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Abstract. The injective envelope I(4) of a C*-algebra A is a unique
minimal injective C*-algebra containing A. As a dynamical system version
of the injective envelope of a C*-algebra we show that for a C*-dynamical
system (4, G, @) with G discrete there is a unique maximal C*-dynamical
system (B, G, B) “containing” (4, G, a) so that AX«GCBXs,GCI(AXarG),
where A X «rG is the reduced C*-crossed product of A by G. As applications
we investigate the relationship between the original action « on A and its
unique extension I(a) to I(A). In particular, a *-automorphism « of A is
quasi-inner in the sense of Kishimoto if and only if I(e) is inner.

1. Introduction. In [10], [12], [13] the author introduced the notion of
the imjective envelope I(A) (resp. regular monotone completion A) of a (not
necessarily unital) C*-algebra A. (Note that a few authors call this A the
regular completion of A and use the confusing notation A instead of A.
But A was originally used by Wright [33] to denote the regular g-comple-
tion of A, which is properly contained in A in general.) The algebra I(A)
is a unique minimal injective C*-algebra containing A' as a C*-subalgebra
with the same unit, where A' denotes the C*-algebra obtained by adjoining
a unit to A if A is non-unital and A =+ {0}, and denotes A itself otherwise.
On the other hand, 4 is a unique monotone complete C*-algebra such that 4
is the monotone closure of A and each x € A4,, (the self-adjoint part of A) is
the supremum in A4,, of the set {a € Al,: a <}, where a C*-algebra B is called
monotone complete if each bounded increasing net in B,, has a supremum
in B,,, and the monotone closure of a C*-subalgebra C of B is the smallest
C*-subalgebra of B containing C which is closed under the formation of
suprema in B,, of bounded increasing nets. Moreover, A is realized as
the monotone closure of A in I(A) and we have canonically Ac AcI(A).

The algebra I(A) or A, being monotone complete AW*, is more
tractable than the original C*-algebra A and is small enough to inherit
some properties of A. For example, I(A) or A is an AW*-factor if and
only if A is prime [12, 7.1, 6.3], and if A is unital and simple, then any
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C*-subalgebra of I(A) containing A is also simple [15, 1.2(i)]. Moreover,
each *-automorphism « of A extends uniquely to a *-automorphism & of
A (resp. I(a) of I(A)) with I(a)|A = @ and so we have canonically Aut Ac
Aut AcAut I(A) as subgroups, where Aut A denotes the group of all
*-automorphisms of A.

Throughout the paper (unless stated otherwise) G denotes a fixed
discrete group, and for C*-dynamical systems (4, G, a) and (B, G, B8) the
notation (A4, G, a)C(B, G, B8) means that A is a G-invariant C*-subalgebra
of B and B|A = a. For a C*-dynamical system (4, G, a), take the injec-
tive envelope I(A x,,G) of the reduced C*-crossed product A x,G of A
by G and consider the C*-subalgebras of I(A X,..G) which are of the form
Bx,G with (4, G, a)c(B, G, 8). The main result of this paper (Theorem
3.4) states that there is a unique maximal C*-dynamical system (I (4), G,
I (o)) among such C*-dynamical systems (B, G, 8). By putting @, = (a,)~
and I(a),=I(a,), t € G, we obtain C*-dynamical systems (4, G, &) c(I(4), G,
I(e)). We have (I(4), G, I(a)) C(I;(A), G, I;(c)) and it follows that A x ,,GC
I(A) X 10,GCI(A X ,,3) and AX ;GC(AX,,G)~. This fact is crucial in later
discussions.

This paper is arranged as follows. In Section 2, I,(A) is constructed
first as the “injective envelope” of A in the category of operator systems
on which G acts as unital complete order isomorphisms and unital com-
pletely positive G-module homomorphisms, and then in Section 3 the
maximality of (I;(A4), G, I,(a)) in the above sense is established. In Section
7 we show that for a *-automorphism « of A its extension I(a) to I(4) is
inner if and only if « is quasi-inner in the sense of Kishimoto. In Section
8 some of the conditions in [26, 10.4] which characterize the *-automor-
phism with Connes spectrum equal to the full circle group are shown to
hold also in the nonseparable case. Finally in Section 10 a criterion is
given for the primeness of reduced C*-crossed products.

The reader is referred to [2] for the general theory of A W*-algebras
and to [27] for that of automorphisms and crossed products of C*-algebras.

2. G-injective envelopes. The statements and proofs of the results
in this section parallel closely those in [11], if one replaces operator
systems and completely positive maps there by G-modules and G-morphisms
defined below, and so most of the proofs are omitted.

The terminologies in [5], [11] will be used without further explana-
tion. For an operator system V we denote the injective envelope of V'
by I(V) and the group of all unital complete order isomorphisms of V
onto itself by AutV. For the same reason for the case of C*-algebras
we have AutVcAut I(V) as a subgroup.



INJECTIVE ENVELOPES OF C*-DYNAMICAL SYSTEMS 465

An operator system V is called a G-module if it is made into a
left G-module by a group homomorphism Gatr (x+—t-z)cAutV. A
G-morphism is a unital completely positive G-module homomorphism
between G-modules. A G-morphism is called a G-isomorphism (resp. G-
monomorphism) if it is a complete order isomorphism (resp. complete
order injection). A G-submodule V of a G-module W is a G-module con-
tained in W such that the inclusion map V=W is a G-monomorphism.
We consider the category of all G-modules and all G-morphisms and define
the injectivity of its object as follows. A G-module V is G-injective if
for any G-monomorphism £: W — Z and any G-morphism ¢: W —V there is
a G-morphism ¢: Z —»V with ok = ¢. A G-extension of a G-module V is
a pair (W, k) of a G-module W and a G-monomorphism £:V —W. The
G-extension (W, k) is G-injective if W is G-injective, and it is G-essential
(resp. G-rigid) if for any G-morphism ¢:W — Z, ¢ is a G-monomorphism
whenever gok is (resp. for any G-morphism ¢: W — W, gok = £ implies ¢ =
id,, the identity map on W).

DEFINITION 2.1. The G-injective emvelope of a G-module is a G-
extension which is both G-injective and G-essential.

For an operator system VC B(H) with H a Hilbert space the space
I*(G, V) of all bounded functions of G into V is viewed as an operator
system on I*(G) @ H, and it becomes a G-module by the action (¢-x)(s) =
x(t™'s), t, s G, x€l=(G, V).

LEMMA 2.2. With the above motations if V is an injective operator
system, then the G-module 1°(G, V) is G-injective.

PrOOF. Let k:W— Z (resp. ¢:W —[1~(G, V)) be a G-monomorphism
(resp. G-morphism) and define a completely positive map +:W —V by
P(x) = ¢(x)(e) (e is the identity element of G). As V is injective, there is
a completely positive map : Z —V with <ok = 4. Then the map ¢: Z —
1=(G, V), d@)(t) = ¢t *-x), te G, xcZ, is a G-morphism with dox = ¢.

REMARK 2.3. For any G-module VC B(H) the map j5:V — I~(G, B(H)),
j@)@) =t -z, ze V, teG, is a G-monomorphism with j(V)ciI=(G, V)c
I*(G, B(H)), and [*(G, B(H)) is injective as an operator system (resp. G-
injective as a G-module). This shows that each G-module has a G-injective
G-extension. Moreover if V is G-injective, then there is an idempotent
G-morphism of [*(G, B(H)) onto j(V) and so V is injective. Hence V is
G-injective if and only if V is injective and there is a G-morphism
¢: 1°(G, V) =V with ¢oj = id,.

