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1. Introduction. Let S"(») be an n-dimensional sphere in the (n + 1)-
dimensional Euclidean space R""' with radius » and 2z: M — S*(r) be an
isometric minimal immersion of a differentiable 2-manifold M into S*(r)
(n=3). If M is compact and the Gaussian curvature K of M is non-
negative, not identically zero, then the genus of M is zero, by the Gauss-
Bonnet theorem. In [3], Borivka has constructed a series of isometric
minimal immersions ~r,: S*((k(k + 1)/2)"*) — S**(1) by making use of spherical
harmonic polynomials of degree k. +, is the Veronese surface with K =
1/3 in S*(1) and 4, is called the generalized Veronese surface with K =
1/6 in S°(1). Later, in [4], Calabi has proved that, any isometric full
minimal immersion of S* K~/ into S"(1) is congruent to some +, and so
there exists an integer k such that K = 2/k(k + 1) and n = 2k.

On the other hand, Lawson [13] and Benko et al. [2] have proved the
following:

THEOREM A. Let x: M — S*(1) be an isometric minimal immersion
of a complete, comnected, oriented 2-manifold M into S"(1)(n = 38). If
1/3 £ K £ 1, then either x(M) s totally geodesic and K =1, or the Veronese
surface in S*(1) and K = 1/3.

In this paper, we shall prove:

THEOREM B. Let x: M — S*(1) be an isometric minimal immersion
of a complete, connected, oriented 2-manifold M into S*QA) (n =3). If
1/6 < K <1, then either (1) x(M) is totally geodesic and K =1, (2) the
generalized Veronese surface in S°(1) and K =1/6, or (3) a minimal
surface in S*(1) with 1/6 < K < 1.

As a corollary to Theorem B, we can prove the following:

COROLLARY C. If 1/6 £ K <£1/3, then K=1/3 or 1/6, and either
2(M) is the Veronese surface in S*(1) im the case of K =1/3, or the
generalized Veronese surface in S*(1) in the case of K = 1/6.

Recently, Kozlowski and Simon [12] proved Corollary C by studying
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the properties of eigenfunctions of the Laplacian for S%*(1).

In Section 2, we shall explain the notion of the third fundamental
form and calculate the Laplacian of the square of its length. In Section
3, we shall give proofs of Theorem B and Corollary C. The main idea
of our proof is to calculate the Laplacian of some functions defined globally
on a surface M. In Section 4, we shall give a one-parameter family of
minimal immersions of a differentiable 2-sphere S? into S*(1), from which
we can get infinitely many examples of the case (8) of Theorem B and
show that the hypothesis on K in Theorem A is the best possible.

The author would like to express particular thanks to Professor K.
Kenmotsu for his advice and encouragement during the development of
this work.

2. The third fundamental forms. Let M be an n-dimensional
Riemannian manifold of constant curvature ¢ and x: M — M be a minimal
isometric immersion of a complete, connected, orientable Riemannian 2-
manifold M into M. We shall use the same notations and terminologies
as in Kenmotsu [10] unless otherwise stated and denote by h,;; or h,;
the components of the second fundamental form or of its covariant de-
rivatives, respectively. We first introduce scalar fields K, N, and f,
on M used in [10] by the following equations:

2.1) K(2) = D (Maii + Pas
(22) N(z) = Z hal% Z hal% - (E hallha12)2
(2.3) fo = Kby — 4N, .

Note that these are globally defined on M and independent of the
choice of the frame fields. If K, is identically zero on M, then M is
totally geodesic.

LEMMA 2.1 (Chern [6] and Kenmotsu [10]). Let M be a compact
ortented minimal surface in S*(1). If the Gaussian curvature of M 1s
strictly positive, then f, 1is identically zero on M.

