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The purpose of this article is to discuss some stability properties of
a solution of functional differential equations with delay by using the
method of Liapunov-Razumikhin type. The method of Liapunov-Razumikhin
type is powerful for the analysis of functional differential equations with
delay, and many results have been presented (for instance, [1, 2], [4], [7-9],
[11]). However, as the example given by Seifert in [8, 9] shows, the
(uniform) asymptotic stability of a solution of functional differential
equations with infinite delay cannot necessarily be deduced from the
familiar settings of Liapunov-Razumikhin theory. In order to investigate
the (uniform) asymptotic stability of a solution of funectional differential
equations with infinite delar, in this paper, we shall take the following
approach: First we decompose a given equation with infinite delay as a
sum of an equation with finite delay and the remainders; Next we obtain
some perturbation theorems for the equation with finite delay in terms of
the arguments of Liapunov-Razumikhin type; Finally we discuss the
stability of a solution of the original equation with infinite delay. In
particular, this approach is useful for the analysis of integrodifferential
equations. Indeed, we shall consider some integrodifferential equations,
and obtain some results on the stability properties of a solution (Theorems
3 and 4). Our Theorem 3 improves a result in [11].

Now, we explain the notations and definitions employed throughout
this paper. Let R" be the n-dimensional real Euclidean space. Let BC
be the set of all bounded and continuous functions defined on (— <o, 0]
with values in R". For any ¢ in BC we set ||¢|| = supss,|$(d)|. Then
(BC, ||‘|l) is a Banach space. For any H,0 < H < o, we set BCy =
{$€BC: ||¢|| < H}. Furthermore, if 2(-) is a continuous and bounded
function on (—oo, ¢t,), t, < =, to R", then for each ¢t < t, we define the
function x,€ BC by «.(0) = x(t + 6),0 < 0.

Consider a system of functional differential equations with infinite delay

(1) i(t) = f(t, @) ,
where f is a function on IxBC, I: = [0, ), to R™ and f(¢,0) =0 on I.
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For any (o, ¢) € IXxBC, a continuous function x:(—o,T)—> R", T > 0, is
said to be a solution of (1) through (¢,¢) on [o, T) if z, = ¢ and x(t)
satisfies (1) for 0 <t < T. We denote by x(t, g, 4, f) a (noncontinuable)
solution of (1) through (g, ¢). By the assumption that f(¢,0) =0 on I,
(1) has the zero solution z(¢) = 0.

We now introduce the following assumptions on the function f(¢, ¢):

(i) For each T,0 < T < «, the function f(¢,x, is continuous in
(¢, x) € [0, T]x]é?};, where é\C/T = {x:(— o, T] > R", vz, € BC} is a Banach
space with the uniform norm.

(ii) f takes closed bounded sets of IxBC into bounded sets of R".

We denote by 2 the set of all functions f: IxBC — R" satisfying (i)
and (ii). Clearly, the set C which consists of all continuous functions on I
to R" is considered as a subset of 2. Henceforth, we assume that the
function f(t, ¢) is in 2. Hence, it follows from the well known results
(cf. [1]) that given (g, ¢) € IXBC, a solution of (1) through (o, ¢) exists
and that if 2(¢) is a (noncontinuable) solution of (1) on [o, T'), then
lim sup,_.,-||2,]| = o or T = .

For a scalar C*-funection V(¢, ): R X R" — R, the derivative of V along
the. solution of (1) is defined by

Vilt, 9) 1= @a-‘tfu, 6(0) + <grad V(t, $(0)), £(t, $))

for teI and ¢ € BC, where {, ) denotes the inner product in R". Clearly,
we have (d/dt) V(¢, x(t)) =V, (¢, x,) for ¢ <t < T if «(t) is a solution of
1) on [o, T).

In what follows we need the following definitions (cf. [3, Chapter 1]).

DEFINITION 1. The zero solution of (1) is totally stable (for brevity,
TS), if for any € > 0 there exists a 6 = d(¢) > 0 such that if (o, 4, g) € I'X
BC,x 2 and |g(t, ¢)| < 6(e) for all (¢, ¢) € [, =) XxBC,, then |x(¢, ¢, ¢, [+ 9)| <
¢ for all £t = g.

DEFINITION 2. The zero solution of (1) is totally asymptotically
stable (for brevity, TAS), if it is TS and if there exist §, > 0 and v, > 0
with the property that for any ¢ >0 there exist v(¢) >0 and T(¢) >0 such
that if (o, ¢, 9) € IxBC,;x 2 and |g(¢, ¢)| < 7(¢) for all (¢, ¢) € [o, oo)><B_Cro,
then |x(¢, g, ¢, f + 9)| < ¢ for all ¢t = o + T(e).

