Téhoku Math. Journ.
37 (1985), 571-584.

A DIMENSION FORMULA FOR A CERTAIN SPACE OF
AUTOMORPHIC FORMS OF SU(p, 1), 1I:
THE CASE OF I'(N) WITH N =3

SUEHIRO KATO

(Received December 14, 1984)

0. Introduction. In the previous paper [5], we derived a dimension
formula for the spaces of cusp forms of SU(p, 1) in a closed form in the
case of neat lattices in SU(p, 1). With the use of this formula, we shall
give, in the present paper, more explicit expressions for such dimensions
in the case of the congruence subgroups I'(N) with N = 3 in terms of
the arithmetic quantities.

For SU(2, 1), explicit description of such dimensions was given by
Cohn [3] for I'(1) defined for the base field Q 1V —1). There he calculated
the volume of I'A)\SU(2, 1) and explained in detail how elliptic elements
contribute to the dimension formula. On the other hand, for SU(p, 1)
Zeltinger has calculated the volume of I'(1)\SU(p, 1) in [12]. Thus, in
our case, in view of the result in [5] (Theorem 1.1 in this paper), we
have only to describe in terms of the arithmetic quantities the contribu-
tion of unipotent elements to the dimension formula. We shall obtain
such a description in this paper.

In §1, we shall recall the definitions and the results in [5] and state
the main theorem in this paper. In §2, we explain the relation between
certain quantities related to the I'(1)-inequivalent cusps and the theory
of adele groups and investigate the adelized group SU(p, 1),, following
the method of Arakawa [1, §3]. We also give another proof of the result
concerning the number of I'(1)-inequivalent cusps obtained in Zeltinger
[12]. (By a similar method, one can also prove a more general result
concerning SU(p, q), conjectured by Zeltinger. See Corollary 2.7.) The
third section is devoted to a proof of the main theorem.

The author would like to express his deep gratitude to Professor T.
Arakawa for kindly giving him many valuable comments. He also
expresses his heartfelt gratitude to Professor Y. Ito and Professor F. Sato
for helpful advice and encouragement.

NoTATION. We denote by C, R, Q, Z and N, respectively, the field
of complex numbers, the field of real numbers, the field of rational num-
bers, the ring of rational integers and the set consisting of all natural
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numbers. In the following, we mean by k an imaginary quadratic field
and by O the ring of integers of k. For a commutative ring S with an
identity element, we denote by GL,(S) and SL,(S) the group of invertible
elements in the full matrix ring M,(S) and the group of all elements in
M,(S) with determinant one, respectively. By 0 and 1,, we denote the
zero matrix and the identity matrix of M_,(S), respectively. We also
denote by i the complex number 1V —1 and by Z the complex conjugate
of zeC. For Z = (z;)eC", we denote by |Z| the norm (3}, |z;|)"* of
Z. The cardinality of a set X is denoted by *X. We denote by {(z) the
Riemann zeta function.

1. Statement of the main results. Let G denote an algebraic group
defined over @ such that one has

Go = {9€SL,.,(k); ‘gRg = R},
Gr = {ge SLp+1(C); ‘gRg = R},
with pe N and

1, 0
R= <0 _1> eGL,..(k) .

Let D be a bounded domain in C? defined by
D={ZeCr |Z|<1}.
The group Gy acts on D naturally by

gZ = (guZ + gl2)(gZIZ + 922)_1 ’
where

g — (gll ng) e GR
g21 g22

with blocks corresponding to those of R, and ZeD. Set ug, Z)=
9272 + g, with geGr and ZeD. We denote by K the subgroup of Ge
consisting of those elements which fix the origin 0€ D:

1.1) K = {g € Gg; g0 = 0} .

The group K is a maximal compact subgroup of G and we have

K = {(g‘ 0) €SL,,(C); u, € Up), u,€C, |u,| =1t .
Uy

Put
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1, 0 0
(1.2) A= la(w) = ( 0 Vv +vVv 2 (Vv — 1/?7-1)/2)
0 v — Vv Y2 Vv +VvVv)2

eGL,.,(C); v> 0,

1,., — r
13) N=lgy=|% 1-Iof2+iw [of2—1y
T —|xP2+dy 14 |22 -1y

eGL,.c); "¢
P+1 ’ y c R .
Then we have the Iwasawa decomposition g = [x, y]a(v)k € Gr = NAK.
By dg we denote the Haar measure on Gy normalized by

dg = 2"~ *Mdxdydvdk .

