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1. Introduction. It is well known as a Theorem of Takahashi [8]
that a Riemannian n manifold M immersed into an (n + l)-dimensional
unit sphere Sn+1(l) is minimal if and only if each coordinate function is
an eigenfunction of Δ on M with eigenvalue n. This implies that the
first eigenvalue of M is not greater than n.

Ogiue [12] and Yau [11] independently posed the following problem:
"What kind of compact embedded minimal hypersurfaces of Sn+1(l) do
satisfy the condition that the first eigenvalue is just nt"

It is difficult in general to compute eigenvalues in practice. In [4]
a little more restricted problem is considered, that is, they compute the
first eigenvalues for some of the compact homogeneous minimal hyper-
surfaces of Sn+1(l). There are 14 kinds of compact homogeneous minimal
hypersurfaces of Sn+1(l) (cf. Hsiang and Lawson [1]), and some of them
are left untouched. We note that a homogeneous hypersurface of Sn+1(l)
has constant principal curvatures so that it is isoparametric.

The purpose of this paper is to compute the first eigenvalues for
some of them and prove the following.

THEOREM. // M is an n-dimensional compact homogeneous minimal
hypersurface in a unit sphere with r distinct principal curvatures, then
the first eigenvalue of the Laplacian on M is n unless r = 4.

The author wishes to express her gratitude to Professors K. Ogiue
and H. Muto for their useful suggestion.

2. Laplacian of homogeneous hypersurfaces in Sn+1(l). Hsiang and
Lawson [1] proved that every compact homogeneous hypersurface in Sn+1(l)
can be obtained as follows.

Let (G, K) be a symmetric pair of compact type of rank 2 with bi-
invariant Riemannian metric g induced from the Killing form BG of the
Lie algebra g of G. Let g = ϊ + p be the Cartan decomposition associated
with (G, K). We regard p a s a Euclidean space with inner product — BG.
Choose a maximal Abelian subspace α in p and denote by Σ the set of
all roots of g. Let Σ+ be the set of all positive elements in Σ with
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respect to a fixed linear order. Then it is known that ϊ and p have the
following orthogonal decompositions ([7]):

P = a + Σ fe ,
where

ΐλ = {Xet: (adiί) 2 X= -\{HfX for all Hea} ,

ft = {Γe£: (adiϊ) 2Γ = -λ(JΪ) 2 Γ for all Hea} .

Note that dimϊ^ = dimfc and denote it by m(λ).
Let Sn+1(l) be the unit hypersphere of p and let Hea be a unit

regular element (i.e., λ(if) ^=0 for all \eΣ+). Define an embedding ΦH:
K/L -> N(H)dSn+\l)c:p by ΦH(kL) = Ad(kH), where L is the stabilizer of
the adjoint action of K at H whose Lie algebra ϊ is {Xeϊ; ad(X)(iί) =
0} = ϊ0.

Because the adjoint action is an isometry and H is a unit regular
element in p, the image N(H) of ΦH is a hypersurface of Sn+\ϊ).

The homogeneous space K/L is called a regular i2-space (cf. [7]). We
identify the tangent spaces of p with p itself and give K/L the Rieman-
nian metric g induced from the embedding ΦH.

Since ϊ is a semisimple Lie algebra of compact type, ϊ has an Ad(L)-
invariant decomposition: ϊ = I + tπ. Moreover g is given by

gH(X, Y) = BG{[X, HI [Γ, H]) for all X,Yem.

So we can take {X}/x(H); λ e Σ+, i = 1, , m(λ), XI e lλ9 -Bσ(X}, Xf) =
δffi} as an orthogonal basis of tπ with respect to gH.

We would like to know what kind of H makes ΦH an embedded
minimal hypersurface. Let Hea be a unit regular element. Then the
homogeneous hypersurface N(H) in Sn+1(l) is isoparametric so that its
principal curvatures κt(H) and their multiplicities m(ιct(H)) are known as
follows (cf. [3], [7]): Since α is 2-dimensional, we can choose Zea in such
a way that {H, Z) is an orthonormal basis for α. Let Σ+ = {λ e Σ+: λ/2 g
^ J . Then we have

(2.1) κt(H) = -XtW/xάH) for λ.e^* ,

(2.2) m(Ki(H)) = m(λi) + m(2λ<) ,

where m(λ) = dim f̂ . Moreover the number r of the distinct principal
curvatures satisfies

r = #^*{1, 2, 3, 4, 6} .

Therefore, for each Hea which satisfies the condition
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(2.3) Σ m(κt(H))κt(H) = 0 ,

we get a compact homogeneous minimal hypersurface in Sn+1(l).
For such an H we can write down the Δ of (K/L, g) (cf. [4]):

m(λ)

(2.4) Δ = Σ Σ IM/MHY ,
XeΣ+ <=l

where Lx denotes the Lie derivation on K with respect to the left invari-
ant vector field X.