Suppose that the Gaussian curvature K is bounded from below by
some positive constant. Hence, if M is complete and simply connected,
then M is compact. By Lemma 2.1, we have f, =0 and so AK, =
2AC h,?). By [10, (4.27),], we have

24) AR hai) = A had) K — 430 Raid)” + 23 (hanf + han )

At any point p of M, we denote by T the subspace of T,(IM)
spanned by e, e, >, h..e. and > h,.e,, which is called the second osculating
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space. We identify the first osculating space T " with the tangent space
T,(M) of M. In general we have 2 < dim T < 4. We set

2,={peM; N, #0 at p},

which is an open subset of M. Hereafter, we assume that « is not totally
geodesic. By Lemma 2.1, 2, is not empty and so dim T® =4 for any
peR,. Let {e,} be a system of local orthonormal frame fields such that
{e; 1 =1,2} and {e;; » = 3,4} span T for pe2,. We then have

(2.5) w,; =0 for a=5 on 2,.

By taking the exterior derivative of (2.5), and making use of the
structure equations of M, we get

(2-6) Wis N\ Wy + Wy N\ Wy = 0 (a = 5) .

This allows us to introduce quantities h,;; (o =5) defined by the
equation

(2'7) hstjwaa + h4ija)4zx = Z h’aiikwk (a Z 5) .

{haiji} 1s symmetric in the Latin indices 4,7 and k. By (2.7) and the
minimality of x(M), we get

(2.8) Db =0 (@ =5).
Sazs Clivik Pesin®; Q@ @; Q @) Q e, is called the third fundamental form

of the immersed manifold x(M) (cf. [6]). Note that, for any a =5, we
have

(2-9) haijk = haij,k

which follows easily from the definition of the covariant derivatives of
R

We define the covariant derivatives Ay, of Auj bY
(2.10) Dh’aijk = R 1@

= dhaiik + Z hasjka)ai + 2 hatakwa:i + Zl h’aijswsk + 2 hﬁi:ikwﬁzx .

Then we have > A, = 0 by (2.8) and (2.10). By Lemma 2.1, the normal
vectors > h..e., and > h,.e, are perpendicular to each other and of the
same non-zero length at any p in Q,. So, normalizing these vectors, we
adopt them as a part of a basis of T for peR,. With respect to these
new frames, we have, on Q,,
(2.11) haiy = hysy By, = by = 0 and haii =0 (¢ =5),

(2'12) dh3u = h311,1w1 + hsu,zwz ’
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(2.13) Ry (— @y + 2015) = hgyy 5@0; — Rayy 1,
(2.14) Pang = — Py o9 Pay o = Pagy s -

Also, (2.7), (2.8) and (2.11) imply, for a =5,

(2.15), Py @Wse = Ppyyy@; + Pogypo®,

(2.15), hen@iy = Rors@; — By @,
Taking the exterior derivative of (2.15), we have
(2.16) Roins = Raynn @A Ry g + Paggee = 0.

We introduce three scalar fields K, N, and f, on 2,, which are
defined by

2.17) K(a) = Z (Past + Parsi) »
(2.18) Ny = X har) X basss) — (X Parshenss)”
(2.19) fa = K& — AN, .

Note that f; is globally defined on 2, and the notions of these scalar
fields can be extended to the higher order fundamental tensors if Ky + 0
(cf. [10]). As for the geometrical meaning of K, and N, ?=2,3, we
have the following:

LEMMA 2.2 (Otsuki [14]). (@) If Ky #0, N #0 and hyy; = Bay, = 0
(¢ = 5) on M, then there is a A-dimenstonal totally geodesic submamnifold
of M such that M is contained in the submanifold.

(b) If KyKgs #0, NyNyg =0 and huypy = Pan,. = 0a=T7) on M,
then there is a 6-dimensional totally geodesic submanifold of M such that
M is contained in the submanifold.

By (2.17), (2.18) and (2.19), we have
2 2
(2.20) For = (2 thast = hsd)) + 43 B -
azb azd

LEMMA 2.3 (Chern [6] and Kenmotsu [10, p. 300, Proposition]). Let
M be a compact, oriented, connected minimal surface in S™(1). Suppose
that M is mot totally geodesic and the Gaussian curvature of M is strictly
positive. Then [, ts identically zero on 2,.

