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1. Introduction. Let Sn(r) be an w-dimensional sphere in the (n + 1)-
dimensional Euclidean space Rn+1 with radius r and x: M—> Sn(r) be an
isometric minimal immersion of a differentiable 2-manifold M into Sn(r)
(n^3). If M is compact and the Gaussian curvature K of M is non-
negative, not identically zero, then the genus of M is zero, by the Gauss-
Bonnet theorem. In [3], Borύvka has constructed a series of isometric
minimal immersions ψk: S2((k(k + 1)/2)1/2) —> S2k(l) by making use of spherical
harmonic polynomials of degree k. ψ2 is the Veronese surface with K —
1/3 in S4(l) and ψz is called the generalized Veronese surface with K =
1/6 in S6(l). Later, in [4], Calabi has proved that, any isometric full
minimal immersion of S2(K~1/2) into Sn(l) is congruent to some ψk and so
there exists an integer k such that K = 2/k(k + 1) and n = 2k.

On the other hand, Lawson [13] and Benko et al. [2] have proved the
following:

THEOREM A. Let x:M->Sn(ϊ) be an isometric minimal immersion
of a complete, connected, oriented 2-manifold M into Sn(ΐ)(n ^ 3). If
1/3 ^ K ^ 1, then either x(M) is totally geodesic and K=l, or the Veronese
surface in S\ΐ) and K == 1/3.

In this paper, we shall prove:

THEOREM B. Let x:M^Sn(l) be an isometric minimal immersion
of a complete, connected, oriented 2-manifold M into Sn(l) (n ^ 3). //
1/6 <; J£ ̂  1, then either (1) x{M) is totally geodesic and K = 1, (2) the
generalized Veronese surface in S\ΐ) and K = 1/6, or (3) a minimal
surface in S\l) with 1/6 ^ K ^ 1.

As a corollary to Theorem B, we can prove the following:

COROLLARY C. If 1/6 ^ K ^ 1/3, then K Ξ 1/3 or 1/6, and either
x(M) is the Veronese surface in S4(l) in the case of K =Ξ 1/3, or the
generalized Veronese surface in S6(l) in the case of K = 1/6.

Recently, Kozlowski and Simon [12] proved Corollary C by studying



554 T. OGATA

the properties of eigenfunctions of the Laplacian for S2(l).
In Section 2, we shall explain the notion of the third fundamental

form and calculate the Laplacian of the square of its length. In Section
3, we shall give proofs of Theorem B and Corollary C. The main idea
of our proof is to calculate the Laplacian of some functions defined globally
on a surface M. In Section 4, we shall give a one-parameter family of
minimal immersions of a differentiable 2-sphere S2 into S4(l), from which
we can get infinitely many examples of the case (3) of Theorem B and
show that the hypothesis on K in Theorem A is the best possible.

The author would like to express particular thanks to Professor K.
Kenmotsu for his advice and encouragement during the development of
this work.

2. The third fundamental forms. Let M be an ^-dimensional
Riemannian manifold of constant curvature c and x: M-+M be a minimal
isometric immersion of a complete, connected, orientable Riemannian 2-
manif old M into M. We shall use the same notations and terminologies
as in Kenmotsu [10] unless otherwise stated and denote by haij or haij>k

the components of the second fundamental form or of its covariant de-
rivatives, respectively. We first introduce scalar fields K{2)9 N{2) and /(2)

on M used in [10] by the following equations:

(2.1) Km = Σ (hal\ + halϊ)

(2.2) Nm = Σ Kd Σ hall - (Σ Knhal2Y

(2.3) U = K\2) - 4ΛΓ(2) .

Note that these are globally defined on M and independent of the
choice of the frame fields. If Ki2) is identically zero on M, then M is
totally geodesic.

LEMMA 2.1 (Chern [6] and Kenmotsu [10]). Let M be a compact
oriented minimal surface in Sn(ΐ). If the Gaussian curvature of M is
strictly positive, then f(2) is identically zero on M.

