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Abstract. We consider a system of integrodifferential equations of the
form

(1) %' = A(t)x + Pc(ί, s)x(s)ds
Jo

which we then write as

(2) x' = L(t)x + ί'Citt, s)x(s)ds + l jλ [ H(t, s)x(s)ds .
Jo \at IJ o

A number of Lyapunov functionals are constructed for (2) yielding necessary
and sufficient conditions for stability of the zero solution of (1).

1. Introduction. We consider the system

(1.1) x' = A(t)x + [ C(t, s)x(s)ds
JJo

in which A(t) is an nxn matrix continuous for 0 ^ t < °o, C(t9 s) is an
nxn matrix continuous for 0 ^ s ^ t < °°, and n ^ 1.

We write (1.1) as

(1.2) x' = L(t)x + [ C&, s)x(s)ds + — Γ H(t, s)x(s)ds
Jo at Jo

and discuss s tabi l i ty and instabi l i ty of t h e zero solution of (1.1) via t h e
const ruct ion of L y a p u n o v functionals for t h e sys tem (1.2).

Evident ly , (1.1) can be r e g a r d e d as a special case of (1.2) and t h e r e -
fore any stability result for (1.2) is also a stability result for (1.1).
However, the most interesting stability results of this paper are those
obtained by converting (1.1) to (1.2). It turns out that (1.1) can be
reduced to (1.2) in several ways and consequently a variety of stability
results will be obtained. In most cases, we obtain simple and practical
results under mild conditions.

The following terminology is used throughout this paper. For any
t0 ^ 0 and any continuous function φ: [0, t0] —• Rn, a solution of (1.2) and
hence of (1.1) is a continuous function x: [0, oo) —• Rn, denoted by x(t, t0, φ)
or x(t), which satisfies (1.2) for t ^ ί0 and such that x(t) = φ{t) for 0 ^
t ^ t0. The solution x = 0 is called the zero solution.
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DEFINITION. The zero solution of (1.2) and hence of (1.1) is said to
be

1. stable if for every ε > 0 and every t0 ^ 0, there exists a δ =
δ(ε, t0) > 0 such that \φ(t)\ < δ on [0, t0] implies \x(t, t0, #)| < ε for t ^ t0.

2. uniformly stable if it is stable and the δ in the definition of
stability is independent of ί0.

3. asymptotically stable if it is stable and for each t0 ^ 0 there is
a /5 = β(t0) > 0 such that \φ(t)\ < β on [0, t0] implies α(ί, t0, φ)-»0 as
t->oo.

4. uniformly asymptotically stable if it is uniformly stable, the β
in the definition of asymptotic stability is independent of ί0, and for each
Ύ] > 0 there is a Γ = Γty) > 0 such that \φ(t)\ < β on [0, ί0] implies
\x(fi, to, £)| < η for t ^ to + T.

Kn nxn matrix is said to be stable if all of its characteristic roots
have negative real parts. Also, when a function is written without its
argument, then it is understood that the argument is t. If D is a
matrix or a vector, \D\ means the sum of the absolute values of its
elements.

Most stability results for the system (1.1) assume that A(t) = A =
constant. In this paper we allow A(t) to be a function of t which may
be unbounded for n = 1. For this reason we discuss the scalar and the
vector cases separately.

2. Scalar equations. Consider the scalar equation

(2.1) xf = L(t)x + Γ Cti, s)x(s)ds + 4 - 1 * H(t, s)x(s)ds
Jo at Jo

w h e r e L(t) is continuous for 0 ^ t < °o, and C^t, s) and H(t, s) a r e con-
t inuous for 0 ^ s ^ t < °o. H e r e L, C, i f and a? a r e all scalars.

Let

(2.2) P(t) = \* IC&, 8)\d8 ,
Jo

(2.3) J(ί) = Γ|fΓ(ί,β)|dβ,
Jo

and

(2.4) Φ(fi, s) = j " [(1 + JΓ(tO) IC^tt, 8)| + (|L(t0l + i W ) \H(u, s)\]du

assuming of course that Φ(t, s) exists for 0 ^ s ^ t <
Let
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(2.5) V(t, x(-)) = (x- Γ H(t, s)x(s)dsj + v[ Φ(t, s)x%s)ds ,

where v is an arbitrary constant. The functional V(t, «(•)) plays a
central role in the derivation of most of the stability results in this
section. Thus, if x(t) = (t, t0, <j>) is a solution of (2.1), then the derivative
V'uΛ)(t, *(•)) of V(t, »(•)) along x(t) satisfies

Vβ.i,(ί, x( )) = 2(* - Γ

+ v4\φ(
dt Jo

= 2L(t)x2 + 2x\' CM, s)x(s)ds - 2L(t)x [ H(t, s)x(s)ds
Jo Jo

- 2 Γ H(t, s)x(s)ds Γ CM, s)x(s)ds + v-f- Γ Φ(t, s)x\s)ds .
Jo Jo dt Jo

Thus,

n.i)«, *(•)) - 2L(ί)^2 - v A Γ Φ(t, s)\x\s)ds
dt Jo

^ 2 Γ IGCt, 8)|N|a;(8)|d8 + 2|L(ί)| Γ |£Γ(ί, β)|N|
Jo Jo

+ 2 Γ |JΪ(ίf 8)1 |a;(8)|d8 \* \CM,
Jo Jo

Using the Schwarz inequality, we may write

Γ \H(t, 8)| |«(8)|d
Jo

B t

JH(ί,

so that

t fί ΊV2Γ fί

J(t) \jH(t, s) |χ (8)efej [P(ί) Jo |Cx(ί,
\CM,

P(ί) (' \H{t, s)\x\s)ds + J(t) Γ \CM, s)\x\s)ds .
Jo Jo
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Thus,
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- »4r Γ
at Jo

Γ |Cx(ί,
Jo

+ P(ί) Γ
Jo

[P(t) Γ [(1
Jo

Γ |ff(ί, s)|(
Jo

Γ IdCί, s)|a;2(s)ίZs
Jo

x\s))ds

Using (2.4), we obtain

(2.6)
dt Jo

\L(t)\ J(t)]x> ~ ^(8)dg .
Jo dt

THEOREM 1. Let P, J, and Φ be defined by (2.2)-(2.4). // L(ί) < 0
and

( i)

and

(2.7)

(ii) J(t) \L(f)\ + P(t) + Φ(ί, t) ^ 2 |L(ί)| ,

^ r o solution of (2.1) is stable.

