1, we have ueUl and αefc1. Thus, by part (i),
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there exist δeUH and βe HQ such that u = det δ and a = det /3. Put
aD = 3aβ. Now the proof of the assertion (ii) is immediate. q.e.d.

PROPOSITION 2.4. Suppose p is an even positive integer. Let h be
the number of double cosets of UH\HA/HQ. Then, there are matrices

jatj 0 °_ \
ha = 0 (vtj + (^Γ)/2 {viά - (^D/2 e PA

α^ e HA, viaek^\ 1 ^ i ^ h9 1 ^ j ^ 2*"1 having the following prop-
erties:

( i ) ΓΛe seί >1 = {hi5\ l^ίi^h, ltS-j^ί 2*"1} is α complete set of
representatives of double cosets of (VLΓΪPA)\PAIPQ'

(ii) For a fixed j o ; the set {aijo) 1 ^ i ^ h) is a complete set of
representatives of UH\HJHQ.

(iii) For a fixed pair i0, j 0 , the set { ^ ( J ^ ) " 1 ; 1 ^ j ^ 2*"1} ΐs α
complete set of repesentatίves of ambig classes of k.

PROOF. Let {a4; 1 ^ i ^ h) (resp. {Dy; 1 ^ j ^ 2*"1} be a complete set
of representatives of UH\HJHQ (resp. of ambig classes of k). Now we
fix i, j . It is easy to see that there is htePA of the form

0 0

for some i^e ί^ . Set vf i = v ^ . Then, in view of Lemma 2.3 (ii), there
exists hiS

 e PA such that

0

for some α< y e U ^ i ί g . We show t h a t ί̂ = {hφ l^i^ίh, l ^ j ^ 2 ί - 1}
is a complete set of representatives of (U Π PA)\PAIPQ TO do so, i t

suffices to prove t h a t , for any h e PA, there exists h^ e A satisfying the
condition h e (11Π P2ihiSPQ.

Let
la 0 0

Λ = (θ (v + v-ι)l2 (v-v-^

\0 (v - v~l)j2 (v + y-1)

be any element of PΛ, with aeHA, vekA. Assume that a eVLHaiHQ.



DIMENSION FORMULA FOR A CERTAIN SPACE OF AUTOMORPHIC FORMS 579

Since v~ιv eVL&r^^k*, we have v = uviάκ for some j, USXLQ and /cekx.
Write a — δai3 β with δeVLH, βeHQ. Since p is even, one can take δeUH

and βeHQ so that άetffluu'1 = άet^idc"1 = 1. Thus we obtain

0 0 \ Iβ 0 0

h = ί 0 (M + ΪΓ 1 )^ (w - ΰ " 1 ) ^ \hj 0 (/c + /c-1)^ (/c - κ~x)\2 I

-^β (u + ΰ"1)^/ \0 (K - iί-ι)l2 (K + ^-1)

Q. q.e.d.

The above proposition gives us another proof of the following corol-
lary, which is due to Zeltinger [12].

COROLLARY 2.5. Suppose that p is an even integer. Let h be the
number of double cosets in VLH\HJHQ and let t be the number of primes
which divide the discriminant of k. Then the number of double cosets
of Γ(Ϊ)\GQ/PQ is equal to 2ι~ιh.

REMARK 2.6. Suppose that \p — q\ is an even integer. Then, by a
similar method, one can deduce the following corollary for SU(p, q),
which was conjectured by Zeltinger [12].

COROLLARY 2.7. Let G (=SU(p,q)) be an algebraic group defined
over Q such that

lp 0\ /1 B 0
)9 =

and let P be a minimal parabolic subgroup of G defined over Q. Set
Γ = SLp+g(D)P[GQ. We suppose that \p — q\ is an even integer. Then
the number of double cosets of Γ\GQ/PQ is equal to 2t~1c(k)miMPfQ)"1h{p_ql(k).
Here we denote by h\p_q\(k) the number of double cosets of VLH\HA/HQ

with H = U(\p — q\)9 by c(k) the class number of k and by t the number
of primes τυhich divide the discriminant of k.

3. Proof of the main theorem. The notations in this section will be
as in § 1 and § 2. In this section, we shall calculate the quantities (I),
(II) in § 1 to derive Theorem 1.3. First we calculate the quantity (I).

PROPOSITION 3.1. Let h be an element in PA of the form

( a 0 0

0 {v-v~ι)j2 (v + v

Then, for a positive integer N, we have
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~pN~pd{p-1)/2 for -d = 1 (4)

PROOF. First we recall the relation Ό = Z + Zp, where

_ f(l + i/=3)/2 for - d Ξ l (4)
10 ~ (l/"=^3 for - d = 2, 3 (4) .

Let N(v) denote the norm vv of v ekA. By (1.3), it is easy to check that

h[x, y]h~x

( lp,! —axv axv

*xva~l l-\x\2N(v)/2 + V^dyN(v) \x\2N(v)/2 - \/~c
with [x, y]e NQ. Hence [x, y] e NQ is an element of Γ(ΐ)h if and only if
[xf y] satisfies the following conditions: (i) *x eLHav~\ (ii) \x\2/2 — V^dy 6
ΌN(v)~-\ Let QA be the idele group of Q, and UQ the stabilizer in Q$ of
Z. Then we have

N(v) = ul for some ueUQ and I e Qx .

By a similar argument, we obtain

{[0, y] e h~T(N)h nN} = {[0, y] e NQ; y e ZN{v)-ιN} .

In particular, the relation vNjh = l~λN holds.
Thus we have

VN% γo\(Γ(l)h\N) = (fW)" ' i S da?

JZ\R

where δ is 1 or 2 according as — d = 1 (4) or - i = 2, 3 (4). Here we
have used the relation

IdettαϊT1)!2 = N(i>y-p .