We proceed to the proof of the unique existence of the G-injective
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envelope. Let Vc WcC B(H) be two fixed G-modules with W G-injective
and containing V as a G-submodule. A V-projection on W is an idempotent
G-morphism ¢: W — W with ¢|V = id,. A V-seminorm on W is a seminorm
p on W such that p = ||¢(-)|| for some G-morphism ¢: W — W with ¢|V =
id,. Define a partial ordering < (resp. <) on the set of all V-projections
(resp. V-seminorms) on W by ¢ <+ (resp. p < q) if and only if goy =
Yo = ¢ (resp. px) < q(x) for all xe W). :

LEMMA 2.4 (cf. [11, 3.4-8.7]). (i) Any decreasing met {p} of V-
seminorms on W has a lower bound. Hence Zorn's lemma itmplies the
existence of a minimal V-seminorm on W.

(ii) There is a minimal V-projection on W.

(ili) A G-injective G-extension of V is G-essential if and only if it
18 G-rigid.

ProOF. We sketch only the proof of (i). It is almost the same as
the one in [11, 3.4]; but the crucial point here is to show that the
completely positive map defining the lower bound is a G-module homo-
morphism. By 2.3 we may regard W as a G-submodule of [*(G, B(H)).
If 6. W —->WcI~(G, B(H)) corresponds to p, then a subnet of {¢,} con-
verges in the point-g-weak topology to a map ¢,: W — I~(G, B(H)), which
is a G-morphism since the action of G on (G, B(H)) is o-weakly con-
tinuous. Hence, composing ¢, with an idempotent G-morphism of I~(G,
B(H)) onto W, we obtain a G-morphism which gives the lower bound.

This lemma shows as in [11] that for a minimal V-projection ¢ on W
the pair (Im g, k) is the G-injective envelope of V, where Img¢ = ¢(W)
and k£ is the inclusion map, and that Img¢ is an injective C*-algebra
equipped with the multiplication o given by xoy = ¢(xy), where W, being
injective, is viewed as a C*-algebra and xy is the product in W. Hence
we obtain the following result.

THEOREM 2.5 (cf. [11, 4.1]). Every G-module V has a G-injective
envelope, written (Ig(V), k), which 1s unique in the semse that for any
G-injective envelope (Z,\) of V there is a G-tsomorphism . Io(V)— Z
With ok = \.

Henceforth we shall identify V with its image £(V) and abbreviate
V), k) to I(V).

REMARK 2.6. As in [11], I;(V) is characterized as a unique maximal
G-essential (resp. minimal G-injective) G-extension of V.

Let V be a G-module and I(V) the injective envelope of V as an
operator system. As AutVcAutI(V), we may regard I(V) together
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with the inclusion map V<= I(V) as a G-extension of V. Comparing the
essentiality as operator systems and the G-essentiality, we see that I(V)
is a G-essential G-extension of V, hence that VCI(V)cIi(V) as G-sub-
modules. Moreover it follows easily that I(V) is unique among the G-
submodules of I,(V) which become the injective envelope of V.

3. Injective envelopes of C*-dynamical systems. Let (4, G, a) be
a C*-dynamical system. In this section, to simplify the notation we
assume that A is unital and denote again by a the action I a) of G on
the G-injective envelope I;(A) of A induced by a. But the results below
(except for the second part of 3.5 (i)) hold also in the non-unital case.
We call (I;(A), G, a) the injective envelope of (4, G, ). We have

4, G, )c(4, G, )c(I(4), G, )c44), G, @) .

Following [14] we construct the monotone complete crossed products
associated with (4, G, a). Consider I (A) as a C*-subalgebra, containing
the unit, of some B(H), represent each element xe€ B(H ® IG)) by a
matrix z = [x,,] (r, s€ G) over B(H), and define operator systems I;(A) R
B(IX(G@)), M(I4(A), G) on H® I*(G) and maps 7,, » as follows:

I(A) ® BI*(G)) = {x e BH Q ING)): z,,€ I (A) for all r,seG},
M(I4(A), G) = {we I(A) ® BI(®): a:(x,,) = Ty, for all r,seG},
.t Io(A) = M(I(A), G), m.(x) = [0,,a,~1(x)], x€I(A),
N G — M(I,(A), G), \(Et) = [0,-1,,1], t€G .
Similarly, define A ® B(XG)), M(A4, G) and so on as subspaces of B(H®
I*(G)). Then =, is a unital *-monomorphism with M(¢) 7, (2)NE)* = w(a,(x)),

teG,xe I (A); I,(A) ® B(I¥G)) is a monotone complete C*-algebra with
the multiplication

w0y = [0S0, ], 7, Ue L) ® BEG),

where O-3, 2, ,y,, denotes the order limit in I;(A) of the finite sums (and
need not coincide with the strong limit s->3, 2, ,¥,, in B(H)); and M(I,(4),
G) [resp. M(A, G), M(I(A), @] is its monotone closed C*-subalgebra [13],
[14]. Moreover, the reduced C*-crossed product A x,.G is identified with
the C*-subalgebra of M(I,(A), G) generated by z.(A)\MG).

Regard I,(A) ® B(X®)) as a G-module by the action t-x = M(E)an(t)*,
te@, reI(A) ® BI¥G)). Then 7 (A)CAX,..GCM(A, Gyc M(I,A), G) are
G-submodules of I(A) ® B(XG®)), and 7, is a G-monomorphism.

LEMMA 3.1. Keep the above motation.
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(i) The embedding A = I,(A) is normal, that is, x, / x in A implies
x;, /" x in I,(A), where x,/ x in a C*-algebra means that {x;} ts an
wnereasing met with supremum x.

(ii) The map 7. I(A) — M(I(A), G) is normal.

(iii) For another C*-dynamical system (B, G, B) and a G-morphism
é: A — B (that s, a unital completely positive map with ¢(a,(x)) = B:((x)),
teG,xec A the map

$: A® BIG) » B BIAG) »_
@) =[], == [z,.]€ A® BI(G)

is a wunital completely positive map with S(M(A, G)CM(B,G) and
#(AX.,G)CTBx4,G. Moreover, ¢ is a G-morphism, and it is a G-
monomorphism if and only if ¢ is.

PrOOF. (i) The embedding A = I(A) ER 1=(G, I(A4)) (see 2.3) is normal
by [12, 3.1] and the fact that j(I(4)) is clearly monotone closed in [*(G,
I(A)). Moreover, as I°(G, I(A)) is G-injective, we may take I (A) so that
J(I(A))c I, (A)cl=(G, I(A)), from which the conclusion follows.

By definition, (ii) and (iii) are clear.

G-injectivity is characterized as follows. A similar result is known
[1] when A is W*, but G is not necessarily discrete.

LEMMA 3.2. For a C*-dynamical system (A, G, @) the G-module A is
G-injective if and only if M(A, G) is injective.

ProoF. This follows from [14, 3.1(ii)] and 2.3.

LEMMA 3.3. Let E be a unital C*-algebra which is also a G-module
and let C and D be G-invariant C*-subalgebras, containing the unit, of
E with CcDcCE. Suppose that D is a G-essential G-extension of C and
that there are a faithful idempotent G-morphism o of E onto D (that
18, p(x) = 0 with v E* implies x = 0) and a G-morphism ¢: D — E with
6|C =idg. Then ¢ = id,.

Proor. The map pog¢: D — D is a G-morphism with po¢|C = id,. By
2.6 we have CcDcCI,(C) and pog extends to a G-morphism (0e¢)": I,(C) —
I(C) with (004)"|C = ids. Then (00¢)”™ = id; ) and so Pog|D = id,. As
¢ is unital and completely positive, for x€ D we have 4(x*)s(x) < o(x*x)
and similarly for p. Hence z*x = pog(x*)0og(x) < p(¢(x*)p(x)) < Pod(x*x) =
x*r and o(p(x*)¢(x)) = 2*x. As o is a D-module homomorphism [5, 3.1]
and is faithful, for x € D we have
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o((p(x) — 2)*(p(x) — 2)) = P(g(x*)(x)) — Pog(a@*)r — x*Pog(x) + Pop(a*1)
=g*r — x*r — ¢*x + x*x =0
and ¢(x) = z.