PROOF. Taking v = 1 in (2.5) and observing that

A Γ φ(«f s)^2(s)(ίs = Φ(ί, ί)^2 + Γ 3 Φ (^
dί Jo Jo dt

we obtain from (2.6) and (ii) that V\2Λ)(t, x( )) <>Q. Since V{t, &(•)) is
not positive definite, we still need to prove stability. Let t0 ^ 0 and
ε > 0 be given. We must find δ > 0 so that if φ: [0, t0] -> 5 is continu-
ous with |^(t)| < S, then |a(ί, t0, ^)| < ε for all t ^ tQ. As F^uίί, «(•)) ^ 0
for t ^ tQ, we have

^ V(t0, φ(.)) = (φ(t0) - \f°H(t0, s)φ(s)dsj + j%(ί 0 , 8)φ\έ)ds

+ J(to)Y + [°Φ(ί0, s)dsj
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On the other hand,

V(t, «(•)) ^ (»(t) - j] H(t, s)x(s)dsj ^ (\x(t)\ - £ |fl (ί,

Thus,

|a?(ί)| ^δN+\* \H(t, s)
Jo

As long as |x(ί)| < s, we have

ε sup J(ί) d=

for all t ^ t0 provided that δ < e(l — β)/N. Thus, the solution x = 0 is
stable.

THEOREM 2. Let P, J , and Φ be defined by (2.2)-(2.4) and suppose
there is a continuous function h: [0, <*>) —> [0, oo) suck that \H(t, s)\ ^
h(t — s) with h(u) —> 0 as u -» oo. If L(t) > 0 and there is a positive
constant a such that

(2.8) J(t) \L(t)\ + P(t) + Φ{t, t) + a ^ 2 |L(t)| ,

tAe^ tΛβ zero solution of (2.1) is unstable.

PROOF. Taking v = - 1 in (2.5) and using (2.6)-(2.8) we obtain
^2.1)(*, »(•)) ^ «^2 for all t ^ t0. Now, for any t0 ^ 0 and any <5 > 0 we

can find a continuous function φ: [0, to]-->.β with \φ(t)\ <δ and F(ί0, #(•))>()
so that if x(t) = x(t, t0, ^) is a solution of (2.1), then

(2.9) (χ(t) - [ H(t, s)x(s)dsj ^ F(t, »(•)) ̂  V(t0, φ{-

W e will show that sc(t) is unbounded. Suppose x(t) is bounded; then as

J(t) < 2 by (2.8), we have Γ H(t, s)x(s)ds bounded and hence, by (2.9),
Jo

x2(t) is in Z/[0, oo). By the Schwarz inequality we have

(Ύ \H(t, s)\\x(s)\ds)2 ̂  [ \H(t, s)\ds Γ \H(t, s)\x\s)ds ^ 2ΓΛ(ί - s)x\s)ds .
\Jo / Jo Jo Jo

The last integral is the convolution of an ^-function with a function
tending to zero. Thus, the integral tends to zero as t —> oo and hence

H(t, s)x(s)ds->0 as ί-> oo. Now, by (2.9), we have

a j

\

x(t) - Γ H(t, s)x(s)ds
Jo

11/2

so that for sufficiently large T it follows that \x(t)\ ̂  7 for some 7 > 0
and all t ^ T. This contradicts #2(t) being in L1. Thus, ίc(t) is unbounded
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and so the zero solution of (2.1) is unstable. This completes the proof.

Now, consider the scalar equation

(2.10) x' = A(t)x + [ C(t, s)x(s)ds ,
Jo

where A(t) and C(ί, s) are continuous for 0 ^ t < °o and 0 ^ s ^ t < °o,
respectively. Suppose that

C(t, s) = Cx(ί, β) + C2(ί, s) ,

where C<(ί, s), i = 1, 2, are continuous. Select a continuous function
if(£, s) such that

(2.11) (d/dt)H(t, s) = C2(t, s) .

For example, if I C2(u, s)du exists, then H(t, s) may be defined by

S oo

C2(u, s)du .

If we let

(2.12) L(t) = A(t) - H(t, t) ,

then (2.10) takes the form (2.1). Thus, Theorems 1 and 2 combined yield
the following necessary and sufficient condition for stability of (2.10).

THEOREM 3. Let P, J and Φ be defined by (2.2)-(2.4), where H and
L are defined by (2.11) and (2.12). Suppose there is a continuous func-
tion h: [0, oo) —• [0, oo) with \H(t, s)\ ^ h{t — s) and h(u) —• 0 as u -> °o,
and suppose there is a positive constant a such that

(i)

and

(ii) J(t)\L(t)\ + P(t) + Φ(t, t) + a£ 2|L(ί)| .

Then the zero solution of (2.10) is stable if and only if L(t) < 0.

Regarding (2.10) as a special case of (2.1), we obtain the following
corollaries.

COROLLARY 1. Suppose that for some a > 0,

Γ |C(ί, 8)|cfo + (~ \C(u, t)\du - 2|A(ί)| ^ -a .
JO Jί

the zero solution of (2.10) is stable if and only if A(t) < 0.