Now, we have the following lemma.

LEMMA. The zero solution of (1) is TS if and only if for any e >0
there exists a 0 = d(g) > 0 such that if (o, ¢, p) € I x BC3x C and sup,s,| p(t)| <
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6(c), then |x(t, o, ¢, f + p)| < & for all t = a. Moreover, the zero solution
of (1) is TAS if and only if it is TS and there exists a J, > 0 with the
property that for any € > 0 there exist Y(&) > 0 and T(e) > 0 such that
if (0,6, p) e IxBC;,XC and sup,,|pt)| < 7(e), then |x(t, g,¢,f+ p) <e¢
Sor all t = o + T(e).

We can prove the lemma by employing almost the same arguments
as in [3, Chapter 1, Section 8] (also, refer to [5, Lemma 1]). For instance,
if we let 8(+) =4(-), 8, = min(6(1), 0,), ¥, =1, ¥(+) = min(¥(+), 6(1)) and T(:) =
T(-), then 8(:) (resp. 8(+), &, Yo, ¥(+), T(+)) satisfies the condition in Defini-
tion 1 (resp. Definition 2). We omit the details.

Now, let K be the set of all continuous and strictly monotone in-
creasing functions u(s) on I with %(0) = 0. In what follows, we shall
investigate the total stability and total asymptotic stability of the zero
solution of (1) by using the method of Liapunov-Razumikhin type.

THEOREM 1. Let V(t, x) be a scalar C'-function with the properties
that;
(i) there exist u(s) and v(s) in K such that

w(zl) = Vi, x) = v(z)),te R, xcR";
(i1) there exist positive constants k and r such that
|V, 2) =V, 9| = kle —yl,teR, [z =7 |yl =T;
(iii) there exists a w(s) in K such that

V(n(t, ¢) = —w(4(0)])

Jor all (t, ) € IXBC satisfying V(t, $(0)) = sup,g, V(t + 0, 6(6)). Then the
zero solution of (1) is TS, and 6(-) in Definition 1 can be chosen so that
it depends on only the functions w, v, w and the constants k, r.

PrOOF. Let an ec (0, r) be given, and select a positive constant » =
n(e) so that v(m)) <u(e). Set ¢ = w(), and define § = d(e) by d(e) :=
min(y, c/k). By Lemma it suffices to show that if (g, ¢, p) € IXBC,x C and
SUP;<, | P(t)| < (), then |x(t)| < ¢ for all ¢ = g, where z(t) = x(¢, 7, ¢, f + D).
Suppose that this is not the case. Then there is a T, T > o, such that
|z(T)| =¢ and |x(t)| <e for all t<T. Set V() =V(t, 2(). Then
Sups<, V(o + 6) <V(T), since supes, V(o + 0) < supsg, v(|9(0)]) < v(9) <
v()) < u(e) = V(T) by (i). Hence, there is a T,, 0 < T, = T, such that
V(T,) = sup,<, V(u) =: M. Now, we have n < |x(T,)| = ¢, since |x(Ty)| =
|2(T)| = ¢ and v(n) < u(e) = V(T) = V(T,) = v(|«(Ty)]) by (i). Moreover,
V(T,) = M = V(u) for allu < T,. Thus, we obtain V,(T,, @) £ —w(|2(T,)) <
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—c by (iii), and consequently V(T,) < Vi (T, @z,) + k| D(To)| < —c + kd (e) <
0 by (ii). Therefore, there is a T, T, < T,, such that V(T,) > V(T,) = M,
which is a contradiction q.e.d.

EXAMPLE. Suppose that there exist positive constants v and h, vh <
1, such that

|6(0) — 4(0) + R(F(E, ¢) — F(¢, )| = A —vh) |6 —

for all (¢, ¢) and (¢, ) in IxBC. If F'eQ and u(t) is a solution of &(¢) =
F(@, z,) on I, then u(t) is TS, that is, the zero solution of %(t) = F(t, z,)
is TS, where F(t, ¢):= F(t, u, + ¢) — F(t, w,) (cf. [10]). Indeed, by the
fact that FFe 2, we easily see that F e 2. Furthermore, as can be easily
checked, the function V(¢ z) = |z|* satisfies all of the conditions in Theorem
1. Hence, the zero solution of 2(t) = F(t, z,) is TS.

It should be noted that without any additional condition, the asymptotie
stability of the zero solution of (1) cannot necessarily be deduced from
the assumptions of Theorem 1. Indeed, if f(¢, ¢) = —24(0) + ¢(—t), then
the zero solution of (1) is not asymptotically stable, whereas the function
V(t, x) = |x|* satisfies all of the conditions in Theorem 1 (cf. [8],[9]). In
Theorem 2 below, we shall provide such an additional condition.