3. The method of computing the eigenvalues. We review the method
in [4]. Let D(K) be the set of all finite dimensional inequivalent unitary
representations (p, Vp) of K and D(K, L) = {(p, Vp)eD(K); VP

L Φ {0}},
where V£ = {veVp; ρ(l)v = v for all I e L}.

By the theorem of Peter and Weyl, {piS(*) = ((p(*)vi9 vs)); i = 1, ,
dimF'0, j = 1, , dimFx, (p, Vp) eD(K, L)} is a complete orthogonal sys-
tem of the space CΓ(KjL) of all complex-valued C°° functions on K/L,
where {v^ i = 1, , dimF''} is an orthonormal basis of Vp and {̂  ; j =
1, , dimF£} is an orthonormal basis of F£ with respect to the U norm
(( , )) such that the former is an extension of the latter.

Now, since the Laplacian of the Riemannian manifold (K/L, g) is
expressed in terms of the Lie algebra fc, we have

(3.1) = Σ
XΣ

(3.2) APij = ((p(A)vj9 v%)) , ΐ = l, •• ,dimVr^, j = 1, , dimF£ .

Therefore, it is enough to find all the eigenvalues of the endomor-
phism p(Δ) on VP

L for all pe D(K, L), because these eigenvalues exhaust
all the eigenvalues of Δ for (K/L, g). If g is a bi-invariant metric, then
p(Δ) is a scalar operator so that its eigenvalues are easily known. But
in our case, it is very difficult in general to know all the eigenvalues of
p(Δ), because g is not a bi-in variant metric. Therefore, in [4], p(Δ) is
decomposed into the sum of a scalar operator and a nonnegative operator
P as follows:

(3.3) p(Δ) = Σ p(Xi)Vc + P ,

where c = {max^λ(ίί)2}.
Let Ω be the Casimir operator of K/L. Since K is a simple Lie

group, bi-invariant metrics on K are unique up to scalar multiple so
that there exists a number a such that Bκ = aBG\κ. By definition, Ω =
Σ (Xif/Bκ(Xl XI) = Σ {(X}Y/aBβ(Xi, X})} - Σ (Xϊf/a. Then (3.3) can be
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written as

(3.4) p(Δ) = ap(Ω)/c + P .

By virtue of FreudenthaΓs formula, we know the eigenvalues q(ΛP)
of p(Ω). So all the eigenvalues of p(Δ) are not smaller than aq(AP)/c.
If q(Λp) is not smaller than nc/a, we can conclude that the first eigen-
value of (K/L, g) is just n. Therefore we study the eigenvalues of p(Δ)
smaller than nc/a.

4. The computation. Now we realize the Lie algebras g, ϊ, p, I and α,
and compute the first eigenvalue of Δ concretely. Hereafter, we use the
notation of [5, pp. 21-37].

(i) The case r = 1 and 2.
It is well known that the first eigenvalue of the great ^-sphere and

the Clifford w-torus is just n.
(ii) The case r = 3.
Let F be a division algebra over R, i.e., F = R,C, the real quater-

nion algebra H or the real Cayley algebra K. If we put HB(F) = {u;
u is a 3x3 matrix with coefficients in F, which satisfies u* = u), then
the subspaces p and ϊ of gl(iϊ3(F)) are realized as follows:
Let R: HZ(F) -> gl(ii3(F)) and D: SH,(F) -* gl(iϊ3(F)) be injective linear
maps defined respectively by R(u)v = (uv + vu)/2 and D(u)v = {uv — vu)/2,
where SH9(F) = {ueHz(F); T(u) = 0} and

(tr(u) + tτ(ύ) if F=H,

otherwise .
Then we have

ϊ - D(SHB(F)) ,

so that dim p = dim ϊ = 3 dim F + 2.
Let g = ϊ + p. Then g is a simple Lie algebra of compact type, and

ϊ + p is a Cartan decomposition. Furthermore these Lie algebras exhaust
Lie algebras of rank 2 with r = 3. The corresponding Lie groups are
as follows:

TABLE 1.

F

R

C

H

K

K

SO(Z) = B,

SU&) = A2

Sp(3) = C3

Ft

L

Z2 + Z2

Sp(l)3

Spin(8)

G

SU&)

SU(B)xSU(S)

SU(Q)

Eβ

άim(K/L)

3

6

12

24
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We put

/I 0 0̂  /0 0 0\ /0 0 0\

^ = 10 0 0

\0 0 o)

and choose α = {Σ fte«; Σ ft = 0} as a maximal Abelian subalgebra of p.
Then Σ% is given by

* ί = {(ft - ft)/2, (ft - ft)/2, (ft - ft)/2} .

so that

(4.1) λi - (ft - ft)/2 , λ2 = (ft - ft)/2 and λ3 = (ft - ft)/2 ,

and the multiplicities of the principal curvatures are ml — m^^mz~
dimF.