PROOF. Let C2(ί, s) Ξ= 0 in Theorem 3. Then d(t, s) = C(ί, β), J(ί) = 0,
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L(ί) = A(t), and (ii) of Theorem 3 reduces to P{t) + Φ(t, t) + a ^ 2|A(ί)|

S oo

\C(u, t)\du. If we choose h{t) = 0, then all the conditions

of Theorem 3 are satisfied and the proof is complete.

Letting H(t, s) and L(t) satisfy

(2.13) (d/dt)H(t, s) = C(t, s)

and

(2.14) L(ί) - A(t) - H(t, t) ,

we have:

COROLLARY 2. Let H and L satisfy (2.13)-(2.14). Suppose there is
a continuous function h: [0, °°) —• [0, °o) with \H(t, s)\ ̂  h(t — s) and
h(u) -+0 as u-^> °°, and suppose there is a positive constant a such that

(i) suv[\H(t,s)\ds<l
t^o Jo

and

(ii) \L{t)\ [ \H(t, 8)| dβ + ί" |L(tO| \H(u, t)\du + a£ 2|L(ί)| .
JO Jί

ίfee zero solution of (2.10) is stable if and only if L(t) < 0.

PROOF. Let d(ί, s) Ξ 0 in Theorem 3. Then C2(ί, s) = C(ί, s), P(ί) Ξ 0,
and (ii) of Theorem 3 reduces to

J(t) \L{t)\ + Φ(t, t) + a^2 | L ( ί ) | w i t h Φ(ί, ί ) - j " \L(u)\ \H(u, t)\ du .

Thus all the conditions of Theorem 3 are satisfed and this completes the
proof.

REMARK 1. Corollary 1 is [3, Theorem 3]. Also, Corollary 2 improves
[3, Theorem 4] by relaxing the boundedness condition on L(t). Now, if
L(ί) is bounded, say Q1 <̂  \L(t)\ ̂  Q2 for some positive constants Qx and
Q2, then, for a = 2Q2 - i?Qx with 0 < R < 2, Corollary 2 reduces to [3,
Theorem 4]. We give below two illustrative examples in which both
A{t) and L(t) are unbounded.

EXAMPLE 1. Consider the equation

x' = - ( ί + 2)α - Γ (s + l)(ί - s + l)-2x(s)ds .
Jo

As A(t) = - ( ί + 2 ) < 0, (*|C(ί. β)|Λ = ί + 2 - (ί + 2)(ί + I)" 1 - ln(ί + 1),
Jo
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S CO

\C(u, t)\du = t + 1. Then the conditions of Corollary 1 are satisfied
and hence the zero solution is stable. However, Corollary 2 does not
apply as H(t, s) = (s + l)(ί — s + 1) + g(s) does not satisfy condition (i)
for every choice of g.

EXAMPLE 2. Consider the equation

x' = [(2ί + l)~3/3 - t - l/10]a -\\t + 8 + l)-*x(s)ds .
Jo

As A(t) changes sign, Corollary 1 does not apply. However, by letting
H(t, s) = (ί + 8 + 1)"73, we have

L(ί) = A(ί) - H(t, t)= - t - 1/10 ,

\H(t, 8)|dβ = [(ί + I)" 2 - (2t + l)-2]/6 ^ 1/6 ,
0

and

S°° \L(u)\\H(u, t)\du = (30t + ll)(2ί + l)-2/60 .

Thus,

\L(t)\
Jo

=

=

\H(t,

(lOί-

(2ί +

ί/6 +

β)|dβ + 1

*• D[(ί +

1)-V6 +
11/60 <

u

l ) - 2 -

(lOί+

2|L(ί)l

\\H(M

(2ί +

l)(ί
• I ) " 2 ]

+ i)-

1/10 4
2/60:

- (30ί -

Sl/6 4

f 11)(2;

- (lOί H

t + l)-2/60

h l)/60

All conditions of Corollary 2 are satisfied and hence the zero solution is
stable.

REMARK 2. While Corollary 1 requires a sign condition on A(t),
Corollary 2 requires a strong integral condition on C(t, s). On the other
hand, both results can be considered as extreme cases of Theorem 3.
Consequently, Theorem 3 does not only extend and unify Theorems 3
and 4 of [3] but also yields a new stability result which is more refined
than either of these theorems. This is illustrated by the following
example.

EXAMPLE 3. Consider the equation

x' = [(sin ί)/2 - l/4]& + ( ' [ ( * + * + 1)"79 - (ί - 8 + I)" 3 sin s]x(s)ds ,
Jo

where neither Corollary 1 nor Corollary 2 apply. However, by letting
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Cβ, s) = (t + s + l)-2/9, Ct(t, s) = - ( ί - s + l)- s sin s, and H(t, s) =

S oo

C2(u, s)du, we have

H(t, s) = [(ί - s + I)"2 sin s]/2 ,

J
(ί, s)\ds ^[(t-s + l)~2ds ^ 1/2 ,

o J

Pit) = Γ ICxCί, 8)| dβ = [(ί + I)"1 - (2ί + l)"ι]/9
Jo

^ sup P(ί) = (3 - 2i/T)/9 < 1/45 ,
ί^O

L(ί) = A(t) - Jϊ(ί, ί) = -1/4 ,

and

Φ(ί, ί) ^ (3/2) ί Idίw, ί)|d^ + (49/180)

= (2ί + 1)"76 + (49/360) |sint| ^ 109/360 .

Thus, J(ί)|L(ί)| + Pit) + Φ(t, t) ^ 9/20 < 2\L(t)\ and hence, by Theorem 3,
the zero solution is stable.

We now apply Theorem 3 to the convolution equation

(2.15) x' = Ax + Γ C(t - s)x(s)ds
Jo

in which A is constant and C(ί) is continuous for 0 ^ t < °o. Let

C(ί) = Cχ(ΐ) + C2(ί) ,

where Ct(t), ί = 1, 2, are continuous for 0 ^ ί < oo.