THEOREM 2. Let V(t, x) be a scalar C-function satisfying the con-
ditions (i) and (ii) im Theorem 1 and the condition;

(iii)’ there exist a positive constant h, a w(s) in K and a continuous
Sunction 0(s), o(s) > s for s > 0, such that

Vit ¢) < —w(|4(0))

Sor all (t, ¢) € IxBC satisfying p(V(t, $(0))) = sup_,<s<, V(¢ + 6, $(6)).

Then the zero solution of (1) is TAS, and 0, Yo, 0(+), 7(+) and T(-)
an Definition 2 can be chosen so that o, Y, 6(-) and Y(+) depend only on
the fumctions u, v, w, 0 and the constants k,r, while T(-) depends also
on the comstant h.

Proor. Since (iii)’ implies (iii) in Theorem 1, the zero solution of (1)
is TS with o6(-) which depends only on the functions u, v, w and the
constants k, ». Therefore, we can choose a positive constant §, so that
if (o, ¢, p) € IXBC,;;xC and sup,,|p(t)| < &, then |x(t, g, ¢, f + p)| < r for
all t = 0. Now, let an €€(0, §,) be given, and let 7 and ¢ be the numbers
given in the proof of Theorem 1. Set a = a(e):= inf{o(s) — s:ue) < s <
v(r)}. Clearly, a > 0. Let N = N(¢) be the first positive integer such
that u(e) + Na = »(r), and set v(e) = min(d,, ¢/(2k)) and T(¢) = 2Nw(r)/c +
(N — 1)h. By the proof of Lemma, it suffices to prove that if (g, ¢, p) €
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IxBC,,xC and sup,,|p(t)| < v(e), then |z(t, g, 4, f+ p)| <& for all ¢t =

o+ T(e). Set x(t) = x(t, o, ¢, f + p) and V(t) =V, x&, o, 6, f + p)). First
we show that

(2) V) = u() + (N —1)a for a t,elo, 0 + 2v(r)c] .

Suppose that V(t) > u(e) + (N — 1)a for all t€[o, o + 2v(r)/c]. Then we
have o(V(£)) =2 V() + a > u(e) + Na = v(r) = SUP_s<0<0 V(¢ + 6) for all te
[, 0 + 2v(r)/c], since |x(t)| < r. Moreover, since |z(t)| =% on [g,0 +
2v(r)/c], it follows from (iii)’ that (d/dt)V(t) < k| pt)| — w(|z@®)|) < kv(e) —
¢c< —c¢/2 for all tefo,o + 2v(r)lc]. Hence V(o + 20(r)/c) <V(g) +
(—¢/2)-2v(r)[e £ v(r) — v(r) = 0. This is a contradiction. Thus, the as-
sertion (2) holds.
Next, we show that

(3) V) =u) + (N —1a for all t=o0 + 20(r)/c.

Indeed, if we suppose that V(t,) > u(e) + (N — 1)a for some t,e[o +
2v(r)/e, =), then it follows from (2) that there is a t,e[t, t,) satisfying
V(t;) = u(e) + (N — Da and V() = 0. Note that p(V(t)) = V(t, + 6) for
all 6e[—h,0] and |x(t,)| = ». Then, by (iii)’ we have Vit,) < klp(ty)| —
w(|2(t)]) £ —¢/2 < 0, which contradicts V(¢,) = 0. Thus, the assertion 3)
holds.

Finally, we show that
(4) le@®)| <e for all t=o + T(e).

If N=1, then (3) implies V(¢) < u(e) for all ¢ = ¢ + T(¢), and hence the
assertion (4) holds. Suppose N = 2. By repeating the same arguments
as in the proof of the assertion (2), we can show that V(¢,) < u(e) +
(N —2)a for a t,elo + 2v(r)/e + h, 0 + 4v(r)/c + k] by (8). Hence, we
obtain V(t) < u(e) + (N — 2)a for all t = ¢ + 4v(r)/c + h by the same type
of reasoning as in (3). Repeat this procedure. Then V(¢) < u(e) + (N — ja
forallt = o + 2jv(r))e + (j — Dh,j =1,2, ---, N. Consequently, we have
V() < u(e) for all ¢ = ¢ + T(e), and hence the assertion (4) holds. q.e.d.

We consider a system of integrodifferential equations
(5) #(t) = Aalt) + F@) + | _gt, 5, a(t + 8))ds .