For any H = (ft, ft, ft) e α, whiehjsatisfies ς\ + ς\ + ς\ = 1/3 dim F, we
choose Z = ((ft - ft)/i/T, (ft - ftVl/T, (ft - ftVvΊΓ). Then we get

ί, JET) = tr(ad(H), ad(ff))

= 2 dim F{(ft - f 2)
2/4 + (ft - f 3)

2/4 + (ft - ft)s/4}

= 3 dim F(ζ\ + ξ\ + f2) = 1 = B(Z, Z) ,

Z) = 0,

and hence {ίί, Z} is an orthonormal basis of α. From (2.1) and (4.1) we get

Ki(H) = (ft + ft - 2ft)/ι/¥(ft - ft) ,

κ2(H) = (2ft - ft - ft)/l/T(ft - ft) ,

^(ff) = (ίs + ft - 2ft)/i/"3(ft - ft) .

We see that an Hea which makes K/L minimal is (—(3dimF)~1/2, 0,
(3dimF)-1/2). Then we have K^H) = - i / ϊ , κt(H) = 0, /c3(ii) = i / T so
that Σ?=i niii/CiiH^/CiiH) = 0. Therefore we get a homogeneous minimal
hyper surf ace with r = 3. With respect to this H, it follows from (4.1)
that

(4.2) X^Hf = 1/12 dim F, λ2(iϊ)2 = 1/3 dim F , λ3(iί)2 = 1/12 dim F .

Hence we get

(4.3) c = 1/3 dim F , and a = BK/BG\K .

(ii)-l The cases of J5X and A2 were dealt with in [4].
(ii)-2 The case of C3.

In this case, F = H and ϊ = \(Q DJ e Q; A, B, C, D are 3x3 matrices

with coefficients in R and A + D = 0, B + C = θ | so that £G/12 = trG =
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t r x = Bκ/8. Thus, we get a = 2/3. Moreover, from (4, 3), we have c =
1/12.

Now, we compute q(Λp) concretely, and compare them with nc/a =
24/16. Each ρeD(K) corresponds to (mlfm2, * -) e Zτ&n]ίK injectively and
for each (mlf m2, •••)> Pi = Pi(wlf •) are defined. Then q{Λp) can be
given in terms of {m*, Pj} as

(4.4) q(ΛP) = m2p2 + 2m3p3 2p2 + 4p8)/16 .

For details, see [9]. As we need not compute the eigenvalue bigger than
24/16, we mark * in the fourth column in Table 2 for p whose q(Ap) is
bigger than 24/16. We mark * in the fifth column for p if p$D(K, L).
Therefore we must compute the eigenvalues for p which is not marked

*.

mi

1

2

3

0

0

0

0

1

2

1

0

m2

0

0

0

1

2

0

0

1

1

0

1

m-3

0

0

0

0

0

1

2

0

0

1

1

Pi

1

2

3

1

2

1

2

2

3

2

2

1

2

3

2

4

2

4

3

4

3

4

TABLE

2>3

1/2

1

3/2

1

2

3/2

3

3/2

2

2

5/2

2.

18g(Λ)

7

16

27

12

28

15

36

21

32

24

31

^24?

*

D(K, L)t

*

*

adjoint action

*

*

*

*

*

*

*

(ii)-3 The case of FA.
As in (ii)-2, we get

q{Λp) = (m.p, + m2p2 + m3pj2 + m,pJ2 + 2px + 2p2 +

(cf. [9]) ,

α - 3/4 (cf. [2]) , c = 1/24 so that ncja = 24/18

Compare q(ΛP) with 24/18 in Table 3.
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TABLE 3.

Tϊli W/2 W3 W/i

1 0 0 0

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 2

1 0 0 1

Pi P2 Pz Pi

2 3 4 2

4 6 8 2

3 6 8 4

2 4 6 3

1 2 3 2

2 4 6 4

3 5 7 4

lSq(Λ)

18

38

36

24

12

26

32

^24?

*

*

*

D(K, D?