S oo

C2(v)dv are ^-functions and let ff(t) =

- \ C2(v)dv. Then P(ί), J(ί), and L(ί)fdefined by (2.2), (2.3), and (2.12)

reduce to P(ί) = Γ IC^Idv, J(ί) = (Ί Γ C%(v)dv du, and L(ί) = A +

S oo Jo Jo I JU

C2(v)dv. As L(ί) is constant, then, without loss of generality, we may
o

replace P(t) and J(t) in Φ(t, t) and in (ii) of Theorem 3 by P(©o) and J(oo).
Thus, letting(2.16) P =

(2.17)

and

dt ,
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(2.18) L = A + [° C2(v)dv ,
Jo

we have Φ(t, t) = (1 + J)P + (\L\ + P)J so that conditions (i) and (ii) of
Theorem 3 reduce to P(J + 1) + (J - 1) \L\ < 0.

THEOREM 4. Let P, J and L be defined by (2.16)-(2.18).
( i ) If P(J +1) + (J - 1) \L\ < 0, then the zero solution of (2.15) is

stable if and only if L < 0.
(ii) //, in addition, C(t) is in L3'[0, °o), j = 1 or j = 2, then the

zero solution of (2.15) is asymptotically stable if and only if L < 0#

S oo

\C(v)\dv is in Lg[0, °o), o < q < 2, £ftew
the zero solution of (2.15) is uniformly asymptotically stable if and only
if L < 0.

PROOF. If we let h(t) = H(t), Part (i) follows from Theorem 3. To
prove Part (ii), we use (2.15) to obtain

\x'(t)\ ̂  \A\\x(t)\ + [ \C(t - s)\\x(s)\ds
Jo

^ |A| \x(t)\ + (l/2)[jJC(ί - s)\2ds

If L < 0, then the Lyapunov functional V(t, $(•)) defined by (2.5) satisfies,
as in the proof of Theorem 1, V'(t, a?( )) ^ -^ 2» α > 0. Thus, x2(ί) is
in Lx[0, oo). By the above inequality and the hypothesis in (ii), it follows
that x\t) is bounded. Since x\t) is in L1 and [x2(t)Y = 2x(t)x'(t) is bound-
ed, then &(ί)->0 as t—>©o. Thus x = 0 is asymptotically stable. To
prove (iii) we consider separately the two cases J = 0 and J =£ 0. Suppose
that J Φ 0. Then for any ί0 ^ 0 and any continuous function φ: [0, £0] ~̂  R
we write (2.15) as

x\t) = Aίκ(ί) + Γ°C(ί - sV(s)ds + Γ C(ί - s)a;(s)d
Jo J<0

If we let y(t) = a?(ί + t0), we obtain

y\t) = Ay(t) + Γ C(ί - s)t/(s)ds + Γ°C(t + ί0 - s)^(s)
Jo Jo

Let Z(t) be the nxn matrix (here, n = 1) satisfying

Z'(ί) - AZ(t) + [0^- s)Z{s)ds and Z(0) - / .
Jo

Then by the variation of parameters formula, we have

y{t) = Z(t)φ(tQ) + [ Z(t-u)[t0 C(u + to - s)φ(s)dsdu
Jo Jo
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Z(t - tt) \ C(v)φ(u + U - v)dvdu .
0 Ju

Let ίC=maxo s e S ί o | ί5(ί)|. Then

\y{t)\ ^ K\Z(t)\ + κ\( \Z(t - u)\ Γ \C(v)\dvdu .
JO Ju

Letting G(t) = \°° \C(v)\dv, we have

\y(t)\ ̂  K\Z(t)\ + K Γ |Z(ί - w)|G(w)d% = ίΓ|Z(t)| + κ[ G(t - u) \Z(u)\du
Jo Jo

= K\Z{t)\ + κ[ [G(jt - u)]q/2[G(t - u)γ-q/2\Z{u)\du .
Jo

By the Schwarz inequality, we have

G t Ct \ 1/2

o [G(t - ^)]9d^ j o [G(ί - u)γ-'\Z(u)\2du)
As α? = 0 is asymptotically stable, then Z(t) -> 0 as t -> oo. By the
hypothesis in (iii), G(ί) is an L9-function and furthermore G(ί) ~> 0 as
ί—> oo. On the other hand, |Z|2 is an ZΛ-function and the last integral
is the convolution of an ZZ-function with a function tending to zero.
Thus, the right hand side in the above inequality tends to zero and hence
x(t + tQ) —> 0 as t —> oo uniformly in t0. Consequently, the zero solution
is uniformly asymptotically stable.

If J = 0, then C2(ί) Ξ 0 and d(ί) = C(ί). The condition in (i) reduces
to P < \A\ and hence the conditions in (ii) and (iii) are satisfied. If we
assume A < 0 and consider the functional

W(t, &(•)) = \x\ + Γ Γ |C(w - s)\du\x(s)\ds ,
Jo Jί

then, for some a > 0,

^2.iβ,(ί, «(•)) ̂  A|a?| + \* \C(t - s)\\x(s)\ds + (°° \C(u - t)\du\x\
Jo Jt

- Γ |C(t - s)\\x(s)\ds = ΓA + j " |C(v)|dι;l|aj| = —«|a?| .

Thus, α?(ί) is in Lx[0, oo) and this is equivalent to uniform asymptotic
stability of the zero solution of (2.15); see [6].

COROLLARY 3. Suppose that

midvK \A\ .
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Then the zero solution of (2.15) is uniformly asymptotically stable if and
only if A < 0.

COROLLARY 4.

( i ) // 1 I C{v)dv dt < 1, then the zero solution of (2.15) is stable
JO I J t Poo

if and only if A + \ C(v)dv ^ 0.
Jo

(ii) //, in addition, C(t)eL3'[0, °o), j = 1 or j = 2, then the zero

S oo

C(v)dv < 0.
S o

ICO^Iefa; e L9[0, °o), o < q < 2, ίfcew ίΛe zero

solution of (2.15) is uniformly asymptotically stable if and only if A +

C(v)di; < 0.