THEOREM 3.4. For C*-dynamical systems (4, G, a) and (B, G, B) with
(A4, G, a)c(B, G, B) we have AX,GCBX;,GCI(AX,G) if and only if
(B, G, B (Iz(A), G, a). In particular, AX.,GCAX,GCI(A)X,,GC
I (A)X ,,GCI(AX,..G).

PrROOF. Recall that the injective envelope of an operator system is
characterized as a maximal essential extension and similarly for the G-
injective envelope (see 2.6).

Necessity: It suffices to show that if Bx,G is an essential extension
of Ax,G, then B is a G-essential G-extension of A, that is, a G-
morphism ¢: B— C with C a G-module is a G-monomorphism whenever
#| A is. Lemma 3.1(iii) shows the existence of a completely positive map
#|Bx 4,G: BX 5,G — Cx G, where ¢(x) = t-x,teG,zeC. If ¢|A is a G-
monomorphism, then ¢|Ax,.G is a complete order injection and so is
#|Bx ;G by hypothesis. Hence ¢ is a G-monomorphism.

Sufficiency: It suffices to show that Ax,GcCI;(A)X.,GCI(AX,G).
As AX.,GCI(A)X..GCM(I(A), G) with M(I,(A), G) injective, we may
take I(A % ,G) so that Ax ,,GCI(A X ..G)CM(I;(A), G). The identity map
on AX,,G extends to a completely positive map : I;(4) X .,G — I(A X ,,G).
The map 0: M(I4(A), G) — n.(Is(A)), o) = ma(,0), ® = [2,,] € M(Is(A), G) is
a faithful idempotent G-morphism onto =w,(I;(A)). Applying 3.3 to the
G-modules 7,(A)Cr, (I(A)CM(I;(A), G) and the maps ¢ = |7, (I4(A)) and
0, we see that ¢ is the identity map on =#,(I;(A)), hence that + is a
w.(Iz(A))-module homomorphism [5, 3.1]. As Iy (4)X.G is generated by
w.(I(A)) and NG), + fixes I;(A)X,.G elementwise and so I (A)Xx,.GC
I(AX,.G).

COROLLARY 3.56. (i) Let (A, G, a) and (B, G,B) be C*-dynamial
systems with (A, G, a)C(B, G, B)C(I«(4), G, a). Then AX,.G 18 prime if
and only if BX .G is prime, and the simplicity of AX,..G implies that
Of Bx ﬂrG'

(ii) For a C*-dynamical system (4, G, a), m(A)c A X ,,G is the mono-
tone closure of m(A) in (AX .G~ and so AX,,GC(AX.G)".

PrOOF. (i) As A%, GCBX,;,GCI(AX,G), the assertions follow from
[12, 6.3, 7.1] and [15, 1.2(i)].

(i) As in the proof of 3.4 we may assume that A x,.,GCI;(A4A) X ,..GC
IAX.,G)CcMUz(A), G). As m, I;(A) > M(I;(A), G) is normal, so is
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7T, Io(A) — I(A X ,,G); hence 7, (A) is the monotone closure of m,(A4) in
I(AXMG)._ As (A% ,,G3)” is the monotone closure of A4X%,.G in I(AX,.G),
we have AX,GC(AX,G).

COROLLARY 3.6. Let (A, G,a) be a C*-dynamical system with G
compact abelian. Then the regular monotone completion (AX,.G)~ of the
C*-crossed product A X ,G is realized as a monotone closed C*-subalgebra
of the monotone complete C*-algebra A @ B(LAG)).

ProOF. Note that as G and its dual G are amenable, we may suppress
the letter “r” in AXx,,G and so on. Takai’s duality theorem [27, 7.9.3]
asserts that (Ax.G)x:G=ARCILHG)). As G is discrete, Corollary 3.5(ii)
shows that (4 x,G)” is realized as the monotone closure of 73(4AX.G) =
Ax,G in (AXx,Hx:6) = (AR CUIXG)) = AR BLX®) (15, 3.1(1)],
[13, 2.5, 6.7]).

REMARK 3.7. Corollary 3.6 is false for a general locally compact
group G. Indeed, consider the C*-dynamical system (C, Z, ¢), where C is
the 1-dimensional C*-algebra with the trivial action ¢. Then Z=T,
Cx.Z = C(T), and C(T)", being identified with the non-W*, A W*-algebra
of bounded Borel functions on T modulo the sets of first category [8], is
not a monotone closed C*-subalgebra (W *-subalgebra) of the W*-algebra
C ® B((Z)) = B(XZ)).

REMARK 3.8. Here we discuss the difference between injectivity and
G-injectivity. Let (4, G, a) be a C*-dynamical system. If G is not amenable,
then we have I;(A) = I(A) in general (that is, I(4) is injective, but not
G-injective). Indeed, for the C*-dynamical system (C, G, ¢) with the trivial
action ¢ the G-module I*(G) = I*(G, C) is G-injective, and I,(C) = C = I(C)
if and only if there is a G-morphism ¢:[*(G) — C with ¢oj = id; by 2.3,
that is, G is amenable. On the other hand, we have I (A) = I(A) if I(4)
is W* and G is amenable (see 3.2).

4. A non-injective maximal regular extension. A reqular extension
of a unital C*-algebra A [12, 1.1] is a unital C*-algebra B containing A
as a C*-subalgebra with the same unit so that each element x € B,, is the
supremum of {a € A,.: a < x}. There is a unique maximal regular exten-
sion, written A, of A, we have ACAcAcI(4), and A is a monotone
complete C*-algebra [12, 3.1]. In this section we give an example of a
C*-algebra A for which A is non-injective, that is, A = I(4). This 4
serves also as an example of a non-injective, non- W*, A W*-factor of type
III, whose existence was first shown in [13, 4.9].

The next lemma follows immediately from [12, 2.6] and [23, p. 83,
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Lemma 2].

LEMMA 4.1. Let B be a unital C*-algebra and A its C*-subalgebra
containing the unit. Then B is a regular extension of A if and only
of 7*(K) & S(4) for any weak* closed convexr subset K & S(B), where j*
18 the transpose of the inclusion map j: A= B and S(C), with C a C*-
algebra, denotes the state space of C.

LEMMA 4.2. Let (4, G, @) be a C*-dynamical system with A wunital
and G discrete. If C1 & A, then AX,.G is not a regular extension of
CH(G@), where CHG) = Cx ,GCAX,,G with ¢ = a|CL.

PrOOF. We show that (x) there is a weak™ closed convex subset K
of S(4x,,G) such that j*| K: K — S(C}(G)) is one-to-one and onto, where
7 is as in 4.1. If Ax,.G were a regular extension of C}(G), then
Lemma 4.1 would imply that K = S(4x,,G3), hence that Ax,.G = CXG),
a contradiction [27, 7.7.9].

To see (x) let P(G, A*) be the set of all functions @: G — A* such
that ||@(e)|| =1 and 3;; O(t;i't;)(a, 1 (afa;)) = 0 for any finite ¢,€ G and
a;€ A. By [35, 2.19, 4.24(i)] the map f+— @, O,(t)(a) = f(m(a)\(E)), t€ G,
ac A gives an affine homeomorphism of S(4 x,G) with the weak* topology
onto P(G, A*) with the point-weak* topology, and it maps S(4Xx,.G)
(regarded as a subset of S(A X ,G)) onto the subset P.(G, A*) of P(G, A*)
consisting of elements @ such that &, — @ in the point-weak* topology
for some net {@;} in P(G, A*) consisting of elements with finite support.
Similarly, P(G) = P(G, C*) and P,G) = P,(G, C*) are defined and satisfy
the above property. Hence we may and shall identify S(4x,&) and
P(G, A*), and so on. Let @ be a state extension to P(G, A*) = S(4A % ,G)
of the function Got+—1€C in P(G) = S(C*(@)). Then @()(1) = 1 for all
teG and K = {4+0: 4 € P(G)}CP,(G, A*) [35, 4.24(ii)] satisfies (x).