Impose the following hypotheses on (5):

(H1) A is an nXxXmn real constant matrix, all the eigenvalues of
which have negative real parts;

H2) F:C(|—h, 0])>R*,0=h, < =, is a continuous function,
C([—h,, 0]) the space of continuous functions on [—h,, 0] to R" with the
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usual supremum norm || ||, and |F(g)| < bl|¢|ls for all ¢ € C([—h,, 0]) and

some constant b;
(H3) g(t, s, x): IX(—c,0]x R"— R" is continuous and satisfies

lg(t, s, )| < m(s)|x| for all (¢,s8,2)elx(—,0]xR",

where SO wm(s)ds < oo,

From (H1), (H2) and (H3), we see that the function f:IxBC— R"
defined by F(t, ¢) = Ap(0) + F(g) + S _g(t, 5, §(s))ds is in 2. As an appli-
cation of Theorem 2, we shall investigate the stability property of the
zero solution of (5). Now, from the well known result in matrix theory
there exists a unique positive definite symmetric real matrix B such that
BA + A”B= — E; here E denotes the identity matrix and AT the transpose
of A. Let 4 and ) be positive numbers such that 4* and A\* are the
greatest and least eigenvalues of B, respectively. Clearly, we have
NMx)? < (Bx, x) < A|x|® for all « in R".

THEOREM 3. Let (H1)-(H3) hold, and suppose
(H4) S m(s)ds < NJ@L) — b .

Then the zero solution of (5) is TAS.
ProoF. By (H4) we can choose a constant g > 1 so that

1— 2p/13<§°_wm(s)ds + b)/x =:11>0.

For any he(h, ) we consider a system
(50 #(t) = As(®) + F@@) + | g(t,s, ot + 9)ds .
Set V(z) = (Bx,x). We shall show that the function V(x) satisfies all of
the conditions in Theorem 2 for System (5),. The conditions (i) and (ii)
clearly hold. Assume that 2V(s(0)) = V(¢(6)) for all 6€[—h,0]. Then
p2A*6(0) P = N[ 4(0) !, and hence |4(0)| < pA4|4(0)|/x for alle[—h,0]. It
follows that
Vontt, #) = (B[ 49(0) + F@) + | 9t 5, 66)ds | 6)
0
+ (Bo0), 490) + F@) + | 9, 5, 6(s))ds)

= (BA + ATB)j(0), $(0)) + A B3(0), F@) + | att, s, 6(6)ds)
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0
= —lsO)F + 24150)|(5 + | _m(e)ds)-sup |s(6)]
= —UgO) .
Thus, the condition (iii)’ in Theorem 2 also holds as w(s) = Is* and p(s) =
’s. Therefore, the zero solution of (5), is TAS with 4, 7, 6(-), ¥(+) and

T(h, -), where &,, 7, 6(+) and () are independent of A.

Now, let ¢€(0, v,) be given. Select a constant h(g), h(e) > h,, such
that

vo-S"’“’m(s)ds < min(3(E)/2, 7(e)2) .

—co

If Qe and |Q(t, ¢)| < 8(e)/2 for all (¢, ¢) € [a, <) xBC,, then
| ott s0ds + @ 9| 5 6 "miords + 3072 < 59

for all (, ¢) € [o, -] xBC,. Therefor, if (¢, ¢, Q) € IxBC;,., x 2 and |Q(¢, ¢)|<
8()/2 for all (t, ¢) €[g, «)xBC,, then, from the total stability of the zero

solution of (5),., it follows that |x(¢, g, ¢)| < ¢ for all ¢ = g, where x(t, g, ¢)
denotes a solution of

%(t) = Ax(t) + F(x,) + So_h( )g(t, s, x(t + s))ds + S::(s)g(t, s, x(t + s))ds
+ Q(t, x,)

through (g, ¢). Thus, the zero solution of (5) is TS. Similarly, if (g, ¢, Q) €

I'xBC,,x 2 and |Q(, ¢)| < 7(¢)/2 for all (¢, ) € [o, ) ><B_C,0, then we obtain
l2(t, 0, ¢)| < e for all t = ¢ + T(h(¢),¢). Hence the zero solution of (5)
is TAS. q.e.d.

REMARK 1. When n = 1 and F(¢) = bg(—h,), Wang [11] proved that
the zero solution of (56) is uniformly asymptotically stable under all

of the assumptions in Theorem 3 and the additional assumption;
0
S m(s)e ™ds < ~ for a constant v > 0 (also, refer to [4]). Thus, our

Theorem 3 gives an improvement of the one in [11].