J oo

C(v)dv = 0 implies stability
in (i). In fact, by letting Cx{t) = 0 in Theorem 4, we have C2(ί) = C(t),
P = 0, and (i) of Theorem 4 reduces to (J - 1)|L| < 0. If L Φ 0, the
result follows from Theorem 4. If L = 0, the result also follows from
[3, Theorem 5].

In [4] Grossman and Miller gave a characterization of the uniform
asymptotic stability of the zero solution of the convolution system

(2.19) x' = Ax + [ C(ί - s)x(s)ds
Jo

in terms of the location of the zeros of det(s — A — C(s)) in the complex
plane; C(s) denotes the Laplace transform of C(t).

THEOREM (Grossman-Miller). Suppose CeL^O, ») . Then the zero
solution of (2.19) is uniformly asymptotically stable if and only if
άet[sl - A - C(s)] Φ 0 for Re s ^ 0.

Letting F(s) = β - A- C(s), we have F(0) = - A - Γ C(t)dt. Thus,

in the case n = 1, if A + ί°° C(t)dt ^ 0, then F(0) ^ 0. Since ^(s) -^ oo
Jo

as s —> oo along the real axis, then ^(s) has zeros in the right halfplane.
By the above theorem, the zero solution of (2.19) is not uniformly

S oo

C(t)dt < 0 is a necessary
0

condition for uniform asymptotic stability. But, when C(t) ^ 0, it follows

from Corollary 3 that A + I C(v)dv < 0 is a sufficient condition for uni-
Jo

form asymptotic stability. Thus, when C(t) ^ 0, Grossman-Miller's result

S oo

C(v)dv < 0. This result was also
0

obtained by Brauer [2] under stronger conditions on C(ί). In general,
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such a result is much easier to apply than Grossman-Miller's result. In
fact, apart from kernels such as C(t) = ke~at, a > 0, the location of the
zeros of F(s) is not an easy task, especially when A > 0.

S CO

C{v)dv < 0
0

is no longer sufficient for uniform asymptotic stability. In this case, we
may apply Corollary 3 if A < 0 and |A| sufficiently large or Corollary 4
if A + \ C{v)dv < 0 and

if

dt < 1. The last condition is mild

A + 1 C(v)dv is small; see Example 2 of [3]. Here is another example.
Jo

EXAMPLE 4. Consider the equation

- s)x(s)ds ,

where

with b > 0.

As A +

C(ί) =
6 sin ί

0

if

if
0 ^ ί ^ 2π

= 0 and dt = 2ττ6, we conclude, by

Corollary 4, that the zero solution is stable if 6 < l/(2τr). However, for
b — a{a2 + 1)/(1 — e~2jrα), α > 0, the function χ(t) = exp(αί) is a solution
on [2ττ, oo). Since b -> l/(2ττ) as α->0, and 6 -> oo as α-+ oo, then the
zero solution is unstable for every 6 > l/(2ττ).

If S oo Γoo I Γoo

C(v)dv is large, then the condition I I C(v)dv

dt<l

may be severe. In this case, Theorem 3 provides us with a stability
criterion under mild donditions.

EXAMPLE 5. Consider the equation

x' = -x - (l/α) [ e-{t-8)/ax(s)ds , a > 0 .
Jo

Here, A + [°° G(v)dv = -2, J = a, and A + [" \C(v)\dv = 0. Thus,
Jo Jo

Corollary 3 does not apply and Corollary 4 yields uniform asymptotic
stability only if a < 1. However, the zero solution is uniformly
asymptotically stable for all large values of α. If we choose C2(t) =
-[exp(-2£)]/α and Cx(t) = [-exp(-£/α) + exp(-2£)]/α, then L = - 1 -
l/(2α), J = l/(4α), P = 1 - l/(2α), and P(J + 1) + (J - 1)|L| = -l/(2α).
By Theorem 3, the zero solution is uniformly asymptotically stable.



502 T. A. BURTON AND W. E. MAHFOUD

REMARK 3. Example 5 can easily be handled by Grossman-Miller's
result. The purpose here is to show that, by an appropriate decomposi-
tion of the kernel C(ί), Theorem 3 can yield a well refined criterion for
uniform asymptotic stability. This criterion will be quite useful when
the kernel is of the form C(ί) = — k(at + l)" p as Grossman-Miller's result
is very hard to apply. Below we give an effective decomposition of
kernels of the form C(ί) = (at - b)(ct + d)~p, where a ^ 0, b > 0, c > 0,
and d > 0. We ask that p > 3/2 if a = 0 and p > 5/2 if a Φ 0.

If a = 0, then C(ί) = -k(at + l)" p for some k > 0 and a > 0. In
this case, we let

(C(t) if 0 ^ ί ^ / 5 , /3^0
CM) = ,

l-7(αί + I)" 9 if ί

where Ύ = k(aβ + l)q~p and # > max(2, p). We choose /3 and q so that

J < 1, L = A+[° C2(v)dv < 0, and P(J + 1) + (J - 1) |L| < 0.
Jo

If a Φ 0, then C(ί) changes sign. We may then write C(ί) as

= kj(at + I)''1 - fc/(αί + l) p . 0 < k, < k2

and let d(ί) = fc^αί + I)2'"1 and Ca(ί) = -Λ2/(αί + l)p.

EXAMPLE 6. Consider the equation

xf = (l/5)α? - (1/3) \\t-8 + l)~2x(s)ds .
Jo

Here, C{t) = -(l/3)(ί + 1)~2. Thus, by choosing /3 = 6 and g = 4, we

have A+[° C2(v)dv = -32/315, P = 2/63, and J = (42 In 7 - 17)/126 < 1.
Jo

Thus, all conditions of Theorem 4 are satisfied and the zero solution is
uniformly asymptotically stable.

