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1. Introduction. It is well known as a Theorem of Takahashi [8]
that a Riemannian % manifold M immersed into an (n + 1)-dimensional
unit sphere S"*!(1) is minimal if and only if each coordinate function is
an eigenfunction of A on M with eigenvalue n. This implies that the
first eigenvalue of M is not greater than .

Ogiue [12] and Yau [11] independently posed the following problem:
“What kind of compact embedded minimal hypersurfaces of S**'(1) do
satisfy the condition that the first eigenvalue is just n?”

It is difficult in general to compute eigenvalues in practice. In [4]
a little more restricted problem is considered, that is, they compute the
first eigenvalues for some of the compact homogeneous minimal hyper-
surfaces of S"**(1). There are 14 kinds of compact homogeneous minimal
hypersurfaces of S"*'(1) (cf. Hsiang and Lawson [1]), and some of them
are left untouched. We note that a homogeneous hypersurface of S *(1)
has constant principal curvatures so that it is isoparametric.

The purpose of this paper is to compute the first eigenvalues for
some of them and prove the following.

THEOREM. If M is an m-dimensional compact homogeneous minimal
hypersurface in a unit sphere with r distinct principal curvatures, then
the first eigenvalue of the Laplacian on M is n unless r = 4.

The author wishes to express her gratitude to Professors K. Ogiue
and H. Muto for their useful suggestion.

2. Laplacian of homogeneous hypersurfaces in S"*'(1). Hsiang and
Lawson [1] proved that every compact homogeneous hypersurface in S**(1)
can be obtained as follows.

Let (G, K) be a symmetric pair of compact type of rank 2 with bi-
invariant Riemannian metric § induced from the Killing form B, of the
Lie algebra gof G. Let g =t + p be the Cartan decomposition associated
with (G, K). We regard p as a Euclidean space with inner product — B,.
Choose a maximal Abelian subspace a in p and denote by 3 the set of
all roots of g. Let X, be the set of all positive elements in ¥ with
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respect to a fixed linear order. Then it is known that f and p have the
following orthogonal decompositions ([7]):

t=f+>t, (WeX,),
p=a+3p,
where
[, ={Xet:(ad H’X = —\(H)*X for all Hea},
p, ={Yep:(ad HY = —\(H)*Y for all Hea} .

Note that dim f; = dim p, and denote it by m(\).

Let S**(1) be the unit hypersphere of p and let Hea be a unit
regular element (i.e., M(H) = 0 for all A€2X,). Define an embedding @5:
K/L - NH)cCS**'(1)cp by 04(kL) = Ad(kH), where L is the stabilizer of
the adjoint action of K at H whose Lie algebra [ is {Xct; ad(X)(H) =
0} =&,

Because the adjoint action is an isometry and H is a unit regular
element in p, the image N(H) of @, is a hypersurface of S**'(1).

The homogeneous space K/L is called a regular R-space (cf. [7]). We
identify the tangent spaces of p with p itself and give K/L the Rieman-
nian metric g induced from the embedding @.

Since f is a semisimple Lie algebra of compact type, £ has an Ad(L)-
invariant decomposition: ¥ = [ + m. Moreover g is given by

9x(X,Y) = Bi([X, H], [Y, H]) for all X,Yem.

So we can take {X)/NH);reZX,, 1 =1, ---,m(\), X}el, —Bu(X} X}) =
0%0%} as an orthogonal basis of m with respect to g.

We would like to know what kind of H makes &, an embedded
minimal hypersurface. Let Hea be a unit regular element. Then the
homogeneous hypersurface N(H) in S"*'(1) is isoparametric so that its
principal curvatures k,(H) and their multiplicities m(x,(H)) are known as
follows (ef. [3], [7]): Since a is 2-dimensional, we can choose Zea in such
a way that {H, Z} is an orthonormal basis for a. Let 3% = (L €3, :\/2¢
2.,}. Then we have

2.1 k(H) = —N(Z)[Nn(H) for N e3%,
(2.2) m(E(H)) = m(v) + m(2\) ,

where m(\) = dim f;. Moreover the number r of the distinct principal
curvatures satisfies

r=#3%1,2,8, 4,6} .