Here dx is the standard Euclidean measure on C?~' (ZR**-Y), dy and dv
stand for the Euclidean measure on R and dk is the Haar measure on

K normalized by S dk = 1. We denote by P the normalizer of N in Gg
K
and by P, (resp. N,) the group PNG (resp. NN Gy).
Let L be the lattice O**' in k**'. Following Shimura [11], we mean
by the congruence subgroup I'(N) of G4, the subgroup

(1.4) I'(N) = {y € Gg; L(v — 1)c NL}

with Ne N. The group I'(N) is a normal subgroup of I'(1), and is a
lattice in Gg, that is, a discrete subgroup of G such that the volume
of I'(N)\Gr with respect to the measure dg is finite. With me Z, let
S,.(I'(N)) denote the space of holomorphic functions F(Z) on D satisfying
the following conditions:

(i) F(vZ) = p(v, Z)F(Z) for yeI'(N), Ze D.

(i) A — |ZP™2F(Z) is bounded on D.
A function in S,(I'(N)) is called a I'(N)-cusp form of weight m. Set,
for any heI'(1)\Go/P, and Ne N,

L(N)¥ =h7"I'(N)hNP, I'(N),=h"I'(N)hNN

and w, = [I'Q)¥: I'(1),]. In [56], we obtained the following dimension
formula for S,(I"(N)), using the Selberg trace formula.
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THEOREM 1.1 ([5, Corollary 4.9]). Suppose m > 2p and N = 3. Then
the following dimension formula for S,.(I"(N)) holds.
dim S,("(N) = [FD): TN ol (1)\Gw)
w?(m — p — 1)!
+ 2271 — p)[I'(1): I'(N)|m«(I'(1), I'(N)) ,

where
mo(I'1), [(N)) = > wi'vyh vol(I'(1),\N) ,

heI"(l)\GQIPQ
with vy, = min{b > 0; [0, b] € I'(N),}.
In particular, if the number p is odd and greater than one, then
we get

dim S, (I'(N)) = [F(V): T(N)]—" =D GoiranGa) .
w*(m — p — 1)!

REMARK 1.2. By Borel [2], the number of double cosets of I'(1)\G,/P,
is equal to the number of I'(1)-inequivalent cusps. On the other hand,
the number mo(I"(1), I'(N)) depends only on I'(1) and I'(N) (cf. [5, p. 473]).

The “Euler volume” of I'(1)\D (i.e., the volume with respect to the
p-th Chern form) was calculated by Zeltinger [12].

THEOREM 1.2 (Zeltinger [12]). The Euler volume of I'(L)\D is given by

(=10 + 12 7%a(p, de(p, d) [T L(—r, %) 1T &),

r=02) r=1(2)
where
(1.5)
( p=0(2)
1-— 2—(p+1)/2 ( b= 1 (2) >
a(p, d) = DR [T 1 + <__1>(p—1)/2p_(,,+1)/2 —-d=2,3 4)
p|D p 1 ( p = 1 (2))
—d=1@4)’
2 p=1@)
v, d) = {1 =0 @ @*FLY
_ _ 2 (p=1,3(9)
cp, 1) =42 (p=1(®14) c(p, 3) = 3 —92 (6
L =3 W, (=2 )
6 (p=5(6),

and
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1 if p splits in k/Q
1.7 Xp) = {—1 <f p meither splits in mor is ramified for k/Q
0 if p 18 ramified for k/Q.

It is easy to see that the Euler volume of I'Q)\D is equal to
(=1)?((p + 1!/x?)vol(I'\Gg). Thus, to derive a more explicit formula
for the dimension of the space S, (I"(N)), we need to calculate the follow-
ing two quantities:

(I) v#%vol('()\N)  (he I'(W\Go/Py),

II) Zhef(l)\GQ/PQ wit
for an even integer p. We shall calculate these quantities explicitly in
§ 8 and show that the quantities (I) do not depend on 2. Our final result
is the following:

THEOREM 1.3. Suppose m >2p and N =3. Then, the following
dimension formula for S,(I'(N)) holds.

dim S,(I'(N) = [T(1): TA)I2(m — D! (m — p — D)7 (p})™
xa(p, e(p, &) T L(—r, ) T L~
r=0(2) 7=1(2)