EXAMPLE 7. Consider the equation

x' = Ax + Γ [(3ί - 3s + I)"2 - τ(3ί - 3s + l)-3Ms)ds ,
Jo

0 < 7 < 18.
Letting d(ί) = (3ί + I)"2 and C2(ί) = -7(3ί + 1)~3, we have J = 7/18,

P = 1/3, and A + ( C2(^)dv = A - 7/6. If A < (l/3)[7/2 + (7 + 18)/(7 - 18)],
Jo

then all conditions of Theorem 4 are satisfied and the zero solution is
uniformly asymptotically stable. Observe that the right-hand side of the
above inequality is an upper bounded for A which is maximum for 7 =
18 - 6i/~2". Thus, for this choice of 7, we can take A = 1/2.

3. Vector equations. We consider the system
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(3.1) x' = Lx + Lx(t)x + Γ C^ί, s)x(s)ds + A Γ #(«, s)a;(s)ds
Jo cίί Jo

where L is a constant nxn matrix, Lx{t) is an nxn matrix continuous
for 0 ^ ί < oo, d(t, s) and H(t, s) are w x n matrices continuous for
0 ^ s <Lt < oo, and n ^ 1.

If i? is any positive definite nxn matrix, then there is a positive
constant k such that

(3.2) k \x\2 ^ xτBx for all α? e Rn .

Let D be an nxn symmetric matrix satisfying

(3.3) LTD + DL= -I.

For a detailed discussion of the existence of such a matrix D, see [1]
and [3].

Let

(3.4) P = sup Γ|Ci(£, s)\ds ,
<^o Jo

(3.5) J = sup Γ |#(f, s)\ds ,
t^o Jo

(3.6) m = s
t^o

and

(3.7) Φ(t, s) = i" [(1 + J) IC^u, 8)| + (|L| + P + m) |fΓ(wf s)\]du

assuming that Φ(t, s) exists for 0 5g s ^ ί < oo.

THEOREM 5. Lei ί), P, J, m and Φ be defined by (3.3)-(3.7) and
suppose that for some constant a,

(i) J<1
and

(ii) \D\[P + 2m + J(m + \L\) + Φ(t, ί)] ^ α < 1.
In addition, suppose there is a continuous function h:[0, °°)—>[0, oo)
such that \H(t, s)\ ̂  h(t — s) and h(u) —>0 as u—>°°. Then the zero
solution of (3.1) is stable if and only if D is positive definite.

PROOF. Let

V(jb, x(-)) = (x- \*H(t, s)x(s)dsjD(x - ^

+ \D\ [ Φ(t, s)\x(s)\2ds .
J
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The derivative of V(t, *(•)) along a solution a (ί) = x(t, t0, φ) of (3.1) is
given by

Lτ + xτLl(t) >(x - ^H(t, s)x(s)ds)

Using (3.3), we may write

2\D\ ILM \x Γ
Jo

|α;| \x(s)\ds

+ 2|D| Γ IC^ί, β)| |*(β)|dβ Γ |fΓ(ί, β)|
Jo Jo

+ \D\A-\tφ(t,s)\x(s)\*ds.
dt Jo

Applying the Schwarz inequality as in the proof of Theorem 1, we obtain

\D\ Γ |Cx(ί, s)|(|^|2 + \x(s)\*)ds
Jo

m) Γ
Jo

Γ
Jo

+ \x(s)\*)ds

2(ίs + \D\P Γ |ff(ί,
Jo

[(d/dt)Φ(t, s)]\x(s)\*ds .

(m

By (3.4)-(3.7), we have

n.«(«, *(•)) ̂  {-1

+ \D\ Γ [(1
Jo

+ \D\ Γ
Jo

^ ( - 1 + α)|ίc| 2= —Ύ|^|2 , Ύ> 0 .

Suppose that Z) is positive definite and let ε > 0 and t0 ^ 0 be given. We
must find δ > 0, <? < e, so that if ζ5: [0, t0] -> i?n is continuous with |^(t)| < δ,
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then \x(t, tQf φ)\ < e for all t ^ tQ. As V'{3Λ)(t, α?( )) ^ 0, then

V(t, «(.)) ^ F(ί0, ̂ (0) ^ l^lΓl^ωi + j*° |H(ίo, s)\\φ(s)\dsj

^ <5W2 for some constant N = N(t0) .

Using (3.2), we may write

V(t, x('))^(x- Γ H(t, s)x(s)dsjD(x - ΓH(t, s)x(s)ds)

^ r2(M - Γ |H(i, s)| |ίc(s)|(ίsY for some r > 0 .

Thus,

As long as \x(t)\ < ε, we have \x(t)\ ̂  (δiV/r) + εJ < e for all t ^ ί0

provided that δ < εr(l — J)/N. Thus, the zero solution of (3.1) is stable.
Now, suppose that x = 0 is stable but D is not positive definite.

Then there is an x0 Φ 0 such that XoDxQ ^ 0 . If k is any non-zero
constant, then x1 = kx0 Φ 0 and x\Όxx ^ 0. Let ε = 1 and t0 = 0. Since
α? = 0 is stable, then there is a δ > 0 and ^ ^ 0 such that |a?i| < δ and
|aj(t, 0, x,)\ < e for all t ^ 0. Let α(t) = x(t, 0, ajj. Then along the solu-
tion x(t), we have 7(0, xx) = αίΊλ^ ^ 0 and 7'(ΐ, &(-)) ^ ~7|ί»|2 so that
for some ίx > 0, F(ίx, ίc( )) < 0 and

J*l

where η = - 7(ί lf a?( )) > 0 and ί ^ ίx. Thus,

- -η - 7 Γ

(3.8) Γa(t) - Γ £Γ(ί, 8)«(β)d8TDΓα(ί) - Γ £Γ(ί,

^ V(t, «(•)) ^ -3? - 7 Γ |α;(s)|2ds .