ProrosITION 4.8. If G is a countable, non-amenable, ICC (=infinite
conjugacy class) group, then the maximal regular extension CY(G)~ of the
reduced group C*-algebra CHG) is a mnon-injective, non-W*, o-finite,
monotone complete AW*-factor of type IIL.

PrROOF. Theorem 3.4 says that C*(G)cC I (C)x ,GCI(C¥G). As G is
non-amenable, Remark 3.8 and Lemma 4.2 show that I(C}(G)) is not a
regular extension of C*(@), that is, C}(G)™ is not injective. As G is countable
and ICC and so C*(G) generates a W*-factor in its regular representation,
C¥(@) is a separable prime C*-algebra. As C}G)”cC¥G)), [12, 6.3, 7.1]
and the proof of [12, 3.8] show that C}(G)~ is a monotone complete A W*-
factor with a faithful state, hence that it is g-finite. As C¥G)™ = CHG)”
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is non-W* [84, Theorem N] and is monotone closed in C}G)™, G}G)™ is
also non-W*. Hence by [32, Corollary], C¥(G)~ is of type III.

5. G-invariant hereditary C*-subalgebras. We say that a projection
of the regular monotone completion A of a C*-algebra A is open [138] if
it is a supremum in A,, of some positive increasing net in A and that a
closed two-sided ideal J of A is regular [15] if J** = J, where S* = {x e
A:xy = yx =0 for all ye S} for SCA and S*t = (St)t. Let (4, G, a) be
a C*-dynamical system. As in [27] we write 5#*(A) for the set of all
non-zero G-invariant hereditary C*-subalgebras of A and 5#5(A) for the
subset of S#*(A) consisting of B such that the closed two-sided ideal of
A generated by B is essential. For Be 5#*(A) denote by R(B) the smal-
lest regular ideal of A containing B and by 2*(A) the set of all non-zero
G-invariant regular ideals of A. We say that an element in I,(4) is G-
invariant if it is invariant under the action I (a).

The following is a dynamical system version of [13, 6.5].

PROPOSITION 5.1. Let (A, G, @) be a C*-dynamical system.

(i) For Be s#7%A) consider the C*-dynamical system (B, G, a|B).
Then the supremum py in A of each positive increasing approximate
unit for B is a G-invariant open projection of A such that B = pzAp,
and Iy (B) = ppl;(A)ps.

(ii) The correspondence B py given by (i) maps S#*(A) onto the
set of all mom-zero G-imvariant open projections of A. By restricting
this correspondence to HB*(A) we obtain a bijection of RB*(A) onto the
set of all mon-zero G-invariant central projections of A.

(iii) For Be 5#%(A) the central support C(ps) of ps in A coincides
with Dpm. Hence B is in S47(A) if and only if C(pg) = 1.

For the proof of the second equality in (i) we need the next lemma.

LEMMA 5.2. Let D be a monotone complete C*-algebra, C its monotone
closed C*-subalgebra containing the unit, and p a projection of C such
that the central support C(p) of » im C is 1. Let ¢: pDp — pDp be a
completely positive map with ¢|pCp = id,e,. Then for each family {v}
of mom-zero partial isometries of C such that

(*) pe{v}, vwf=p forall 1 and O-3, v¥v, =1,
the map ¢: D — D given by
(*x) $(x) = O-iz v¥S(VXvy)v;

¥

18 a unique completely positive map such that
(xx%) $|pDp =¢ and $|C = id,,
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where 0-3, denotes the order limit of the finite sums.

Proor orF LEMMA 5.2. As C(p) =1, a standard argument using the
comparability theorem [2, p. 80, Corollary] shows the existence of the
family {v;} satisfying (x). If x€ D and an index j are fixed and ¢ ranges
over a finite subset of indices, then by the Schwarz inequality,

Zi‘, d(vavi)*s(vevk) < ¢<v,~x*<z v;"v&xv}") < dwir*aw;) < x|

hence by [13, 1.5], O-3; v}¢(vwv}) = x;, say, exists. A similar argument
shows the existence of O-3;x;v;, that is, the right hand side of (xx).
Thus ¢ exists and is clearly completely positive. If 4:D— D is a com-
pletely positive map satisfying (#*x), then r is a C-module homomorphism
[6, 8.1] and so for each xe D and each family {v;} satisfying (x),

P (x) = (O-Zi] vi*'vi)alr (ac)<0-zj} v}‘v,-) = O-izj v¥y(vavi)v;
= 0-3] vig(vavi)v; .
1,9
Hence the uniqueness of é follows.

PrROOF OF PROPOSITION 5.1. By [13, 6.5] there is a unique open pro-
jection p, of A such that B = pyAps. To see the G-invariance of p,
note that each a,, t€ G, maps a positive increasing approximate unit for
B to another such. Conversely if p is a G-invariant open projection of
A, then ANpAp is a G-invariant hereditary C*-subalgebra of A with
(ANpAp)~ = pAp [15, 1.1(v)]. Moreover by [15, 1.3(iii)] an ideal J of A
is regular if and only if J = ANhA for some central projection 2 of A.
These show (i), except for the second equality, and (ii).

(iii) As pps is a central projection of A majorizing p, we have
C(pp) < Ppi. Moreover, as ANC(ps)A is a regular ideal containing B,
it follows that R(B)C ANC(ps)A, hence that pgs < C(ps). As a closed
two-sided ideal J of A is essential if and only if J* = {0}, Be 2#*(4) is in

#(A) if and only if R(B) = A.

We show the equality I,(B) = p;I,(A)ps in (1). As AcAcIy(A), we
have I, (A) = I,(A) and Iy B) = I,(B) = I,(pzAps). Hence it suffices to
show that if A is monotone complete and p is a G-invariant projection of
A, then I (pAp) = pIy(A)p. The central support C(p) of p in A, being
the supremum of upu* with w unitaries in A, is also G-invariant and it
is immediate to see that I,(C(p)A) = C(p)I;(A) (modify the argument in
[12, 6.2]). Thus we may also assume that C(p) =1. As pApCpl(A)p
and pl;(A)p, being a direct summand of I,(A4), is G-injective, we need
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only show that if ¢: pIz(A)p — pI(A)p is a G-morphism with ¢|pAp =
id,,,, then ¢ is the identity of pI;(A)p. We apply Lemma 5.1 to I (A),
A, p and ¢. Take a family {v;} of non-zero partial isometries in A satis-
fying () and define @: I,(4) — I,(A) by (++x). Then #|A =id, and § is a
G-morphism. Indeed, for each t€G the family {a,(v,)} also satisfies (*)
and so the uniqueness of ¢ shows that for ze I(A),

$(@) = 0-3 a,(v)p(a(viza,(v))av)) -
As ¢ is a G-morphism, it follows that
$(Is(a)(x)) = O-% a,(v¥) (@) ($(vaxvi))a,(v,)
= G(a)t(o'%g vio(wav})v;) = L)) .

As I,(A) is a G-rigid G-extension of 4, ¢ is the identity on I;(A) and ¢ =
é|pI(A)p is the identity on pI,(4)p.

6. The center of the G-injective envelope. In what follows, the
center of a C*-algebra A is denoted by Z(4), and for a C*-dynamical
system (A4, G, ) and a G-invariant C*-subalgebra B of A the fixed point
subalgebra of B under the action a|B is denoted by B¢. Now we study
the algebra Z(I,(A))°. In the next lemmas (A4, G, «) denotes a fixed C*-
dynamical system.