Therefore, for each H ea which satisfies the condition
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2.3) 3 mie(H)R(H) =0,

we get a compact homogeneous minimal hypersurface in S**(1).
For such an H we can write down the A of (K/L, g) (cf. [4]):

(2.4) A= 3 LynvHEY,

AeXy i=1

where L, denotes the Lie derivation on K with respect to the left invari-
ant vector field X.

3. The method of computing the eigenvalues. We review the method
in [4]. Let D(K) be the set of all finite dimensional inequivalent unitary
representations (o0, V°) of K and D(K, L) = {(o, V*)e D(K); Vi + {0}},
where Vi = {ve V? po(l)v = v for all leL}.

By the theorem of Peter and Weyl, {0,(*) = (0(*)vyy v,));1 =1, +++,
dimVe, 7 =1, ---,dimV{, (o, V*) e D(K, L)} is a complete orthogonal sys-
tem of the space C*(K/L) of all complex-valued C= functions on K/L,
where {v; 1 =1, -++,dimV?} is an orthonormal basis of V? and {v;; j =
1, ---, dimV%} is an orthonormal basis of V7 with respect to the L? norm
((, )) such that the former is an extension of the latter.

Now, since the Laplacian of the Riemannian manifold (K/L, g) is
expressed in terms of the Lie algebra %k, we have

m(2)
3.1 od) = 3 3 o(XDMEY
3.2)  Apy = ((0(A);,v)), t=1,+-+,dimV? j=1,.--,dimVf.

Therefore, it is enough to find all the eigenvalues of the endomor-
phism p(A) on Vi for all pe D(K, L), because these eigenvalues exhaust
all the eigenvalues of A for (K/L, g). If g is a bi-invariant metric, then
©(A) is a scalar operator so that its eigenvalues are easily known. But
in our case, it is very difficult in general to know all the eigenvalues of
0(A), because g is not a bi-invariant metric. Therefore, in [4], p(A) is
decomposed into the sum of a scalar operator and a nonnegative operator
P as follows:

3.3) p(A) = 3 p(X{)yfe + P,
where ¢ = {max; M(H)%}.

Let 2 be the Casimir operator of K/L. Since K is a simple Lie
group, bi-invariant metrics on K are unique up to scalar multiple so

that there exists a number a such that By = aBgy|gz. By definition, 2 =
> (X1 Bx(XE, XT) = 2 {(XH/aBu(XE, XD} = 3. (X*fa. Then (3.3) can be
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written as
(38.4) o(A) = ap(2))e + P .

By virtue of Freudenthal’s formula, we know the eigenvalues q(4,)
of o(2). So all the eigenvalues of p(A) are not smaller than aq(4,)/c.
If q(4,) is not smaller than nc/a, we can conclude that the first eigen-
value of (K/L, g) is just n. Therefore we study the eigenvalues of p(A)
smaller than nc/a.

4. The computation. Now we realize the Lie algebras g, £, p, [ and q,
and compute the first eigenvalue of A concretely. Hereafter, we use the
notation of [5, pp. 21-37].

(i) The case r = 1 and 2.

It is well known that the first eigenvalue of the great m-sphere and
the Clifford n-torus is just =.

(ii) The case r = 3.

Let F be a division algebra over R, i.e., F = R, C, the real quater-
nion algebra H or the real Cayley algebra K. If we put Hy(F) = {u;
% is a 3x3 matrix with coefficients in F, which satisfies u* = u}, then
the subspaces p and ¥ of gl(H,(F)) are realized as follows:

Let R: H(F)— gl(Hy(F)) and D:SH,(F)— gl(H,(F)) be injective linear
maps defined respectively by R(u)v = (uv + vu)/2 and D(u)v = (uv — vu)/2,
where SH,(F) = {u € Hy(F); T(u) = 0} and
tr(u) + tr(w) if F=H,
T(u) = { .
tr(u) otherwise .
Then we have
p = R({u € Hy(F); tr(w) = 0}) ,
t = D(SHy(F)) ,
so that dimp = dimf = 3 dim F + 2.