Since |a?(t)| < 1 for all ί ^ 0 and

, β)l\χ(s)\dsj ^ \D\(i + jγ

then |ίc(ί)|2 is in I/[0, oo). By the Schwarz inequality,

\H(t, 8)| |α(s)|cZs]2 ^ J* |F(ί , 8)| (28
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The last integral tends to zero as it is the convolution of an U-ίunction

S t

\H(t, s)\ \x(s)\ds -»0 as t —> oo

and hence, by (3.8), xτ(t)Dx(t) ^ -η/2 for all sufficiently large t. This
implies that \x(t)\2 ^ μ for some μ > 0 and all sufficiently large t, a con-
tradiction to \x(t)\2 being L1. Thus, the assumption that D is not positive
definite is false and the proof is now complete.

Let us apply Theorem 5 to the system (1.1) assuming that A{t) =
A = constant and the matrix D satisfies

(3.9) ATD + DA= -I.

Taking Lx(fi = H(t, s) = 0 in Theorem 5, we obtain the following, which
is [3, Theorem 8]:

COROLLARY 5. Suppose that A(fi — A — constant, D satisfies (3.9),
and there is a constant a such that

\C(t, s)\ds + 1 \C(u, t)\du ^ a < 1 .
Jo Jί J

Then the zero solution of (1.1) is stable if and only if D is positive
definite.

S CO

A(v)dv exists and in

Lx[0, oo). Letting C,(t, s) = C(ί, s) - A(ί - s) and H(fi =

Equation (1.1) takes the form

S t Λ Ct

Ci(ί, s)x(s)ds + -— I
o at Jo

with

(3.10) P = sup Γ |C(ί, s) - A(ί - s)\ds
ί^o Jo

A(v)dv(3.11) J=

(3.12) m = sup|A(t)| ,
ί^O

and

(3.13) (°° [Aτ(t)D
Jo

dt ,

THEOREM 6. Let P, J, m α^cί D be defined by (3.10)-(3.13) and sup-
pose there is a constant a such that
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(3.14) | zψ[m + j(m + | j°° A{t)dt |

Then the zero solution of (1.1) is stable if and only if D is positive
definite.

PROOF. AS H(t, s) = H(t - s), then (" \H(u, t)\du = ί°° \H(v)\dv = J.

Also, L= -H(0) = [°° A(v)dv and (ii) of'Theorem 5 reduces to (3.14).

But, (3.14) implies that 2|Z?|j| (°° A(t)dt < 1 and (3.13) implies that

2|I>||(oβ A(ί)dί ^ n. Thus, J < (1/n) ̂  1 and hence (i) of Theorem 5 is

satisfied. Taking h(t) — H(t), we have all the conditions of Theorem 5
satisfied. This completes the proof.

In the special case where C(ί, s) = C(t — s), Equation (1.1) reduces to

(3.15) %' = A(t)x + Γ C(ί - s)x(s)ds
Jo

and P of (3.10) reduces to

(3.16) P=

THEOREM 7. Lei J, m, D and P be defined by (3.11)-(3.13) and (3.16)
respectively, and suppose that

(3.17) (TO + P)(J + 1) + J\\ A(t)dt <
I Jo

Then the zero solution of (3.15) is asymptotically stable if and only if
D is positive definite.

PROOF. AS C(ί, s) = C{t - s), then

\C(u, t) - A(u - ί)|d% = Γ \C(y) - A(v)|dv = P .
Jo

Thus, (3.17) implies (3.14) and the stability or instability of (3.15) follows
from Theorem 6. To show asymptotic stability, we observe from (3.17)
that m and P are bounded. Hence, by (3.16) and the assumption on
A(t), it follows that C(ί) is in L'[0, oo). As x = 0 is stable, then by
(3.15), x\t) is bounded. Using the functional V(t,x( )) in the proof of
Theorem 5, we see that along a solution x(t) = χ(t, tOf φ) of (3.15),
V(t, «(•)) ^ -δ|a;|2, δ > 0. Thus, |^(ί)|2 is in U[09 oo) and since (|a?(t)|2)' =
(xτ)'x + xτx' is bounded, then x{t) -> 0 as ί —• oo. This completes the
proof.
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COROLLARY 6. Let J, m and P be defined by (3.11), (3.12), and (3.16)
respectively', and suppose that n = 1 and

(3.18) (m + P)(J + 1) + (/ - 1) I j°° A(t)dt < 0 .

Then the zero solution of (3.15) is asymptotically stable if and only if

\~ A(t)dt < 0.
Jo

PROOF. For n = l we have by (3.13), 2|£>||Γ° A(t)dt = 1. Thus,

(3.17) reduces to (3.18) and this completes the proof.

EXAMPLE 6. Consider the equation

x' = ~(l/2)a2e-atx - (l/2)α2 Γ e-aU~8)x(s)ds , 0 < a < 1/3 .
Jo

Here, C(t) = A(t) = -a2e-at/2. Thus, P = 0, m = α2/2, J = 1/2, and

A(t)dt = -a/2 < 0. Hence

(m + P)(J + ! ) + (/ - 1) I Γ A(t)dt = α(3α - l)/4 < 0 ,

and, by Corollary 6, the zero solution is asymptotically stable.

Now, we present another interesting application of Theorem 5.
Consider the scalar equation

(3.19) x' = Ax + Γ [k(t - s) + C(ί, s)]x(s)ds
Jo

in which A is a constant, C(t, s) is continuous for 0 ^ s ^ t < °o, and
k: [0, oo)—>(— oo, oo) is differentiate with k' in L^O, oo).