As stated in the proof of 5.1, the following lemma follows from a
slight modification of the proof of [12, 6.2].

LEMMA 6.1. For a G-invariant central projection h of I (A), con-
sider the C*-dynamical system (hA, G, I,(a)|hA). Then the G-injective
envelope I (hA) of hA is hIy,(A) together with the imclusion map hA <
hI (A).

LEMMA 6.2. We have Z(I(A)) CZ(14(A)).

Proor. The map j: I(A) — (G, I(4)) (see 2.3) is both a G-mono-
morphism and a unital *-monomorphism with (G, I(A)) G-injective.
Hence there is a minimal j(I(A4))-projection ¢ on [=(G, I(4)) so that I,(4) =
I(I(A)) is identified with Im¢. Noting the multiplication in Im ¢ and
the fact that 7 maps Z(I(A)) into the center of I~(G, I(A)), we see that
J(Z(I(A))) C Z(1,(A)).

LEMMA 6.3 (cf. [10, 4.3], [12, 6.3]). We have Z(I(A))° = Z(I4(A))f° =
(A'NI,(A))°, where A'NI,(A) denotes the relative commutant of A in
I,(A).

ProOF. The inclusions Z(I(A))’CZ(I,(A))*c(A'NI,(A))° are clear.
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Let u be a unitary in (A'NI(A))°. Then Ad u: I,(A) — I,(A), (Ad u)(x) =
uru*, x € I;(A) is a G-morphism with Adu|A = id,, and so Adw is the
identity on I (A) and u € Z(I;(A)). Hence Z(I;(A))¢ = (A’ N I;(A))°.

Let h be a projection in Z(I;(A))?. Then as in the proof of [12, 6.3]
there is a unique minimal projection h, in Z(I(A)) majorizing k. By the
uniqueness h, is also G-invariant, and noting 6.1, the same argument as
in the proof of [12, 6.3] shows that h = h, € Z(I(A))?. Hence Z(I(A))¢ =
Z(I,(A))°.

PROPOSITION 6.4. Let (A, G, ) and (B, G, B) be two C*-dynamical
systems with (A, G, a)C(B, G, B)C(I(4), G, I(a)).

(i) We have Z(A)C Z(B); if in addition ACB, then Z(B)® = Z(I,(A))°.
In particular, Z(A)° = Z(I(A))° = Z(I,(A))°.

(ii) A is G-prime if and only if B is G-prime.

(iii) If A 1s unital and G-simple, then B is G-simple.

ProOF. (i) The first inclusion follows from [10, 4.3] and 6.2. If
ACB, then Z(I(A)) = Z(A)c Z(B) [12, 6.3] and by 6.3, Z(I,(A))* = Z(I(A))°C
Z(B)!CZ(1,(4))°.

(ii) If J and K are mutually orthogonal non-zero G-invariant closed
two-sided ideals of A4, then J** and K** are also such regular ideals of
A. Hence A is G-prime if and only if A has no nontrivial G-invariant
regular ideal, that is, if and only if Z(I4(A4))* = C1 by (i) and 5.1. More-
over, note that I;(4) = I4(B).

(iii) Modify the proof of [15, 1.2] slightly.

7. Quasi-inner *-automorphisms. In this section we investigate the
relationship between a *-automorphism « of a C*-algebra A and its unique
extensions @ and I(a) to A and I(A), respectively.

LEmMMA 7.1. Let (A, G, @) be a C*-dynamical system with G a locally
compact abelian group. Let I(AX,G) be the injective envelope of the C*-
crossed product Ax,G, I(@) the unique extension to I(A X ,G) of the dual
action & of G on Ax,G (see [27, 7.8.3]), and Z the center of I(AX,G).
Denote by I'(+) and I'y(+) the Connes and Borchers spectra, respectively
(see [27, 8.8]).

(i) Let Be 24%(A). Then I'(a|B) = Ker(I(@)|Z), and a o € G belongs
to I's(a|B) if and only if for any neighborhood 2 of o there are a non-zero
projection h of Z and a o,€ R such that the supremum \ {I(&).(h): fe@}
in the projection lattice of I(AX,G) equals 1 and hI(@),(h) # 0.

(ii) If B, B,e 5#*(A) with R(B,) = R(B,) (in particular, 1f B, is
the closed two-sided ideal of A gemerated by B,), then I'(a|B, = I'(a|B,)
and I's(a|B)) = I's(a|B,).
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(iii) If in addition G is discrete (hence I'(I(a)), I'(@) and so on make
sense), then I'l(a)) = I'(@) = I'(a) and I's(l(a)) = I'g(@) = 'z(0).

ProorF. (i) As Be 577 (A), the C*-crossed product Bx, ;G = C, say,
regarded as a C*-subalgebra of Ax,G, is an a-invariant hereditary C*-
subalgebra which generates an essential closed two-sided ideal of A4 x,G.
By 5.1 we have I(C) = p.J(AX.&)p, for an I(@)-invariant projection p,
of I(Ax,G) with central support C(p;) = 1. The center of I(C) equals
psZ and the map x— psx gives a *-isomorphism of Z onto p.Z [2, p. 37,
Corollary 2]. '

As (a|B)" = @|C, it follows from [25, 5.4] or [27, 8.11.8] that for
g€ G we have g ¢ I'(a|B) if and only if J-&,(J) = {0} for some non-zero
closed two-sided ideal J of C. As J-&,(J) = {0} implies J**-&,(J*+) = {0},
the latter condition is equivalent to J-&,(J) = {0} for some non-zero
regular ideal J of C, which in turn is equivalent to A -I(&@),(h) = 0 for
some non-zero projection i of p,Z [15]. From the first paragraph this
is the case if and only if h-I(@),(h) = 0 for some non-zero projection h
of Z. Thus o¢I'(a|B) if and only if I(@),|Z = id,.

To see the second assertion we use the following characterization of
the Borchers spectrum by Kishimoto [21, 1.1] (with n=1). A ge@
belongs to I'y(a|B) if and only if for each neighborhood 2 of ¢ there are
a non-zero closed two-sided ideal J of C which generates an @&-invariant
essential closed ideal and a o,€2 such that J-&,(J) # {0}. Then the
argument proceeds exactly as for I'(a|B). We may take the above J as
a regular ideal, and if I(J) = hp,I(C) with A a projection of Z, then the
condition that J generates an &-invariant essential ideal of C is equivalent
to V {I(@.(h):teG} =1, and so on.

(ii) By (i) we have I'(a|B) = I'(@) and I's(a|A) = I's(a) for Be

3 (A). As B, e S#8(R(B,)), © = 1, 2, the conclusion follows.

(iii) By 3.4 we have AX ,GCI(A)X ,GCI(AX,G). As I(a)"|AX.G =
& and I(@) is a unique extension of &, it follows that I(I(a)") = I(&) and
I(I(A)x ,G) = I(Ax,G). Hence (iii) follows from (i) with B = A.

REMARK 7.2. From (ii) we see that in [26, 3.3, 3.4] the separability
of the C*-dynamical system can be dropped, that is, for any C*-dynamical
system (A4, G, ) with G a locally compact abelian group and any Be
2#*(A) we have I'(a)CI'(a| B)CI's(a| B)CI's(@) and I' () = (U{I(e|I): I €
S

THEOREM 7.3. Let (4, G, a) be a C*-dynamical system with G discrete
abelian and let (A, G, @) and (I(4), G, I(a)) be the C*-dynamical systems
canonically associated with it. For te G the following conditions are
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Yequivalent:

(i) tels(a)*;

(ii) There are a Be 577(A) and a G-invariant *-derivation o of
B such that a,| B = exp d;

(iii) @, = Adwu for some unitary uw in AS;

(iv) I(a), = Adu for some unitary u in I(A)°.