Let g=1t+ p. Then g is a simple Lie algebra of compact type, and
f + pis a Cartan decomposition. Furthermore these Lie algebras exhaust
Lie algebras of rank 2 with » = 3. The corresponding Lie groups are
as follows:

TABLE 1.
F K L G dim(K/L)
R SO@) = B, Z, + Z, SU@®) 3
C SU®) = A, T SUB)x SU) 6
H Sp3) = Cs Sp(1)°* SU®) 12
K F, Spin(8) E, 24
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We put

100 0 00 0 00
e,=10 0 0), e2=<0 1 O), e3=(0 0 0),
0 00 0 00 0 01

and choose a = {3 &e;; 3. & = 0} as a maximal Abelian subalgebra of p.
Then X* is given by

2r={—8&8)2 (& — &)/2, (& — &)/2} .
so that
(4'1) N = (Ez - 51)/2 y AN = (53 - El)/z and Ay = (Ss - Ez)/z ’

and the multiplicities of the principal curvatures are m, = m, = m, =
dim F.

For any H = (&, &, &) €a, which satisfies & + & + & = 1/3dim F, we
choose Z = ((&, — &)V '3 , (& — &)V 3, (& — &)V 8 ). Then we get

B(H, H) = tr(ad(H), ad(H))
= 2dim F{(&, — &)'/4 + (& — &)'/4 + (& — £)°/4}
=3dimFE +&£+&8)=1=BZ72),
BH,Z)=0,
and hence {H, Z} is an orthonormal basis of a. From (2.1) and (4.1) we get
k(H) = (& + & — 253)/1/—3—(52 — &)
k(H) = (28, — & — 53)/1/?’-(53 — &),
K(H) = (& + & — 260V 8 (& — &)

We see that an Hea which makes K/L minimal is (—(3 dim F)™2, 0,
(8dim F)~*?). Then we have ,(H) = —'3, £,(H) =0, £,(H) =1v"3 s0
that >3, m(k,(H)k,(H) = 0. Therefore we get a homogeneous minimal
hypersurface with » = 8. With respect to this H, it follows from (4.1)
that

(4.2) MHE? =1/12dim F, MNH)?*=13dimF, NH)>=1/12dimF.
Hence we get
(4.3) ¢=1/8dim F, and a = Bg/Bglx .

(ii)-1 The cases of B, and A, were dealt with in [4].
(ii)-2 The case of C,.

In this case, F = H and f = {(‘é g) eg; A, B,C, D are 3x3 matrices
with coefficients in R and A+ D=0, B+ C= 0} so that B,/12 = try =
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try = Bx/8. Thus, we get ¢ = 2/3. Moreover, from (4, 3), we have ¢ =
1/12.

Now, we compute ¢(4,) concretely, and compare them with nec/a =
24/16. Each pe€ D(K) corresponds to (m,, m,, --+)€ Z™*¥ injectively and
for each (m,, my --+), p, = pm, ---) are defined. Then gq(4,) can be
given in terms of {m,, p,;} as

(4.4) q(4,) = (M0, + m,p, + 2m,p, + 2p, + 2p, + 4p,)/16 .

For details, see [9]. As we need not compute the eigenvalue bigger than
24/16, we mark = in the fourth column in Table 2 for o whose ¢(4,) is
bigger than 24/16. We mark * in the fifth column for o if p¢ D(K, L).
Therefore we must compute the eigenvalues for o which is not marked

*.

TABLE 2.

m; My M P D2 Ds 18q(4) =247 DK, L)?
1 0 0 1 1 1/2 7 *
2 0 0 2 2 1 16 *
3 0 0 3 3 372 27 *

0 1 0 1 2 1 12 adjoint action
0 2 0 2 4 2 28 *

0 0 1 1 2 32 15 *
0 0 2 2 4 3 36 *

1 1 0 2 3 3/2 21 ®
2 1 0 3 4 2 32 *

1 0 1 2 3 2 24 *

0 1 1 2 4 5/2 31 *

(ii)-3 The case of F..
As in (ii)-2, we get
q(4,) = (MP, + MsPy + MaPy/2 + MyPY2 + 2D, + 2D, + D5 + DJ)/18
(cf. [9]),
a=3/4 (cf. [2]), ¢=1/24 so that mnc/a = 24/18 .