Suppose that the Gaussian curvature K is bounded from below by
some positive constant. Hence, if M is complete and simply connected,
then M is compact. By Lemma 2.1, we have /(2) = 0 and so ΔK{2) =
2Δ(ΣΛ«iϊ). By [10, (4.27)J, we have

(2.4) Δ(Σ Λ«iϊ) = 4(Σ halΐ) K - 4(Σ hal\Y + 2 Σ (Λβll,ϊ + halltϊ) .

At any point p of M, we denote by T^ the subspace of TP(M)
spanned by elf e2, Σ hallea and Σ hal2ea, which is called the second osculating
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space. We identify the first osculating space Γ£1} with the tangent space
TP(M) of M. In general we have 2 ^ dim ΓJ2) ^ 4. We set

β 2 = {peM; Nm =£ 0 at p} ,

which is an open subset of M. Hereafter, we assume that x is not totally-
geodesic. By Lemma 2.1, Ω2 is not empty and so dim T£2) = 4 for any
peΩ2. Let {eA} be a system of local orthonormal frame fields such that
{e,; i = 1, 2} and {eλ; λ = 3, 4} span T™ for p e i22. We then have

(2.5) α>αί = 0 for α ^ 5 on Ω2 .

By taking the exterior derivative of (2.5), and making use of the
structure equations of M, we get

(2.6) ωiZ Λ α>3α + ωu A ω4a = 0 (α ^ 5) .

This allows us to introduce quantities haijk (α ^ 5) defined by the
equation

(2.7) hSijω3a + hujω,a = Σ haijkωk (a ^ 5) .

{̂ αΐifc} ^S symmetric in the Latin indices i, j and fc. By (2.7) and the
minimality of x(M), we get

(2.8) Σ ^ f c = 0 ( α ^ 5 ) .

Σ«^δ (Si,/,* ̂ «iift̂ )i <8> β>y ® β>.*) ® β« is called the third fundamental form
of the immersed manifold x(M) (cf. [6]). Note that, for any a ^ 5, we
have

(2.9) haijk = / w

which follows easily from the definition of the covariant derivatives of

haij.

We define the covariant derivatives haiίktl of haίjk by

(2.10) Dhaijk = λβ<y4fIω,

= dhaijk + Σ KsjkC08i + Σ KiskMβj + Σ haiίtωak + Σ hβijkωβa .

Then we have Σ fe««*fi = 0 by (2.8) and (2.10). By Lemma 2.1, the normal
vectors Σ hallea and Σ «̂i2βα are perpendicular to each other and of the
same non-zero length at any p in Ω2. So, normalizing these vectors, we
adopt them as a part of a basis of T™ for p e Ω2. With respect to these
new frames, we have, on Ω2,

(2.11) hm = hm, hm = hm = 0 and haiί = 0 (α ^ 5) ,

(2.12) dhm = ^311,1^! + Λ811,2ω2 ,
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(2.13) Λ8ii(-α>84 + 2α>12) = hmf2ω, - hm>1ω2 ,

(2.14) ™411,1 = ^311,2> ^411,2 = = ^311,1

Also, (2.7), (2.8) and (2.11) imply, for a ^ 5,

(2.15)! h3nωBa = Λαlllα>i + Λαll2ω2

( 2 . 1 5 ) 2 ^31lft>4α = Λαll2«>l ~ halll0)2

Taking the exterior derivative of (2.15), we have

(2.16) halll>2 = hall2Λ a n d halllΛ + hall2t2 = 0 .

We introduce three scalar fields JSΓ(8), Nm and /(3) on Ω2J which are
defined by

(2.17) Kw = Σ (λαuί + ΛαlJ) >

(2.18) JSΓ(8) = ( Σ λβm2)(Σ KΛ) - ( Σ ^ i π ^ 1 1 2 ) 2 ,

(2.19) / ( 3 ) - Kf3) - ANm .

Note that /(3) is globally defined on Ω2 and the notions of these scalar
fields can be extended to the higher order fundamental tensors if Km Φ 0
(cf. [10]). As for the geometrical meaning of K{ί) and N{i), i = 2, 3, we
have the following:

LEMMA 2.2 (Otsuki [14]). (a) If K{2) ΦO, N{2) Φθ and hallΛ = hall>2 = 0
(a ^ 5) on M9 then there is a ^-dimensional totally geodesic submanifold
of M such that M is contained in the submanifold.