PrOOF. As G is compact, the implication (i) = (ii) follows from [26,
4.3].

(ii) = (iii). By 5.1 we have B = pzAp, for a G-invariant projection
ps of A with C(ps) = 1. The *-derivation 6 extends uniquely to an inner
*.derivation & = ad(ih), h € B,,, of B [16, Theorem 2.1]. If we take the
minimal generator for 6 as h (see [16, Lemma 3.1]), then the G-
invariance of 6 and the uniqueness of the minimal generator show that
is G-invariant. Hence &,|pzAp; = (a,|B)” = (exp )™ = exp 6 = Ad(exp(ih))
and exp(ih) is a G-invariant unitary in pzAps;. As C(pz) =1, it follows
from [13, 5.2] that @, = Adu for a unique unitary % in A such that
Psu = upy = exp(th). As a, = &,od, o &,—1 = Ad(a,(u)) and pa,(u) =
a@,(u)ps = exp(th) for all se G, the uniqueness of u shows that a@,(u) = u
for all seG.

It is clear that (iii) = (iv).

(iv)= (i). It follows from [27, 8.9.7] and 7.1 that (iv)=te
I's(I(a)* = I's(a)*.

Following Kishimoto [21], [22] we say that a *-automorphism « of a
C*-algebra A is quasi-inmer if I's(a) = {1}cT = Z and it is properly
outer if I's(a|J) # {1} for each non-zero a-invariant closed two-sided ideal
J of A, where I';(a) denotes the Borchers spectrum of the action Z»s
ni—a"cAut A. (Note that the word “freely acting” originally used in
[21] was renamed “properly outer” in [22].) As in the W*-case there is
for any *-automorphism « of A the largest a-invariant closed two-sided
ideal J (resp. K) such that «|J (resp. a|K) is quasi-inner (resp. properly
outer), JNK = {0} and J + K is essential in A ([22], see also 7.5 below).
Note that the proper outerness in the above sense implies the proper
outerness in the sense of Elliott [8] and they are equivalent when A is
separable [26, 6.6].

THEOREM 7.4. For a *-automorphism a of a C*-algebra A the follow-
ing conditions are equivalent:

(i) « is quasi-inner;

(ii) There are a Be 5#57(A) and a *-derivation 6 of B such that
a|B = exp J;
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(iii) @ ts inner;

(iv) I(a) is immer.

Proor. Apply 7.8 to the action Z>n+— a"e€ Aut 4, and note that in
this situation the G-invariance of 6 in 7.3 (or u) follows automatically.

REMARK 7.5. For a *-automorphism « of a C*-algebra A let p(a) be
the largest I(a)-invariant projection in I(A) such that I(a)|p(a)I(A)p()
is inner. Then p(a) is a central projection in A ([13, 5.1], [12, 6.3]) and
ANpla)A (resp. AN — pla))A) is the largest closed two-sided ideal of
A such that a| AN p(a)A is quasi-inner (resp. a|AN (1 — p(a))A is properly
outer). Indeed, if «|J is quasi-inner for some a-invariant closed two-sided
ideal J of A, then I(a)|p;I(A) = I(a]J) is inner and so p, < p(a), JCTAN
pla)A. Moreover I(a|ANp(a)A) = I(a)| p(a)I(A), and similarly for AN
(1 — p(a)A.

COROLLARY 7.6. For a C*-algebra A the subset g-Inn A of Aut A
constisting of all quasi-innmer *-automorphisms of A is a normal subgroup
of Aut A; indeed, we have

¢-Inn A = Aut ANInn A = Aut AnInn I(4),
where as before we regard Aut AcAut AcAut I(A) and Inn A denotes

the inner *-automorphism group of A. Hence if we write Out A =
Aut A/g-Inn A, then we have

Out AcOut AcOut I(4) .

COROLLARY 7.7. If A is a monotone complete C*-algebra and u is a
unitary in I(A) such that wAu* = A, then uc A.

ProOOF. Put a = Adu|AcAut A. As I(ad) = Adu is inner, a = @ is
also inner, that is, Ad#|A = a = Adv|A for some unitary v in A. Hence
v*u belongs to the relative commutant of A in I(A), which equals Z(A)
([10, 4.3], [12, 6.3]), and u = vv*u € A.

COROLLARY 7.8 (Saito and Wright [28]). If A is a simple C*-algebra
and a is a *-automorphism A, then I(c) or @ is inmer if and only if
18 immer in the multiplier algebra M(A).

PrROOF. As A is simple, a is inner in M(A) if and only if I'j(a) =
I'(@) = {1} ([24] or [27, 8.9.10]). Hence 7.4 applies.

REMARK. See [29] for a slightly more general result.

COROLLARY 7.9. If A is a C*-algebra which contains an essential
GCR-ideal and a is a *-automorphism of A, then the following conditions
are equivalent:
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(i) «a is quasi-inner;

(i) a(J) = J for each regular ideal J of A;

(iil) al|J 1s universally weakly inmer for some essential a-invariant
closed two-sided tdeal J of A.

PROOF. (i) = (ii). By [15, 2.3], A contains an essential GCR-ideal if
and only if A is a type I AW*-algebra. (In this case I(4) = A.) By
[19], @ is inner if and only if it fixes the center of A elementwise. By
[15] the latter condition is equivalent to (ii).

(i) = (iii). By 7.4, (i) implies that «|B = expo for some Be 5#5(A)
and some *-derivation 6 of B. The closed two-sided ideal J of A generated
by B is a-invariant and essential. If A** is the enveloping von Neumann
algebra of A, then B** = pA**p for some projection p of A** and J** =
C(p)A**, where C(p) is the central support of p in A**. If a** is the
bitranspose of a, then that a**|pA**p = (a| B)** = exp 6** is inner implies
that so is (a|J)** = a**|C(p)A**, that is, (iii).

(iii) = (1). If J is as in (iii), then clearly a(K) = K for each regular
ideal K of J and so a|J is quasi-inner by the equivalence (i) = (ii). But
as J = R(J)” = 4 by 5.1 and (a|J)” = &, this implies (i).

8. A decomposition of *-automorphisms. Let « be a *-automorphism
of a C*-algebra A and denote, as before, by I'(a) and I'z(a) the Connes
and Borchers spectra of the action Zsnr— a”e€ Aut A, respectively.
Kishimoto showed in [21, 3.1] that there are the largest a-invariant
closed two-sided ideals I, k € NU{cc}, of A such that I'(a|I,) = I's(c|I,) =
T., where T, is the subgroup of T of order k if ke N and T. = T, and
that the sequence {I,} is mutually orthogonal and generates an essential
ideal of A. If p,(a) is the @-invariant central projection of A such that
I, = p.(@)A and I(I,) = p,(@)I(A), then we have I, = ANp,(a)A, since I, is
regular by the maximality and 7.1(ii), and {p,(«)} is an orthogonal sequence
with supremum 1. Note also that p,(«) is the projection p(a) in 7.5.

We characterize the sequence {p,(a)} by the action on A or on I(A)
of the extended *-automorphisms & or I(a). For similar results in the
W*-case see [3], [4]. (Note that as Connes points out in [7], the result
in [8] requires a slight modification.)

PROPOSITION 8.1. For a *-automorphism « of a C*-algebra A let p,(c)
be as above. Then p, ) is the largest projection p in the fixed point
algebra A® (resp. I(A)') such that (+) @|qAq = Adwu for some nec Z,
some non-zero subprojection q of p in A® and some unitary u in qA%q
iof and only if n=0 (modk) (when k =, if and only if n = 0) (resp. the
same property with @ and A replaced by I(a) and I(A). If pJa) =0
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for some k, then the property is vacuously satisfied.