*

adjoint action

*

*

In the cases (ii)-2 and (ii)-3 we see that q(Λp) is not smaller than
ncja for all p in D(K, L) except for the adjoint action. In the case of
the adjoint action, we have

p(A) = Aά(XfY/β(HY Ad(X/)2/τ(iϊ) ,

where Σ$ = {α, β, 7} and m(α) = m{β) = m(7) = άim(KJL)/Z. Clearly we
know y = p and F£ = α, and we get

= -Hλ/X(H) ,

Ad(Xx)
2IX(H)2Z = x(Z)Aά(Xλ)Yλ/X(H)2 = -X(Z)Hλ/X(H)2 .

But it follows from the definition that Hx = X(H)H + \{Z)Z, so that we get

Ad(Δ)H - -dim(ίΓ/L){(H - κaZ) + (H - Λ^Z) +

= -dim(jSyL){H + (κa + κβ + ιcr)Z/S} = ~di

= -2dim(-K/L) .

Thus we get q(ΛP) = {άim(K/L),2dim(K/L)}. Therefore we conclude in
both cases that the first eigenvalue is just n.

(iii) The case r = 6.
The following two Lie algebras exhaust simple Lie algebras of com-

pact type of rank 2 with r = 6.
(iii)-l The case ϊ = g2 and p = V^ΪQi.
The associated symmetric pair of Lie groups is (G2xG2, G2), which

was dealt with in [4].
(iii)-2 The case g = g2, ϊ = 8u(2) + Su(2) and 1 = 0.
It is known that D(SU(2)) = {(pm, Vm)\ m is any nonnegative integer},

where Vm is the vector space of all homogeneous polynomials of degree
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m in two complex variables z19 z2 and pm(g)f(z) = f(gz), for all feVm

(cf. [6]).
It is easily seen that

U/2
form a basis of §u(2) such that [Xiy X,] = Xk, where (i, j , k) is a cyclic
permutation of (1, 2, 3). Then we easily get the differential representa-
tion of pm:

dpm{X^vh = Hkv^ + (n - k)vk+1}/2 ,

dρm(X2)vk = {kvk_λ - (n - k)vk+1}/2 ,

= i(2k - n)vk/2 ,

where {vk — z\zf~k) is an orthogonal basis of Vm. Now we define an
inclusion

βu(2) + βu(2) cg 2 ,

by

E, = G12 + GJ2 - GJ2 , F1 = -(&„ + Gm)β ,

E2 =-Gu- (G,, + Gb2)/2 , F2 = (G4β - G67)/2 ,

S, = G23 + (G,, - Gβ7)/2 , Fa = -(Gα + Gβ7)/2 ,

where Gtj = EiS — Ejt and E^ is a standard basis of 7 x 7 matrix with
coefficients in R. Then we have

[Ei,Eί] = Ek, [Fi,FJ] = Ft, [E.,Ft} = 0,

where (i, j , k) is a cyclic permutation of (1, 2, 3) and s, t = 1, 2, 3. More-
over a maximal Abelian subspace α is given by α = {ξfin — f2G14 + f3Gβ7;
ξi + & + ξi = 0}, and ίΓ, which makes N(H) a minimal hypersurface in
Sn + 1(l), is

H = {(l/T - 1)G72 - 2G14 + (i/"3 + l)Gβ7}/2v/"6"6α .

All the root vectors with respect to the above α are

{E, + ZFU E, - Fu E2 + SF2, E2 - F2, Es - $FS, Ez + Fz) .

Thus we get

+ 3F0 = -(2 + / T

-F1)= -(6-

ad(H)2(E2 + 3F2) = - ( 2 -

ad(H)\E2 - F2) = - ( 6 + β v T ) ^ , - F2)/12 ,
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= - ( # , - 3.P3)/6 ,

Therefore from (2.4), we have

Δ = -{Ei -

+ 4CE?

If we note that D(SU(2)(g)SU(2)) = {(p% Vn)(g)(pm, Fm)}, then after a
long computation, (3.2) can be written as

= {(fc - n/2 - ί + m/2)2 + (21 - m)2 + 4(wfc - k2) + 20(Zm - I2) + 10m

)(m ~ I)vk+I(g)uι+1

+ {m — l){m — I — l )

where Vn = {̂ 1̂ and F w = {wj. The stabilizer L is given by

f /I 0\ /I 0\ fi 0\ /* 0'

1 \o i j w \o 1/ \o -ΐ/w \o -i)'
(0 i \ _ /0 ί\ / 0 1\ / 0 1\

l - i oj
So by an easy computation we see that Vί Φ {0} if and only if n + m
is even. Moreover, we see that if n + m = 0 (mod 4), then Vί = {vk®
Mi + vn-k(><)Um-ι'> k + Z is even} and if w + m == 2 (mod 4), then F£ = {v4®
Mi — v«-t®^m-i; fc + I is odd}. q(Λn>m) is not smaller than 6 for each pair
(n, m), and hence we see that the first eigenvalue is just n.
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