Compare q(4,) with 24/18 in Table 3.
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TABLE 3.

m. ms ms Ms| P P2 Pz Ps | 189(4) =247 D(K, L)?
1 0 0 o04{2 3 4 2 18 *

2 0 0 0 4 6 8 2 38 *

0 1 0 0 3 6 8 4 36 *

o 0 1 0|2 4 6 3 24 *

o 0 0 1 1 2 3 2 12 adjoint action

0o 0 0 2|2 4 6 4 26 *

1 0 0 1 3 5 7 4 32 *

In the cases (ii)-2 and (ii)-3 we see that ¢(4,) is not smaller than
ncja for all p in D(K, L) except for the adjoint action. In the case of
the adjoint action, we have

o) = 3 AQXY aHY + 3 AAXLYIBHY + 3 AAXDY(H) ,

where X* = {a, 8, 7} and m(a) = m(B) = m(Y) = dim(K/L)/3. Clearly we
know V¢ =9p and V{ = a, and we get
Ad(X))INH)YH = MH)AAX) Y /MH) = —H)/MH) ,
AdAXIMH)Z = MZ)AAX) Yo /MH) = —\Z)H,/MH) .
But it follows from the definition that H, = N(H)H + MZ)Z, so that we get
Ad(A)H = —dim(K/L){(H — £,Z) + (H — £,Z) + (H — £, Z)}/3
= —dim(K/L){H + (k. + ks + £:)Z/3} = —dim(K/L)H ,
Ad(A)Z = —dim(K/L){— (k. + &5 + £)H + (k% + &% + £)Z}/3
= —2dim(K/L) .

Thus we get q(4,) = {dim(K/L), 2 dim(K/L)}. Therefore we conclude in
both cases that the first eigenvalue is just .

(iii) The case r = 6.

The following two Lie algebras exhaust simple Lie algebras of com-
pact type of rank 2 with » = 6.

(iii)-1 The case t =g, and p =1 —1g,.

The associated symmetric pair of Lie groups is (G,xG,, G,), which
was dealt with in [4].

(iii)-2 The case g = g,, £ = 8u(2) + 3u(2) and [ = 0.

It is known that D(SU(2)) = {(0., V™); m is any nonnegative integer},
where V™ is the vector space of all homogeneous polynomials of degree
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m in two complex variables z, 2z, and p,(9)f(z) = flgz), for all feV™
(cf. [6]).

It is easily seen that

O 0 -1 iz 0
X‘“(i/z 0>’ X“(l/z 0)’ Xa‘(o z’/2>

form a basis of su(2) such that [X,, X;] = X,, where (¢, j, k) is a cyclic
permutation of (1,2,3). Then we easily get the differential representa-
tion of po™:
do™(X)v, = kv, + (n — E)vp}/2,
do™(X)v, = (kv — (n — E)vep}/2,
do™(Xy)v, = 1(2k — n)v,/2,
where {v, = 2f2r*} is an orthogonal basis of V™. Now we define an
inclusion
3u(2) + su(2)cg,, (X} +{X}—{E}+ {F},
by
E1 = G12 + G47/2 - G56/2 ’ F1 = _(Gn + Gao)/z ’
Ez = —'st - (G‘:e + sz)/z ’ F2 = (G46 - Gn?)/z )
Es = st + (Gus - Ge7)/2 ’ Fs = _(Gm + Gc'r)/z ’
where G,; = E;; — E;, and E,; is a standard basis of 7X7 matrix with
coefficients in B. Then we have
[E,E]l=E,, [F,Fl=F,, [E,F]=0,
where (2, 7, k) is a cyclic permutation of (1,2,3) and s, =1, 2,3. More-
over a maximal Abelian subspace a is given by a = {¢,Gy, — &Gy + &Ge;
& + & + & =0}, and H, which makes N(H) a minimal hypersurface in
S*(1), is
H={V"3 —1)G,—2G,+ (13 +1)Gs}/2V6 €a.
All the root vectors with respect to the above a are
{E1 +3Fu El - Fu E2 +3F2! Ez_ Fz; Es_ 3F3y E3+F3} .
Thus we get
ad(H)(E, + 8F,) = —(2 + V' 3)(E, + 8F)/12,
ad(H)X(E, — F)) = —(6 — 8V 3)(E, — F)/12,
ad(H)XE, + 8F,) = —(2 — V' 3)(E, + 3F),)/12,
ad(H)(E, — F,) = —(6 + 31/ 3)(E, — F)/12,
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ad(H)z(Es - 3Fa) = —(E; — 3F3)/6 ’
ad(H)(E; + Fy) = —(E; + Fy)/2.
Therefore from (2.4), we have
A = —{E} — 2E,F, + 5F% + A(E} + 2E.F', + 5F%)
+ 4(E% + 2E,F, + 5F?) + 8 3 (E,F, — E.F, + F: — F?)} .