(b) If K{2)K{3) Φ 0, N{i)Nm Φ 0 and halllA = halllt2 = 0(α ^_7) on M,
then there is a ^-dimensional totally geodesic submanifold of M such that
M is contained in the submanifold.

By (2.17), (2.18) and (2.19), we have

(2.20) /(3)

LEMMA 2.3 (Chern [6] and Kenmotsu [10, p. 300, Proposition]). Let
M be a compact, oriented, connected minimal surface in Sn(l). Suppose
that M is not totally geodesic and the Gaussian curvature of M is strictly
positive. Then /(3) is identically zero on Ω2.

3 Proofs of Theorem B and Corollary C. We assume that M is
not totally geodesic. By virtue of the curvature condition and Lemma
2.3, we have Σ Kin = Σ hallt and Σ halllhall2 = 0 on Ω2.

LEMMA 3.1. Δ ( Σ Λβllϊ) = 6(Σ hal£)K - (4/Λ81ϊ)(Σ KΛ? + 2 Σ ( W +
"'αlll,2/
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PROOF. Since the proof of this lemma in [10] is incorrect, we give
it here for completeness. We first get

Δ ( Σ Kndo^i Λ ω2 = 2d{Σ (ΛβlllΛαlllflα>2 - haljιaιllt7ω^} .

On the other hand, by (2.16), we have,

2Σ(Λ«iiiΛαiii,iω2 ~~ halιjιalιlylω^ = —2ΣΛ a m(cZΛ a l l 2 + ^Σshβιl2ωβa + 3hainω12) .

Hence, by direct calculation, we have

Δ ( Σ Km)®! A ω2 = 6 ίCΣ ^αni^i Λ α>2 - 2 Σ hamhβmωβ3 A ω3a

- 2 Σ Kmhβn2ωH A ωia + 2(Σ (λβlll,ϊ

+ Aαlll j)«>l Λ O)2 .

Substituting (2.15) into the above equation, we have Lemma 3.1.

Making use of (2.4), (2, 11) and Lemma 2.3, we have

(3.1) ΔΛ.J = 4 / ^ ίΓ - 4&31ί + 4(Vf + ΛBHJ) + 4 Σ Λβll? .

(AM! Σ λαiu) is a smooth function on i22 by (2.1) and (2.11). We can compute
the Laplacian of this function by using Lemma 3.1 and (3.1):

(3.2) A(hsι\ Σ Λ.UΪ) = 10h

+ halllιϊ)
~Γ θ("'311"/311,l 2LJ "ΌίniiLctin,! ~Γ "'311"'311,2 ^ J "'αlll"'αlll,2y

Taking the exterior derivative of Σ λαUϊ = Σ Km and Σ Kufram = 0, we
have

(3.3) Σ (Λ«uAriii,2 + KnJιalll>1) = 0 and

Hence, by the Gauss equation, (3.3) and Lemma 2.3, (3.2) implies

(3.4) Δ(Λttϊ Σ /WD = 2Λ81ί Σ λαiiί(5 - 1 2 ^ ) + 2 Σ {(h^K^ + h3U>1ham

"'811,2"'αll2/ ~ί~ \^31]Aαlll,2 ~Γ Λ'311,l"'αll2 ~Γ "'311,2"'αlll/ I

Since if ^ 1/6 implies hsi\ ^ 5/12 on M, we have Δ(fe8iϊ Σ U ^ 0 on β2.
Note that M - Ω2 is atmost finite (cf. [6] or [10, p. 300, Proposition]).
Hence, Ω2 is parabolic or compact and the maximum principle holds good.
If there exists a point p of M — Ω2 such that l imsup^/^u Σ Km) l« =
+ oo, then we have limsupβ_»pΣKulL = + ° ° . So, by (3.1), it follows that
limsupβ-p(Δ Λ8ii) ̂  limsup^p 4 Σ Kul = + °°, because of limβ_p h31l = 0. This
contradicts the boundedness of Δ hQ1\ on the compact manifold M. Hence,
Λ8ii Σ Λβllϊ is an upper bounded, subharmonic function on the parabolic
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surface Ω2, hence is constant on Ω2. Thus, we have (5 — 12h31\) = 0 or
ΣKul = 0. If (5 - 12hmf) = 0, we have M = Ω2, K = 1/6 and Σ h a l * = 5/48
by (3.1). Moreover, by Lemma 3.1, we have ΣiiKm.l + Km,ϊ) = 0, which
shows n = 6 by Lemma 2.3 (b). On the other hand, if Σ hall\ = 0, we
have n — 4 by Lemma 2.3 (a), which completes the proof of Theorem A.