Next, we consider a system of Volterra integrodifferential equations
t
(6) #(0) = As(®) + Fw) + [ot, s, 000ds, 20,
0

and assume the hypotheses (H1), (H2) and

(H3) g(t, s, x): IXIXxR"— R" is continuous and satisfies |g(¢, s, 2)| <
m(t, s)|x| for all (¢,s,x)e IXIXR".

Clearly, from (H1), (H2) and (H3') it follows that the function
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J: IxBC — R" defined by f(t, ¢) = Ag¢(0) + F(g) + Yg(t, s, ¢(s — t))ds is in
2. Now, we prove:
THEOREM 4. Let (H1), (H2) and (H3') hold, and suppose

(H4") sup S'm(t, s)ds < M@A) — b, and

t
(H5) stuIO)Sm(t-I—z',s)ds—>0 as 7v— oo .,
2 0

Then the zero solution of (6) is TAS.
ProOOF. By (H4') we can choose a constant ¢ > 1 so that

1-— 2;1/13<sup Stm(t, s)ds + b)/x =:1>0.
20 0
For any h e (h, ) we consider a system
t
(6% &0 = Ast) + Fw) + | gt,s,0)ds, tzh.

Then, by almost the same argument as in the proof of Theorem 3 we can
prove that the zero solution of (6), is TAS with 4,, 7, 6(+), ¥(+) and T(h, -),
where d,, 7,, 0(+) and ¥(-) are independent of 2. Furthermore, by Theorem
1 we can also see that the zero solution of (6) is TS with 6(-). We may
assume 6, < 7,. Now, let an ¢ > 0 be given. Select a constant k(e), h(e) >
h;, so that

7-Sup S:m(t + (o), s)ds < 7(e)/2,

which is possible by (H5). Suppose that (o, ¢, Q) € [h(e), 0) X BC,;x 2 and
[Q(t, ¢)| < 7(e)/2 for all (¢, ) € [0, OO)XE_C—TO. Then, for all (¢, ¢) € [g, )X
BC;, we have
[ ottt + 5, 6005 + Qet, 9| < 0|7 e, + s + o2
= 70-sg§) Sum(u + h(e), s)ds + v(e)/2 < (e) .

Therefore, the total asymptotic stability of the zero solution of (6),,
implies |z(t, 0, ¢)| < € for all t = o + T(h(e), €), where x(t, g, ) denotes a
solution of

#(t) = Aa(t) + Fa)+ | ot s, a0)ds + | o(t, t + 5, m&)ds + Qt, m)

= Aa(t) + F@) + [ att, 5, o(e)ds + Qt, @)
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through (g, ¢). Set d, = (), %o = 7o, 6(-) = 8(-), ¥(+) = min(d(5,), 7(-)/2)
and T(:) = T(h(-), *) + h(-). Then, since d, < 7,, We~easi1y see that the
zero solution of (6) is TAS with &, 7, 6(+), 5(-) and T(-). q.e.d.

REMARK 2. Miller [6] discussed the stability properties of solutions
of a system of Volterra integrodifferential equations of the form

(1) &) = Aw(t) + S:G(t — s)e(s)ds .

He showed in [6, Theorem 9 (i)] that the zero solution of (7) is uniformly
asymptotically stable under the conditions;

(%) |G()| is integrable on [0, o) and det(s — A — G*(s)) # 0
when Res=0,

where G*(s) = re"‘G(t)dt;

() S:(S:"la(u)\du>"ds < o for a constant pel[l, 2].

Miller’s result is applicable also to the case where the matrix A does not
necessarily satisfy (H1). Furthermore, the condition (x) is weaker than
(H4") for the function m(t, s) := |G(t — s)|. However, it should be noted
that the condition (xx) is stronger than (H5). Indeed, if |G(t)| = (¢ + 1)~
for an ae(l, 3/2), then the condition (xx) does not hold. On the one
hand, whenever |G(t)] is integrable on [0, ), the function m(¢, s) =
|G(t — s)| satisfies (H5).

REMARK 3. Though we have investigated the local stability pro-
perties, we can also obtain the global stability properties by slight
modification. In particular, we can deduce that the zero solution of (6)
is globally uniformly asymptotically stable under the assumptions in
Theorem 4. Seifert [9] proved that the zero solution of (6) is uniformly
stable and globally asymptotically stable under the assumptions in Theorem
4. Recently, Furumochi [2] has shown that the zero solution of (6) is
globally uniformly asymptotically stable under the assumptions (H1), (H2),
(H3'), (H4") and

(H5) Stm(t, Sds >0 as t— oo .
0

Note that (H5') implies (H5). Furthermore, the function m(t, s) = e=“~
does not satisfy (H5’), while it satisfies (H5).
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