+ [I'Q): L(N)]2'0? N-*d*~"7((1 — p)e(p, d) ,
where

e(p’ d) — 2—t—p(p—1)/2n.—p(p—1)/2 ﬁ:,,.! |Dlp(p—-1)/4L(1, X) (pﬁ/z L(2r + 1, X)C(2’I’) ,
r= =1

D is the discriminant of k, 0 is 1 or 2 according as —d =1 (4) or
—d=2,3 (4), t is the number of primes which divide the discriminant

of k, and a(p, d), ¢(p,d) and X(p) are given by (1.5), (1.6) and (1.7),
respectively.

REMARK 1.4. The quantity e(p, d) in Theorem 1.3 is the inverse of
the volume of the stabilizer Uy,_,, in the adelized group U(p — 1), of the
lattice ©°~*, with respect to the measure dU(p — 1), normalized suitably:

ew,d=(]  avw-1.)",

Uy(p—1)

(ef. §3).

2. The structure of I'(1)\Go/Pe. In this section, we study the
structure of I'(1)\Go/P,. We keep the notations introduced in §1.

Let L be any O-lattice in k**'. We mean by the norm of L the
Z-ideal generated by the elements ‘ZRx with xe L. If L is maximal
among the O-lattices with the same norm, it is called a maximal O-lattice.
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Clearly ©r*' is a maximal ©O-lattice. For any prime number p, set L, =
L®;:Z,. The adelized group G, of G acts naturally on the lattice L:

Ly = N(Leg, NE™) (9= (9) € Gl .

By 11 we denote the stabilizer in G, of the lattice L:
U={geG, Lg=1L}.

In the following, we assume that L = ©°™', By the definition of
1), we see immediately that I"(1) = GoN 1.

LEMMA 2.1. Let the map @: '(1)\Go/Po— WG4/ Py be defined by
O(I'(1)gPy) = NgP, for g€ Gy. Then @ is bijective.

PrOOF. By Shimura [10, Theorem 5.19], the number of double cosets
in W\G,/G, is one. Hence the surjectivity of @ follows. On the other

hand, the injectivity is an easy consequence of the relation I'(1) = 1lNGy.
q.e.d.

For any prime number p, we denote by G, the group of @Q,-rational
points of G and by U, the group G,NGL,,(O,) with O, = 0&,Z,. Let
P, be the adelized group of P,. We shall deduce the following lemma
from a Iwasawa decomposition of G, (cf. Satake [8]).

LEmMMA 2.2, M\G,/P, = UNPO\P,/Py: namely, as a complete set of
representatives of U\G,/ Py, one can take a complete set of representatives
of MNPLH\P,/P,.

PROOF. We note that G, is isomorphic to SL,,,(Q,) in the case where
D splits in k/Q, and that G, is isomorphic to SU,.,(kQQ,) otherwise.
Then, since L is a maximal O-lattice, we see easily that, for any g =
(9,) € G4, there are u,€ U, and h,€ Py, such that g, = u,h,, in view of
Satake [8, Chapter III §8.4 and §9.2]. Take the element h = (h,) € P,
with he = g., as a representative of UgP,. Now our assertion follows
easily. g.e.d.

Let H (= U(p — 1)) be an algebraic group defined over @ such that
Hy, = {9eGL, ,(k); 'gg = 1,1} .
Let L, denote the O-lattice 0** in k?~!, H, the adelized group of H and
N, the stabilizer in H, of the lattice Lj:
Uy ={g€ Hy; Lgg = Lg} .
By Lemmas 2.1 and 2.2, it is possible to choose an element 2 of P, as a

representative of each double coset in I'(1)\Go/P,. As is seen easily,
moreover, one may assume that the element A is of the following form:



DIMENSION FORMULA FOR A CERTAIN SPACE OF AUTOMORPHIC FORMS 577

o 0 0
h={0 (w+vM2 (—-97)2
0 (—vH2 @+v7)2
with some e H, and some vek}. Here kX is the adelized group of k*,
where k* is regarded as an algebraic group defined over Q.