Next, we shall give the proof of Corollary C. By the assumption
1/6 <; K <; 1/3, the case (1) in Theorem B does not happen. Hence, in
proving Corollary C, it is sufficient to show that a minimal surface in S4(l)
satisfying 1/6 ^ K ^ 1/3 is the Veronese surface. From (3.1), we have

(3.5) Δ hsι\ = 4A«ί(l - + 4(hm,l + hmj)

On the other hand, 1/6 ^ K £ 1/3 implies 1/3 ^ hsi\ <: 5/12 by the Gauss
equation. From (3.5), we have Δ log(1/Λ-311?) = 4(Shu\ - 1) ^ 0. Since
1/Λ3u is a positive scalar function on M, we have h3ll — 1/3, which gives
K = 1/3.

4. Examples. In this section, we shall construct minimal surfaces
in S4(l) with K ^ 1/6, which give examples of the case (3) in Theorem B.
Let z be an isothermal coordinate on S2. We define a one-parameter
family {xt; έe(O, oo)} of immersions of S2 into S4(l).

(4.1) - z ) ( ί | z 4 -

-t

Then, for each £e(0, <*>), we have, by direct calculation,

(4.2) ds\ =
(t

3ί(l + 4t2 |z|
(4.3) K(t) = :

(4.4) A[t)xt = -2xt ,

where ds? is the Riemannian metric of S2 induced by xt and K(t), (resp.
Δ(ί)) is the Gaussian curvature, (resp. the Laplacian), with respect to ds\.
From (4.4), we conclude that each immersion xt is minimal. We see
easily that x1 is the Veronese surface and, for each t > 0, xt is not totally
geodesic because of K{t) Φ 1.

PROPOSITION 4.1. The example (4.1) corresponds to the one-parameter
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family ξt of directrix curves in CP* given by Chern (cf. [7] or [8]) in
homogeneous coordinate:

2i(tz

2(-tz

(4.5)

PROOF. In C5 the symmetric product of two vectors a = (at), b = (64)
is given by (a, 6) = Σ <M>ί Following Barbosa [1], we compute G2 = 32«{ —
{(β%, dxt)/φxt, dxt)}dxt. We then have ξt = GJ(G2, G2), which proves Prop-
osition 4.1 by [1, Theorem (3.30)].

REMARK. Corresponding to Tjaden's example in [12], we have the
following one-parameter family ξt of directrix curves in CP*:

(4.6) 1 =

r'sre'

2(z - z3)

-2ί(z + z3)

It is easily verified that ξt is isometric to some ξt,m Thus our example
is the same as Tjaden's one by [1, Proposition (5.2) and Theorem (5.15)].

In (4.3), we put K{t) = 1 — L ( t ). Then we have

(4.7) L{t) = 2/(3*){ί* + (1 - f)f} or

(4.8) Lw = 2/(βt){l/(f + (1 - f)g)} ,

where / = f(t, \z\2) and g = g(t, \z\2) are some positive functions of t( > 0)
and \z\\ If 1 ^ f ^ 5/4, then L ( ί ) ^ (2/3)ί3 g 5/6, by (4.7), which implies
K{t) ^ 1/6. In the same way, if 4/5 ^ f ^ 1, we have ίΓ(l) ^ 1/6 by (4.8).
Thus we have K{t) ^ 1/6 for each t with 4/5 ^ f ^ 5/4, which gives
examples of the case (3) in Theorem B.

REMARK. The assumption on K is Theorem A is the best possible
for the conclusion of Theorem A. Because for any ε > 0, we set f =
1 + (3/2)ε (>1). By (4.7), we have L ( ί ) ^ 2/3 + ε, which implies Kw ^

1/3 - ε.
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