3. Proofs of Theorem B and Corollary C. We assume that M is
not totally geodesic. By virtue of the curvature condition and Lemma

2.3, we have 3 hui = 3 howii and 3. hogyihes, = 0 on 2,.
LEMMA 3.1. A hewd) = 6 heari) K — (4/h3d) (X0 Parid)® + 2 35 (B}
Prasn )
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ProOOF. Since the proof of this lemma in [10] is incorrect, we give
it here for completeness. We first get

d(Z hod) = 2 Z (halllhalll,lwl + hamham,zwz) ’
A(Z h’allg)wl N @, = 2‘1{2 (halllhalll,lwz - halllhaln,2wl)} .
On the other hand, by (2.16), we have,

2 E (halllhalll,1w2 - halllhalll,Zwl) = _2 2 haul(dhanz + Z hﬂuzwﬁa + 3ha111w12) .
Hence, by direct calculation, we have

A(Z hall?)wl N @, = GKZ haufah N @ — 2 Z hamhﬂmwﬁs N @y
-2 Z hamhﬁuzwm AN (O + 2(2 (halll,%
+ P )0, A\ @, .

Substituting (2.15) into the above equation, we have Lemma 3.1.

Making use of (2.4), (2,11) and Lemma 2.3, we have

3.1) Ahy? = 4hgi K — 4hgt + 4(han i + Bepn3) + 43 byt
(hgl > heyd) is @ smooth function on @2, by (2.1) and (2.11). We can compute
the Laplacian of this function by using Lemma 3.1 and (3.1):
(3.2)  Alhsi X bansd) = 108 K3 Bans) — 4hai(3] Ponid) + 2hst 3 (B }

+ hainn ) + 4 25 Pari(hsn f + Ray3)

+ 8(hsulain, 24 RernPann,s + Ranlisyy 2 >3 Progiilanns ) -
Taking the exterior derivative of > h,.i = > ho2 and X byl = 0, We
have
(3.3) S (heihernn s + Rasblann,) = 0 and

Z (haulhalll,l - hauzhalu,z) =0.

Hence, by the Gauss equation, (3.3) and Lemma 2.3, (3.2) implies

(8.4)  A(hyi X barsd) = 2Ryl D haiii(® — 12h40) + 2 3% {(houPars,s + Pau ey
- h’311,2h/c!112)2 + (h311ha111,2 + h311,1h’a112 + h811.2ha111)2} .
Since K = 1/6 implies h,} < 5/12 on M, we have A(hy: D hod) =0 on 2,

alll
Note that M — 2, is atmost finite (cf. [6] or [10, p. 300, Proposition]).
Hence, 2, is parabolic or compact and the maximum prineiple holds good.
If there exists a point p of M — 2, such that limsup,.,(hs} > berid) |, =
+ o, then we have limsup,_., >, #eiil. = +oo. So, by (3.1), it follows that
limsup,,(A hy?) = limsup,., 4 >, hai = + oo, because of lim,, hyt=0. This
contradicts the boundedness of Ah,;} on the compact manifold M. Hence,
hot S byt is an upper bounded, subharmonic function on the parabolic
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surface 2,, hence is constant on 2,. Thus, we have (5 — 12k, =0 or
Dhei=0. If (6 —12h}) =0, we have M = 2,, K=1/6 and 3 h,,} = 5/48
by (3.1). Moreover, by Lemma 8.1, we have 3\(ha? + Fau d) = 0, which
shows n» = 6 by Lemma 2.3 (b). On the other hand, if 3 A,2=0, we
have » = 4 by Lemma 2.3 (a), which completes the proof of Theorem A.