Now we shall recall some facts from class field theory. Let C be
the ideal class group of k. It is well-known that C is isomorphic to
EX\kX/1,, where 1, is the stabilizer in £k of ©. Let a be any ideal of
k and ¢ the ideal class containing a. By a we denote the complex con-
jugate of a and by ¢ the ideal class containing a. Then the set 4, =
{c = €; ceC} is a subgroup of C, whose element is said to be an ambig
class of k. It is known that the number of ambig classes of k is 2¢'.
Here t is the number of primes which divide the discriminant of k.

The following lemma will be used in the proof of Proposition 2.4.

LEMMA 2.3. (i) The following maps @,, @, are surjective:
@ Hysar—detack' = {kek; Nk) =1},
@ Uy2a—detaclly = {uelly; Nu) =1},

with N() = vy for veki;.
(il) Let

o 0 0
0 w+vMH2 (v— 5-1)/2)
0 w—vM2 (v+v12

be an element of P,, and O be an element of some ambig class of k.
Then, there exists an element a, of H, such that a,eNaH, and

ap 0 0
(0 WO + (O)2 O — (E)—I)/z) eP,.

0 (O —(O)M2 PO+ (@O)7)/2
PrROOF. For any ke€k' (resp. u €1l}), put

(o 1,) (e=a=(5 )
a_01p_2 p.oz—OlH .

Then, the first part of the lemma follows from a € H, (resp. a€ly).
Next, noting that O is an element of some ambig class, write

OO =ua for some ack* and some wucl,.

Then, since N(u)N(a) =1, we have uwe€ll} and a€k'. Thus, by part (i),
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there exist 6elly and Be€ H, such that w =detd and a = det 3. Put
a, = 6aB. Now the proof of the assertion (ii) is immediate. q.e.d.

PROPOSITION 2.4. Suppose p is an even positive integer. Let h be
the number of double cosets of U \H,/Hy. Then, there are matrices
a;; 0 0
hi =10 @4+ @2 @y— @) N2)eP,
0 (y— ™2 iy + i)™)/2
with a;€ Hy, v,;€ki; 1<i1=<h, 1 <j <2 having the following prop-
erties:

(i) The set A=f{h;;1<1=h,1=j=<2"" is a complete set of
representatives of double cosets of (N P,)\P,/P,.

(ii) For a fixzed j,; the set {a;;1=1=h} is a complete set of
representatives of Ny\H,/H,.

(iii) For a fixed pair i, j,, the set {v,;(¥i;)™31=75=2""} is a
complete set of repesentatives of ambig classes of k.

PrOOF. Let {a; 1 <17 < h} (resp. {O;; 1 =< 7 < 2""} be a complete set
of representatives of U,\H,/H, (resp. of ambig classes of k). Now we
fix ¢, j. It is easy to see that there is h;€ P, of the form

a;, 0 0
hi={0 (.+v7N2 (v —v7)2
0 (v, — ;:—1)/2 (v + ;t—l)/z
for some v, €k;. Set v,; =v,0;. Then, in view of Lemma 2.3 (ii), there
exists h,;; € P, such that
(227} 0 0
hi =10 @4+ @) ™2 iy — )72
0 (”tj — (”tj)_l)/z (”ij + (vij)_l)/z
for some a,;€Uya;Hy. We show that A={h,;;1<1=h,1=j=2
is a complete set of representatives of (UNP,)\P,/P,. To do so, it
suffices to prove that, for any ke P,, there exists h,; € 4 satisfying the
condition k€ (UWN P,)h,;P,.
Let
a 0 0

h=(0 @+vH2 (v—-v")2
0 w—=vH2 (+92

be any element of P,, with acH,, veki. Assume that ael,aH,.
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Since U7 e U,(v,"'v)k*, we have v = uy,;x for some j,ucll, and £ ek*.
Write a@ = da;;8 with 6 e, B€ Hy. Since p is even, one can take d €U,
and g€ H, so that det(d)uu" = det(B)kk™ = 1. Thus we obtain
0 0 0 B 0 0
h=|0 w+aM2 (u—ua"2h;0 &+£H2 (k—E£7)2
0 (u—uh2 (u+ a2 0 k—E&EM2 (k+EYH2
e N Pyh;;Py. q.e.d.

The above proposition gives us another proof of the following corol-
lary, which is due to Zeltinger [12].

COROLLARY 2.5. Suppose that p is an even integer. Let h be the
number of double cosets in Ny \H,/H, and let t be the number of primes
which divide the discriminant of k. Then the number of double cosets
of I'(1)\Go/P, is equal to 2 'h.