If we note that D(SUQ2)QSU?2)) = {(0", V)Q(p™, V™)}, then after a
long computation, (3.2) can be written as

—d(0"Q ™) Qu
={k —n/2 =1+ m/2)* + @2l — m)* + 4(nk — k*) + 20(lm — I*) + 10m
+ 2n}u,Q@Qu; + Hk(m — Dve_ @uysy + U — k)ve,Q@uy_i}
— 43 (kv @uiy + (1 — B)(m — D0t ®uys + 1T — DveQui_s
+ (m — D(m — 1 — D)v,Q@uys}
where V" = {v,} and V™ = {u,}. The stabilizer L is given by

i fef touf 9 o el )

(i ool o =1 o= o)

So by an easy computation we see that V{ = {0} if and only if n +m
is even. Moreover, we see that if n + m =0 (mod4), then V{ = {v,Q
Uy + Vo Q@Un_i; £k + 1 is even} and if n + m = 2 (mod 4), then Vi = {1,Q
Uy — Vo ;Q@QWUp_y; £ + 1 is odd}. q(4,,,.) is not smaller than 6 for each pair
(n, m), and hence we see that the first eigenvalue is just =.

REFERENCES

[11 W.Y. Hsiang AND H.B. LAwSOoN JR., Minimal submanifolds of low cohomogeneity, J.
Diff. Geometry 5 (1971), 1-36.

[2] N. JocoBsoN, Exceptional Lie algebras, Lecture Notes in Pure and Applied Math., Marcel
Dekker, New York and Basel, 1971.

[8] H.F. MUNZNER, Isoparametrische Hyperflachen I, II, Math. Ann. 251 (1980), 57-71 and
256 (1981), 215-232.

[4] H. Muro, Y. OuNITA AND H. UrRaRAWA, Homogeneous minimal hypersurfaces in the unit
sphere and the first eigenvalue of their Laplacian, Téhoku Math. J. 36 (1984), 253-267.

[5] H. Ozexi AND M. TAKEUCHI, On some types of hypersurfaces in spheres II, Téhoku
Math. J. 28 (1976), 7-55.

[6] M. SuGiURa, Unitary representations and harmonic analysis, an introduction, Kodansha,
Tokyo and J. Wiley and Sons, New York, 1975.

[7] R. TAkAGI AND T. TARAHASHI, On the principal curvatures of homogeneous hypersurfaces

in a unit sphere, Diff. Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972,
469-481.



532 M. KOTANI

[8] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18
(1966), 380-385.

[9] S. YamacucHI, Spectra of flag manifolds, Memoirs Fac. Sci. Kyushu Univ. 33 (1979),
95-112.

[10] W. MckAY AND J. PATERA, Table of dimensions, indices, and branching rules for repre-
sentations of simple Lie algebras, Leture Notes in Pure and Applied Math. Marcel
Dekker, New York and Basel, 1981.

[11) S.T. YAu, Problem section, Seminar on differential geometry, Ann. Math. Studies 102,
Princeton Univ. Press, 1982, 692.

[12] K. OGiue, Open problems, Surveys in Geometry, 1980/81, Geometry of the Laplace
Operator, edited by T. Ochiai, (in Japanese).

DEPARTMENT OF MATHEMATICS
ToxY0 METOROPOLITAN UNIVERSITY
SETAGAYA TOKYO 158

JAPAN