Next, we shall give the proof of Corollary C. By the assumption
1/6 < K <1/3, the case (1) in Theorem B does not happen. Hence, in
proving Corollary C, it is sufficient to show that a minimal surface in S%1)
satisfying 1/6 < K < 1/3 is the Veronese surface. From (3.1), we have

3.5) A byt = 4hei(1 — Bhy) + 4(heut + R l) -

On the other hand, 1/6 < K < 1/8 implies 1/3 < k2 < 5/12 by the Gauss
equation. From (3.5), we have Alog(1/hy2) = 4(Bh,: — 1) =0. Since
1/h,? is a positive scalar function on M, we have h,? = 1/3, which gives
K =1/3.

4. Examples. In this section, we shall construct minimal surfaces
in $*(1) with K = 1/6, which give examples of the case (8) in Theorem B.
Let z be an isothermal coordinate on S:. We define a one-parameter
family {x,; t€ (0, )} of immersions of S? into S*1).
Bty + 25)(|2* + t)
—i(3)"(2* — Z)(|2* + )
—i(3t)"(z — 2)(t|z[* — 1)
Bt)*(z + 2)(t|z|* — 1)
—t + 3|z[* + 3t*|z|* — t|z]°
Then, for each ¢t€ (0, «), we have, by direct calculation,
12¢(1 + 48|z + 6t|2z|* + 4]2|° + t*|2[®) -
4.2 ds; = dz ® dz
“4.2) o @+ 312F + 3¢ 2 + t]2]) ®
1 — 2t + 3|z|* + 3t*|z|* + t|z]°)*
3t(1 + 4t*|z|* + 6t|z]* + 4|z[|° + t*]|z]®)®
(4.4) Apx, = —2%, ,
where ds; is the Riemannian metric of S* induced by x, and K, (resp.
A,) is the Gaussian curvature, (resp. the Laplacian), with respect to ds:.
From (4.4), we conclude that each immersion x, is minimal. We see

easily that xz, is the Veronese surface and, for each ¢t > 0, x, is not totally
geodesic because of K, # 1.

1
¢ (t + 3|z + 3|2 + t|2]%)

@l 2

(4.3) K, =

PROPOSITION 4.1. The example (4.1) corresponds to the one-parameter
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Jamily g, of directrix curves in CP* given by Chern (cf. [7] or [8]) in
homogeneous coordinate:

1+ ¢t
(1 — tz)
(4.5) & =1 2i(tz + 2%
2(—tz + 2%
—2(3t)%2*

PrROOF. In C° the symmetric product of two vectors a = (a,), b = (b,)
is given by (a, b) = 3, a,b,. Following Barbosa [1], we compute G, = 3%, —
((@°x,, ox,)/(3x,, 0x,)}0x,. We then have ¢, = G,/(G,, G,), which proves Prop-
osition 4.1 by [1, Theorem (3.30)].

REMARK. Corresponding to Tjaden’s example in [12], we have the
following one-parameter family & of directrix curves in CP*:

e+ ezt
(e — e'2%)
(4.6) &= 2z—-2)
—2i(z + 2%
2.3

It is easily verified that &, is isometric to some &,,. Thus our example
is the same as Tjaden’s one by [1, Proposition (5.2) and Theorem (5.15)].

In (4.3), we put K,, =1 — L. Then we have
4.7 L, =2/@t){t* + A — ) f} or
(4.8) L, = 2/B){1/t* + A — t)9)} ,

where f = f(t, |z]*) and g = g(¢t, |2|®) are some positive functions of ¢( > 0)
and |z>. If 1 < ¢ <5/4, then L, < (2/3)t® <5/6, by (4.7), which implies
K, =1/6. In the same way, if 4/5 <t* <1, we have K, = 1/6 by (4.8).

Thus we have K, = 1/6 for each ¢ with 4/5 < <5/4, which gives
examples of the case (3) in Theorem B.

REMARK. The assumption on K is Theorem A is the best possible
for the conclusion of Theorem A. Because for any ¢ > 0, we set =
1+ (8/2)¢ (>1). By (4.7), we have L, < 2/3 + ¢, which implies K, =
1/3 —e.
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