REMARK 2.6. Suppose that |p — ¢q| is an even integer. Then, by a
similar method, one can deduce the following corollary for SU(p, q),
which was conjectured by Zeltinger [12].

COROLLARY 2.7. Let G (= SU(p, q)) be an algebraic group defined
over Q such that

1 0 1 0
G, = SL,..(k); tgl * =7 ,
= sty Jo=(g )

and let P be a minimal parabolic subgroup of G defined over Q. Set
I' =8SL, (O)NG,. We suppose that |p — q| is an even integer. Then
the number of double cosets of I'\Go/Py is equal to 2! 'c(k)™™*2"h,_ . (k).
Here we denote by hy,_,(k) the number of double cosets of U \H,/H,
with H= U(|p — ql), by c(k) the class number of k and by t the number
of primes which divide the discriminant of k.

3. Proof of the main theorem. The notations in this section will be
as in §1 and §2. In this section, we shall calculate the quantities (I),
(II) in §1 to derive Theorem 1.3. First we calculate the quantity (I).

PROPOSITION 3.1. Let h be an element in P, of the form
a 0 0
0 W+ Y2 -—Y2].
0 =12 (v+57Y2

Then, for a positive integer N, we have
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21 P N-2d > 12 for —d =1 (4)
2N-rd ‘P12 for —d=2,3(14).
Proor. First we recall the relation © = Z + Zp, where

B {(1 +1vV'=d)2 for —d=1 (4)
T W= for —d=2,3(4).

Let N(v) denote the norm v¥ of yekX. By (1.3), it is easy to check that
hlz, yln™

vol(I"(1),\N )vy% = {

1,., —ay ary
= (‘:Eva“ 1 — |2PN®)/2 + 1V —dyN() |2 EN()/2 — V' =dyN(»)
Ty —|2PNW)/2 + vV —dyN(®) 1 + |2EPN®)/2 — 1V —dyN®)

with [z, y]€ No. Hence [z, y]€ N, is an element of I'(1), if and only if
[, y] satisfies the following conditions: (i) ‘e Lyav, (ii) |x[}/2 — V' —=dy e
ON()™'. Let @} be the idele group of @, and U, the stabilizer in Q% of
Z. Then we have

N(@) =ul for some wuell, and le@Q*.
By a similar argument, we obtain
{[0, y1e R"I'(N)RN N} = {[0, y] € No; y € ZN(»)"'N} .
In particular, the relation vy, = {™'N holds.

Thus we have

i Vol (T(DAN) = (7N) 2 |

x S
Lyai—Ier—1 Zi~\R
d S dy ,
Z\R

where 6 is 1 or 2 according as —d =1 (4) or —d =2,3 (4). Here we
have used the relation

= BN"'S

Ly\cr—1

|det(av™)|* = N()'*.
Hence, noting the relation © = Z + Zp, we obtain Proposition 8.1.  q.e.d.
Next we shall calculate the quantity (II) in §1. Let

a 0 0

h = (0 w+5M2 (- s—l)/z) eP,
0 w—v2 +VhH2

with a € H,, vek}. For aec H,, put
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w*(a) = Ya € Hy; Lyaaa™ = Ly} = a " Nzan Hy) .
Then the following holds.

LEMMA 3.2. Suppose that p is an even positive integer. Then the
equality w, = w*(a) holds.

PROOF. As can be seen easily, we have

a 0 0
w, =* (0 4+ X2 (W= X‘l)/Z) € Py;
0 (=22 A+ /2
. a € HQ

a 0 0
Lh(O W+ A2 (W — )»‘1)/2)h“1 = L; \ € k¥

0 (v—XM)2 v+ A2

a 0 0
=* (0 n+AYH/2 W — X‘l)/2) € Py; Lyaaa™ = Ly, a € Hy, NEO*}.
0 (v—X9/2 v+ 22

Now we suppose that k is neither @V —1) nor Q' —3). Then, noting
that ©* = +1 and det(—a) = —det(a), we get

a 0 0 .
w, = 2 (0 N+ A2 (- X“)/2) € Py; Lyaaa™ = Ly, Z;(a;? 1
0 (v—X/2 v+ X2
= *a € Hyp; Lyaaa™ = Ly, det(a) = +1}
= w*a) .