Hence, noting the relation O = Z + Zp, we obtain Proposition 3.1. q.e.d.

Next we shall calculate the quantity (II) in § 1. Let

( a 0 0 v

0 (v + v"x)/2 (v - v-1)^ I 6 PA

0 ( v - v - 1 ) ^ (v + v-1)^!
with aeHA, vekA. For aeHA, put
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w*(a) = *{α e HQ; LHaaa~ι = LH) = \a-ιUHa Π HQ) .

Then the following holds.

LEMMA 3.2. Suppose that p is an even positive integer. Then the
equality wh = w*(a) holds.

PROOF. AS can be seen easily, we have

1a 0 0 \

0 (λ + λ " 1 ) ^ (λ - λ " 1 ) ^ I 6 PQ;

0 (λ - λ " 1 ) ^ (λ + λ" 1 )^/

(a 0 0

0 (λ + λ " 1 ) ^ (λ - λ"1)

0 (λ - λ " 1 ) ^ (λ + λ"1)

I la 0 0 \

JO (λ + λ " 1 ) ^ (λ - λ-χ)/21ePQ) Lπaaa-1 = LH, aeHQy

Now we suppose that k is neither Q(i/--Ϊ) nor Q(i/—3). Then, noting
that £) x = ± 1 and det(—a) = — det(α), we get

la 0 0

λefc

wh = 2* 0 (λ
a 6 HQ

JHJ det(α) - 1
λ—1\ /O /Λ Λ —1\ /O I e P Γ ^

= *{α 6 HQ; LHaaoΓι = LH, det(α) = ±1}

= w*(a) .

When fc is Q(i/ —1) or Qii/—3), the equality wA = tc;*(α) can be proved
similarly. q.e.d.

Let α) be a left invariant highest differential form on H defined over
Q, and ωp the Haar measure on HQp induced by ω for each prime p. Let
X be the Dirichlet character associated to k/Q, i.e.,

' 1 if p splits in k/Q

(3.1) Z(p) = • — 1 if p neither splits in nor is ramified for k/Q

, 0 if p is ramified for k/Q.

Now following Ono [7], we define a measure dHA as follows:

Π {1 - p-ι

j>:prime

where pH = L(l, Z).
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LEMMA 3.3. We have

Σ wW1 = τ(H)(\ dHλ
aeVLH\HAIHQ \Juίf '

Here τ(H) means the Tamagawa number of H:

PROOF. Write

t(H) = ( dHA.

HA= Π UHaHQ,
aeuH\HΛIHQ

Then, it follows immediately that

HJHQ = Π nHal{a~ι\lHa Π HQ) .
aenff\HA!HQ

Thus, noting that *{ρΓιVLHa Π HQ) < oo, we see that

τ(H) = \ dHA = Σ {\a-ιVLHa Π iί^)}"1 ( dHA =
JHA/HQ a JnHa

q.e.d.

Now one deduces that τ{H) — 2, using the fact that the Tamagawa
number of SU(p — 1) (resp. 17(1)) is one (resp. two) (cf. Ono [7]). There-
fore, by virtue of Proposition 2.4, Lemma 3.2 and Lemma 3.3, the follow-
ing holds.

PROPOSITION 3.4. Let p be an even positive integer. Then we obtain

Σ w-i = 2t([ dHAY ,
heΓ(l)\GQlPQ \ Jujy /

where t is the number of primes which divide the discriminant of k.

On the other hand, by the methods employed in the calculation of
the volume vol(Γ(l)\GΛ) in Zeltinger [12, Chapter II], one can obtain the
following:

LEMMA 3.5. Suppose p is an even positive integer. Then it follows
that

ωp(Hz) = fp(p, d)(l - X(p)p~1) Π (1 -
r=l

for any prime p Φ °o and that

\r=0 " /

Here fp(p, d) stands for
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UP, d) =

D is the discriminant of k, δ is 1 or 2 according as —d = l(A) or
—d = 2,S (4) and X(p) is given by (3.1).

THE SKETCH OF PROOF. For NeN, set

HZp(N) = {geHZp, g = l^moάp*)}

and

U(p- 1; D/p»£>) = { j e l f ^ O / p Ό ) ; <gg = 1P_J .

Then, by the argument in [12, II, § 3.5 and § 3.6], we have

coP(HZp) = p-»*™H[HZp: H2p(N)]

= p-N{>-1)2δι-"U(p - 1; D/pND)

for N ^ 3. The numbers *U(p - 1; £>/pN£>) are calculated in [12, II, § 1.7,
§ 2.7 and § 2.11].

Next, to calculate the quantity ωm(Hκ), let vo\-h(U{p — 1)) be the
volume of U(p — 1) with respect to the U(p — 1)- invariant metric h such
that hlp(X, Y) = -Ίτ(XY)/2 for X, YeU(p - 1). Here VL(p - 1) is the
Lie algebra corresponding to U(p — 1). It is straightforward to see that

α»-( EW = δ'-W-^lDl-^-^vohiUip - 1)) ,

(cf. [12, II, § 4.5]). On the other hand, it follows from [12, II, § 4.7] that

voh(U(p - 1)) = 2(»-1»V"-1>/1(ffrlV* ,
\r=0 /

which implies the second assertion of the lemma. q.e.d.

COROLLARY 3.6. Retain the notations and the assumption of Lemma
3.5. Then one has

G \-l p-2 (2>-2)/2

dHΛ = 2-*-*'*-1)t*π-*ί»-1)n Π r\ ID|*(»-ι>/4L(l, 1) Π L(2r + 1, Z)ζ(2r) .
UH / r=0 r=l

Combining Proposition 3.4 with Corollary 3.6, we obtain the quantity
(II) in § 1, and finally complete the proof of the main theorem.
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