PrROOF. We prove only the statement for &, since the case of I(a)
is treated similarly. By 7.8, (x) is equivalent to the condition I'y(@|qAq)* =
kZ (={0} if k = o) for each non-zero subprojection ¢ of p in A% If ¢is
a non-zero subprojection of p,(a) in A% then

T, = I'(a|I,) = I'@| p(@)A)CT(@|qAq) I '5(@&| qAq) CT'5(@&| pi(@)A)
=I'sall) =T,

by 7.1 and 7.2 and so I'y(@|qAq)* = T+ = kZ. Hence p,(«) satisfies (x).
If a projection p in A* satisfies (x) and p-p;(@) # 0, then as p-p;(@) < p
and p-p;(a) < pi(a), we have I'y(@|p-p;i(a)Ap-pi(@)* = kZ = jZ and j =
k. Thus p-pj(a) =0 for each j #k and p <1 — >} pi(@) = pi().

In some equivalent conditions in [26, 10.4] for aperiodic *-automorphisms
we can drop the separability of the C*-algebra.

PropoSITION 8.2. For a *-automorphism a of a C*-algebra A the
following conditions are equivalent:

(i) I'la) =T.

(ii) There is no Be 57 *(A) such that a"|B = expd for some n # 0
and some a-invariant *-derivation o of B.

(iii) For each n € N the *-automorphism o™ is properly outer.

(iv) For each ¢ > 0, each ne N and each Be 5#*(A) there is an
x € BY with ||z| = 1 such that |xa*@x)| <e for 1 <k < n.

ProOF. By 7.2 we have I'(a) = N{[3(a|B): Be 5#*(A)}. Hence (i)
is equivalent to I'y(e|B) = T for each Be 5#%A), which in turn is equi-
valent to I'z(a|B)* = {0} for each Be 5#*(A). For if I'y(w|B) # T, then
I'z(a|B) is a finite union of finite subgroups of T [27, 8.8.5] and so
I'z(a| B)* +#+ {0}. Moreover, the reverse implication is clear. Thus 7.3
shows that (i) = (ii).

(iili)=({). If I'(a) # T, then ke 'y(a|B)* for some Be 5#*A) and
k #+ 0 and so a* is not properly outer by 7.3.

(i) = (iii). If a™ is not properly outer for some %€ N, then the
central projection p in A inducing the inner part of @ is non-zero and
@ |pA = Adu for some unitary u in pA. The maximality of p and the
fact that @"|@(p)A = Ad @(u) and similarly for @' show that a(p) = p.
Now we use the argument in [26, 10.1]. It follows readily that u, a(u),

-+, @™ (u) are unitaries in pA implementing @"|pA and that they com-
mute mutually. If we put v = ua(u) --- & “(u), then a*|pAd = Adwv
and a(v) =v. By 7.8, n*ely@|pA)* = I's(a|ANpA)*: and ANpA is a
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non-zero a-invariant regular ideal of A. Hence I'(a) # T.
(iii) = (iv). This follows from the fact that Kishimoto’s result [21,

2.1] shows that [26, 7.1] holds also in the nonseparable case (see the
proof of [26, 10.4]).

COROLLARY 8.3. For a *-automorphism « of a C*-algebra A let I.
be as above. Then I. is the largest a-invariant hereditary C*-subalgebra
B of A such that a"|B is properly outer for each m e N.

9. Tensor products and *-automorphisms. In this section we show
two results on *-automorphisms of minimal C*-tensor products. For C*-
algebras A and B we denote by A Q B the minimal C*-tensor product of
A and B.

The following is an analogue of the result of Kallman [18] and that

of Wassermann [31] in the setting of quasi-inner and properly outer *-
automorphisms.

THEOREM 9.1. Let A and B be C*-algebras and let a @ 3 be the *-
automorphism of A Q B induced by *-automorphisms «a of A and B of
B. Let pla), p(B) and pla ® B) be the projections of I(A), I[(B) and
I(A® B) inducing the inner parts of I(a), I(B) and I(a @ B) respectively
(see 7.5).

(1) We have pla® B) = p(a) @ p(B) n I(A) ® I(B)cI(AQ B).

(ii) a @ B 1is quasi-inmer if and only if both a and B are quasi-
inner.

(i) a @ B is properly outer if and only if either o or B 1is pro-
perly outer.

Proor. As AQ BCI(A)® I(B)CI(A® B) [13, 6.7 and (e ® B) | A ®
B=a®pB=1Ia)®IB)|ARB, wehave I(a ® B) = I(I(a) ® I(8)). This
and 7.4 show that replacing «, 8, A and B by I(a), I(B), I(A) and I(B),
we may assume that A and B are injective C*-algebras and so «|p(a)A
and B|p(B)B are inner. Thena® B =2, (@ ® B)|(»: ® ¢;)(A ® B), where
p, = pl@), p,=1— p(@), ¢, =p(B) and ¢.=1—p(B), and (a® B |(® &K
¢)(A ® B) is inner. If the sufficiency of (iii) were proved, then all the
remaining assertions would follow. Hence it suffices to show that if a
is properly outer, then so is @« ® B. The required property is equivalent
to Ila ® B) being freely acting (see [18, 13]). Let xzcI(AQ® B) and
2y = Ila ® B)(y)x for all yeI(AQ B). Regard B as a C*-subalgebra
of some B(K) with K a Hilbert space and regard A ® BC A ® B(K) (see
Section 3 or [13]). As A® B(K) is injective [13, 8.10], we may take
the injective envelope I(A® B) so that A ® BcI(A® B)cA & B(K).
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If L AQ B(K)— A is the left slice map defined for g € B(K), [13], then
for each ac A4,

Lyx)a = Ly(x(a ® 1)) = L(l(a ® B)(a @ 1)z) = a(a)L,(x) ,
and L,(x) = 0 for each g; hence x = 0 as desired. (Note that the product
of two elements in I(A ® B) need not coincide with that as elements of
A® B(K), but so do they if one of the elements belongs to A ® B, since
I(A® B) is obtained as the image of a minimal (A & B)-projection on
AR B(K), which is an (A ® B)-module homomorphism. Hence the above
calculation is justified.)

The following is an analogue of the result of Sakai [30].

THEOREM 9.2. Let A be a C*-algebra and let o be the flip auto-
morphism of the two-fold tensor product AR A, that is, the *-automorphism
defined by cx Q@ Y) =y R x,x,yc A. Then o is quasi-inner if and only
if the injective envelope I(A) is a type I W*-factor. This is the case if
and only if C(HYCACB(H) for some Hilbert space H [15].

PROOF. As in 9.1 we may assume that A is injective.

Sufficiency: Suppose that A = B(H) for some Hilbert space H. Then
CHRYH) =CH)QCH)CARACBH X H) and so [(AR A)=BH Q H)
[15, 8.1]. If we define the unitary U in BEHQ H) by UER 1) =171 &,
& neH, then AdU/A® A = ¢ and I(¢) = AdU; hence ¢ is quasi-inner.