When k is Qv —1) or Q1 —3), the equality w, = w*(a) can be proved
similarly. q.e.d.

Let @ be a left invariant highest differential form on H defined over
Q, and w, the Haar measure on H,, induced by @ for each prime p. Let
X be the Dirichlet character associated to k/Q, i.e.,

1 if p splits in k/Q

3.1) X(p) = {—1 if p neither splits in nor is ramified for %/Q
0 if p is ramified for k/Q.

Now following Ono [7], we define a measure dH, as follows:

dH, = p7'w. II (1 —p7Ap) 'w,,

p:prime

where o, = L(1, X).
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LEMMA 3.3. We have

w*(a)™ = t(H)(S aH,)
aeuH\HAIHQ Uy
Here ©(H) means the Tamagawa number of H:
«(H) = S dH, .
HA/HQ

ProOF. Write
H, = a NyaH, .

aeug\H4/Hqo
Then, it follows immediately that
H,/H, = I Upa/faUzanHy) .

aeug\H4/Ho

Thus, noting that ¥a ' Uzan Hy) < «~, we see that
«(#) = |

u

dH, = 3 (e~ Nyan Hy}™ S dH, =3, w*(a)"S dH, .

H4/HQ

q.e.d.

Now one deduces that z(H) = 2, using the fact that the Tamagawa
number of SU(p — 1) (resp. U(1)) is one (resp. two) (cf. Ono [7]). There-
fore, by virtue of Proposition 2.4, Lemma 3.2 and Lemma 3.3, the follow-
ing holds.

PROPOSITION 3.4. Let p be an even positive integer. Then we obtain

-1
s wpes(] ),
keI (N\GgIPg uy

where t is the number of primes which divide the discriminant of k.

On the other hand, by the methods employed in the calculation of
the volume vol(I"(1)\Gx) in Zeltinger [12, Chapter II], one can obtain the
following:

LEMMA 3.5. Suppose p is an even positive integer. Then it follows
that

(p—2)/2
®,(Hz,) = fo(p, d)1 — X(p)p™) El 1= AUpp~ A — p~™)
Jor any prime p # « and that
p—2 -1
woo(HR) — 6p—12p(p—1)/2n.p(p—l)/2<]:[ 7.!) ID]—p(p—l)/4 .
r=0

Here f,(p, d) stands for



DIMENSION FORMULA FOR A CERTAIN SPACE OF AUTOMORPHIC FORMS 583

1 (p ¥ D)
folp,d) =42  (p#2, p|D)
A (p = 2: 2|D) ’
D 1is the discriminant of k, 6 i3 1 or 2 according as —d =1 (4) or
—d =2,3 (4 and X(p) is given by (3.1).
THE SKETCH OF PROOF. For NeN, set
H;(N)={geHg,; g =1, (mod p")}
and
Ulp — 1; O/p"0) = {g€ M,,(O[p"O); 'gg = 1,_} .
Then, by the argument in [12, II, §3.5 and §38.6], we have
wp(Hzp) = p_NdimH[Hz,,: Hz,,(N)]
= p~V* V2 U(p — 1; Op"O)
for N = 8. The numbers *U(p — 1; O/p¥O) are calculated in [12, II, § 1.7,
§2.7 and §2.11].

Next, to calculate the quantity w«(Hg), let vol;(U(p — 1)) be the
volume of U(p — 1) with respect to the U(p — 1)- invariant metric % such
that EIP(X, Y)= —Tr(XY)/2 for X,Yel(p —1). Here U(p — 1) is the
Lie algebra corresponding to U(p — 1). It is straightforward to see that

W(Hyg) = 6?712#0°2 D|-2@=V4 yol;(U(p — 1)),

(cf.[12, 11, §4.5)). On the other hand, it follows from [12, II, § 4.7] that
voli(U(p — 1)) = 2-re=n(T 1)
r=0

which implies the second assertion of the lemma. q.e.d.

COROLLARY 3.6. Retain the notations and the assumption of Lemma
3.5. Then one has

1 p—2 (p=2)12
(S dHA> = grt-somdeg=se-da T ¢l DPo-IsL(L, %) T L@r + 1, DE@r) .
g r=

r=1

Combining Proposition 3.4 with Corollary 3.6, we obtain the quantity
(II) in §1, and finally complete the proof of the main theorem.
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