We differentiate (3.19) to obtain

x" = Ax' + k(0)x + [* k\t - s)x{s)ds + -^- Γ C(ί, s)ίc(s)cίs .
Jo αί Jo

Let αf = y. Thus,

y' = k(0)x + Ay + [* k\t - s)x(s)ds + -4- Γ C(ί, s)#(s)cZs .
Jo cίί Jo

Then we have

r* // ft
z = Lz + i d ( ί — s)z(s)ds + — I H(t, s)z(s)ds ,

Jo dt Jo

where
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and

0 1
(3.20) L = ,

\Jfe(0) A,
Thus,

(3.21) P= \~\k'(v)\dv
Jo

and

(3.22) J = sup('|C(t,8)|d8.
Jo

If A < 0 and fc(0) < 0, then L is a stable matrix and there is a symmetric
positive definite matrix D such that

(3.23) LTD + DL= -I.

THEOREM 8. Lei L, P, J and D be defined by (3.20)-(3.23). If
A < 0, fc(0) < 0, αwcϊ ίfcere is a constant a such that

(i) J<1

and

(ii) |D|[P(J + 1) + P + |L| J + (P + |L|) j j |C(u, t)|dw] ^ α < 1 ,

then the zero solution of (3.19) is stable.

PROOF. If we observe that the condition \H(t, s)\ ̂  h{t — s) is needed
only to prove the converse of Theorem 5, then Theorem 8 is an immediate
consequence of Theorem 5.

REMARK 4. There is no integrability condition on the kernel in
(3.19). Thus, if we take k(t) = k = constant and C(ί, s) = C(t - s), then
(3.19) reduces to

(3.24) x' = Ax + [ [k + Cit - s
Jo

In this case P = 0,

(3.25) J = [°\C(v)\dv ,
Jo

and Theorem 8 reduces to the following:
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COROLLARY 7. Let L, D and J be defined by (3.20), (3.23), and (3.25)
respectively. If A < 0, k < 0, and

2\L\\D\J<1,

then the zero solution of (3.24) is stable.

EXAMPLE 7. Consider the equation

a?' = —a? + Γ [-a + β(t- s + l)~2]x{s)ds ,
Jo

where a and β are positive constants.
As

a simple calculation yields

/α b
D=\c i

with a = (a + 1 + l/α)/2, 6 = l/(2α) and c = (1 + l/α)/2. Thus, by
Corollary 7, the zero solution is stable if β(a2 + 4α + 8 + 8/α) < 1.

The following result is an extension of Theorem 4 to the convolution
system

(3.26) x' = Ax + Γ C(t - s)x(s)ds ,
Jo

where A is an nxn constant matrix and C(t) is an nxn matrix con-
tinuous for 0 ̂  t < oo.

Let

C(ί) -

w h e r e Ct(ί)» i = 1, 2, a r e c o n t i n u o u s for 0 ^ ί < oo. W e a s s u m e t h a t

S oo

C2(v)dv are ̂ -functions and let

(3.27) P =

(3.28) dt

and

(3.29) L = A+\"Ct(v)dv .
Jo
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Let D be an nxn symmetric matrix satisfying

(3.30) UD + DL= -I.

THEOREM 9. Let P, J, L and D be defined by (3.27)-(3.30).
( i ) If P(J + 1) + J\L\ < 1/(2 \D\), then the zero solution of (3.26)

is stable if and only if D is positive definite.
(ii) If, in addition, C(t) is in Lj[0, oo), j = 1 or j = 2, then the

solution of (3.26) is asymptotically stable if and only if D is positive
definite.

S oo

\C(v)\dv is in L9[Q, oo), o < q < 2,
then the zero solution of (3.26) is uniformly asymptotically stable if and
only if D is positive definite.

PROOF. Let H(t) = -\°° C2(v)dv. Then (3.26) may be written as

%' = Lx + [ d(ί - s)x(s)ds + -A- ΓiJ(ί — s)x(s)ds .
Jo at Jo

This is (3.1) with Lx(ί) = 0, Ctf, s) = d(ί - s) and 2ϊ(ί, s) = H(t - s).
Thus m = 0, Jj |Cx(tt, ί)|dw = Jo°° [C^dv = P, and j°° |£Γ( ,̂ ί)|dw =
(°° |jff(v)|dι; = /. Hence, (ii) of Theorem 5 reduces to P(J*+ 1) + J\L\ <
1/(2 \D\). This condition with (3.30) implies that J < 1. If we let h(t) =
H(t), then Part (i) of the theorem follows from Theorem 5. Parts (ii)
and (iii) are proved exactly in the same way as the corresponding parts
of Theorem 4.

REFERENCES

[ 1 ] E. A. BARBASHIN, The construction of Lyapunov functions, Differential Equation 4
(1968), 1097-1112. (This is the translation of DifferentsiaΓnye Uravneniya 4 (1968),
2127-2158).

[ 2 ] F. BRAUER, Asymptotic stability of a class of integrodifferential equations, J. Differential
Equations 28 (1978), 180-188.

[3] T. A. BURTON AND W. E. MAHFOUD, Stability criteria for Volterra equations, Trans.
Amer. Math. Soc. 279 (1983), 143-174.

[4] S.I. GROSSMAN AND R. K. MILLER, Nonlinear Volterra integrodifferential systems with
ZΛkernels, J. Differential Equations 13 (1973), 551-566.

[ 5 ] G. S. JORDAN, Asymptotic stability of a class of integrodifferential systems, J. Differen-
tial Equations 31 (1979), 359-365.

[ 6 ] R. K. MILLER, Asymptotic stability properties of linear Volterra integrodifferential
equations, J. Differential Equations 10 (1971), 485-506.

DEPARTMENT OF MATHEMATICS AND DEPARTMENT OF MATHEMATICS

SOUTHERN ILLINOIS UNIVERSITY MURRAY STATE UNIVERSITY

CARBONDALE, ILLINOIS 62901 MURRAY, KENTUCKY 42071