Necessity: Suppose that ¢ is quasi-inner, that is, I(o) € Aut I(A QR A)
is inner. As in [30, Lemma 2] we see that A is an AW*-factor. Indeed,
let Z be the center of A. Then Z® Z is contained in the center of
I(AR A) by [10, 4.83]; hence for each z, y € Z we have zQy=I1(0)(xRYy) =
ox®Yy) = yQ@2x. But this shows that Z is 1-dimensional. Next we show
that A contains a minimal projection. Let {m;, H} be a family of in-
equivalent irreducible *-representations of A such that the direct sum
{r, H} of the family is faithful. We identify A with its image 7(A) and
regard ACB(H), AQACAX BH)cB(HR® H). If e, is the projection
onto H,, then we have

A” =@eBH)e, and A = P Ce; (C*-sum [2, p. 52]),

where the double prime (resp. prime) denotes the double commutant (resp.
commutant). As in 9.1 we take the injective envelope I(A&® A) so
that AQ ACI(A® A)cA X B(H). By assumption there is a unitary
u in I(A ® A) such that I(o)(x) = (Ad u)@) = ucxou™® for xeI(A R 4),
where o denotes the multiplication in I(A ® A). Note that for the
reason stated in 9.1 we have woy = a2y if = or y belongs to A ® A.
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Hence, with U as above and x€ A Q A we have UxUu = g(x)ou = uox =
ur and so Uuc(ARQA) =A'RA =@,;Cle;De;). Hence u =UD
Nij(e; @ e;), A; €C. We have \;; # 0 for some 14, j. Let ¢, and &, be unit
vectors in ¢,H and e;H respectively and let ge B(H), be defined by g =
(+&, &). Computation shows that L,(u) = \;(-, ) ,€ A. Hence A con-
tains the minimal projection (-, {,){, and it is a type I W*-factor.

REMARK. By a similar technique we can show that for any C*-algebra
A the projection p(o) of I(A Q@ A) inducing the inner part of I(¢) is given
by »(o) = >, h, ® h;, where h, runs through all central projections A in
I(A) such that RI(A) is a type I W*-factor, hence that ¢ is properly outer
if and only if I(A) has no non-zero atomic part.

10. Prime reduced C*-crossed products. In [20, 3.1] Kishimoto gave
a criterion for the simplicity of the reduced C*-crossed product of a C*-
algebra by a discrete (not necessarily abelian) *-automorphism group (see
also [9], [21, 2.83]). Now we present a primeness version of his result.

Let A be a C*-algebra and B its C*-subalgebra. Following Choda
and Watatani [4] we say that a *-automorphism a of A is B-subfreely
acting on A if ab = ba(a) for all a € A with b€ B implies b = 0.

THEOREM 10.1. Let (4, G, @) be a C*-dynamical system with G any
discrete group. For tc G put G@t) = {seG: st = ts} and let A°® be the
fixed point subalgebra of A under the action @&|G(t). If A is G-prime
and @, is A°-subfreely acting on A for each tc G\ {e} (in particular if
a, s properly outer for each teG\{e}), then the reduced C*-crossed
product Ax .G is prime. Conversely, if in addition G is finite, then
the primeness of AX .G = AX,G implies that A is G-prime and @, s
AP _subfreely acting on A for each te€ G\{e}. The same is true if one
replaces @ and A by I(a) and I(A).

LeEMMA 10.2. Let B be a monotone complete C*-algebra and C its C*-
subalgebra. Let D = m-cly C be the monotone closure of C in B.

(i) The supremum in B of any positive increasing approrimate
unit for C is a projection of B which serves as a unit for D.

(ii) If E is a hereditary C*-subalgebra of C, them there is a unique
projection p of D such that m-cly E = pDp. If in particular E is a
closed two-sided ideal of C, then the projection p is a central pro-
jection of D.

PrROOF. As in [13] we write z;—x (O) in B if a net {x;} in B order-
converges to x€ B, and we freely use the computation rules for order
convergence in [13, 1.2] or [17, 2.1].
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(i) If {a,} is a positive increasing approximate unit for C, then a,
p (0) in B for some pe D*. For each x € C we have x = xp, since xa, —>x
in norm and za, — xp (0). In particular, a, = a;p — p* (O) and so p* = p.
Moreover, ¢ = zp for all x € D since D = m-cl;C.

(ii) By (i) the supremum p in B of a positive increasing approximate
unit {b,} for E is a projection of D. As E3sbab, — pxpe pCpCpDp (0)
for each x € C, it follows that pCpCm-cl; E, hence that pDp = p(m-cl; C)p =
m-cly pCpCm-clz E [13, 2.4]. The reverse inclusion is clear since pDp
contains E and is monotone closed in B.

If F is a closed two-sided ideal of C, then for each z€C,, we have
E>sxbx—xpxrem-cly E=pDp and (1—p)xpx(l—p)=0. Hence px(l—p)=0,
px = prp = (prp)* = (px)* = xp and so p commutes with each element
of m-cl, C = D.

Let (B, G, B) be a C*-dynamical system with B monotone complete
and G discrete. As in Section 3 define the monotone complete crossed
product M(B, G) as a monotone closed C*-subalgebra of the monotone

complete C*-algebra B ® B(*G)), and the maps = and \.

LEMMA 10.3. Keep the above motation.

(i) For xz =[x,,]€ M(B, G) consider the following conditions:

(a) x belongs to the center of M(B, G);

(b) 2z commutes with mw(B)MG) elementwise;

) %4y =2, for all r,s,teG and ax,, = 2,,8,-1,(a) for all r,s€G
and a € B;

d) =,,€B" forall reG andax,, = 2,,.8.(a) for all re G and a € B.

Then we have (a) = (b) = (¢) = (d).

(ii) If B, is B®“-subfreely acting on B for each t€G\{e} and G
acts ergodically on the center of B, then M(B, G) 1s a momnotone complete
AW*-factor.

(ili) If there is a te G~ {e} such that the conjugacy class of t 1is
finite and B, is mot B¢P-subfreely acting on B, then M(B, G) is not an
AW*-factor.

ProoF. (i) We omit the proof of (a)< (b) = (c), since the cor-
responding proof for the W*-crossed product works also in this situation.

(¢) = (d). Note that B,(z,.) = %.~1,-1 = %—1,, = @, for all teG(r).

(ii) If xe M(B, G) is central, then (d) shows that x,, =0 for all
reG\{e} and x,, is a G-invariant central element of B. Thus x is a
scalar multiple of the unit.

(iii) Let {s;ts;7:1 < j < m} be the finite conjugacy class of ¢, where
s;tsit # sitsyt if j # k. By hypothesis there is a non-zero b€ B°? such
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that ab = bB,(a) for all ae B. Put x=3; 7(B,;(b))\(s;ts;"). For each re
G and j we have rs;t(rs;)™ = s,ts;* for some k and s;'rs;€ G(t), so that
Brs;(0) = B, (b). Hence

Mr)x = 33 M) (B, ;ONONr— )\ (rs;tsi™)

=[S (B @Nrsst(rs)) r) = anir)
and for each a € g,
n(@)e = 3 m(B, (B (@)b)N(s;ts7")
= 2 7(B,; 0B Bz @) ts”) = wn(a) .
Thus x is a nontrivial central element of M(B, G).

ProOF OF THEOREM 10.1. We prove only the statement for @ and
A, since the proof for I(a) and I(A) proceeds similarly. The G-primeness
of A is equivalent to the G-primeness of A, or to saying that G acts
ergodically on the center of A (see 6.5(ii)). The proper outerness of a,
is equivalent to that of &, (see 7.5), which implies that @, is A°*®-subfreely
acting on A, since on a monotone complete C*-algebra proper outerness
is equivalent to being freely acting. Moreover by 3.6(i), A X,,G is prime
if and only if Ax,G is prime.

Hence, by replacing (4, G, a) by (4, G, @ we may assume that A is
monotone complete. Then AX,,G is identified with the C*-subalgebra of
M(A, G) generated by n(A)MG) and Lemma 10.3(ii) shows that if A is
G-prime and «, is A°*-subfreely acting on A for each te G\ {e}, then
M(A, G) is a monotone complete AW*-factor. If Ax,,G is not prime,
then there is a nontrivial regular ideal J of AX,G and m-clJ =
p(m-cl Ax,,G) for some nontrivial central projection p of M(A4, G) by 10.2
and 10.3(i), a contradiction.

Clearly the primeness of A X,.G implies the G-primeness of A whether
G is finite or not. If G is finite, then 4 x,.G = M(A, G) and the second
assertion follows from 10.3(iii).
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