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Introduction. A non-constant rational function f on a smooth alge-
braic surface X defines a holomorphic mapping of X\ I, onto the Riemann
sphere P, where I, denotes the set of all points of indetermination of f.
The set L, = {pe X\ I;|f(p) = ¢} is called the level curve of f with value
ceP. Following Nishino, we call an irreducible component of L, a prime
curve of f (with value ¢). If a smooth prime curve S is analytically
isomorphic to the punctured Gaussian plane C*, we say that S is of C*-
type. If all the prime curves of f, except for a finite number of them,
are of C*-type, we say that f is of C*-type. The terms “C-type” and
“P-type” for prime curves, and for rational functions, are defined similarly,
where C is the Gaussian plane. If a rational function f is of C-type, or
if f is of C*-type, we say that f is of special type. In the previous
paper [3], we have shown the following fact.

THEOREM 0. Let C be an algebraic curve in the complex projective
plane P:. If the complement P*\C has an analytic transcendental auto-
morphism, then C is a smooth cubic curve or there exists a rational func-
tion f of special type on P*® whose restriction to P*\C is still of special
type. In the latter case, C contains at least one prime curve of f.
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This theorem poses the problem to determine all the rational functions
of special type on P%. If a rational function f on P? is of special type,
then, for each non-constant rational function 4 on P and for each analytic
automorphism S of P? +rofoS is of special type. So the problem is
reduced to that of determining a canonical form of a rational function
of special type. If a rational function f of special type on P? has a prime
curve S of degree one (a complex line), we say that f belongs to the
family 7. In this case, regarding the closure S of S as the line at
infinity, we may regard f as a rational function of special type on
C* = P>\S. The rational functions of C-type on C? were determined by
Jung [1] and the rational functions of C*-type on C? were determined
by Kashiwara (née Saito). If a rational function f of special type on P?
has no prime curve of degree one, we say that f belongs to the family
Z11. The rational functions belonging to &7 are simpler than those
belonging to .#7:.. Recently, Kashiwara [2] has determined all the rational
functions of C-type belonging to &7 by her systematic study. In this
paper, we resolve the remaining problem of determining all the rational
functions of C*-type belonging to .

The author would like to express his gratitude to Professor T. Kuroda,
Dr. M. Suzuki and Dr. T. Ueda for their constant encouragement and
important advice. This work was completed while he was a research
fellow at the Research Institute for Mathematical Sciences, Kyoto Uni-
versity. Thanks are also due to Professor S. Nakano for his hospitality.

Chapter 0. Summary.

§ 1. Reciprocity.

1. A prime curve S of a rational function f with value ¢ (& o) is
said to be of order v if the function f — ¢ takes the value zero of order
vy on S. A prime curve S with value o« is said to be of order v if the
function 1/f takes the value zero of order v on S. If the order v of S
is greater than one, we say that S is multiple. If each level curve of
f is irreducible except for a finite number of level curves, f is called
primitive. Proposition 1 in Chapter I implies that we have only to
determine all the primitive rational functions of C*-type on P*.

Let f be a rational function of special type on P? Denote by

Om—1 [

M=M,>=M, =%... 2 M-25M=P

the minimal sequence of o-processes which resolves the indetermination
points of f. Set ¢ =0,00,0 -++ og,. The pull-back ¢*f of f by ¢ is a
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rational function on M with no indetermination point. We denote by
3(f) the complete inverse image ¢7'(I;) of the set of indetermination
points I, of f under ¢ in this paper.

Let g be a non-constant primitive rational function on a smooth
rational surface V. Consider an algebraic compactification (M, ) of V,
which means that there exist an algebraic curve E on a compact smooth
algebraic surface M and a birational biregular isomorphism ¢ of the com-
plement M\ E of E onto V. Suppose that ¢*¢g has no indetermination
point on M. An irreducible component C of the curve E is called a basic
section of ¢*g if the restriction ¢*g|; of ¢*g to C is not constant. Denote
by B the union of basic sections of ¢*g. If the function g on V is of
C*-type, then B consists of one or two irreducible components (cf. Chapter
I §1.1). If B is reducible, we say that g is of direct C*-type. If B is
irreducible, we say that g is of torsional C*-type. We say also that g is
of proper C*-type if g satisfies the following three conditions; (i) ¢ has
no indetermination point on V, (ii) g does not take the values 0, «~ and
the regular mapping g¢: V — C* is surjective and (iii) each level curve of
g is irreducible, of C*-type and of order one. The following theorem
proved in Chapter III, §1.3 is used several times in this paper.

THEOREM 1. Let C be an algebraic curve in P®. Suppose that there
exists a rational function of proper (resp. proper direct) C*-type on
V = P*\C. If a non-constant primitive rational function g on V does
not take the value 0, o, them g is also of proper (resp. proper direct)
C*-type on V.

2. Rational functions of special type on P? are intimately related
to each other as is seen by Theorem 1. The rational functions belonging
to the class (D,), defined in the following, play a pivotal role in this
relation of functions. We say that a primitive rational function f of
direct C*-type on P* belongs to the class (D,) if f satisfies the following
five conditions; (i) I, consists of only one point, (ii) the level curve L,
consists of two prime curves both of which are of C-type and of order
one, and those two prime curves intersect each other transversally, (iii)
the level curve L. is irreducible and of C-type, (iv) the level curve L, is
irreducible, of C*-type and multiple and (v) the other level curves are
irreducible and of C*-type.

In Chapter II, we determine the graph of 3(f) of a rational function
f bolonging to the class (D,), using the following two properties; (i)
2(f) is a (reducible) exceptional curve of the first kind and (ii) ¢*f is a
rational function of P-type on M. Therefore we can construct inductively
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all the rational functions belonging to the class (D,). (cf. Example [B]
and Example [C] in Chapter II, §1.2.) In this process, we obtain all the
rational functions of C-type belonging to &#1;. By the same method, we
can determine all the rational functions of C*-type on P2 But it is very
complicated. In this paper, we use Theorem 1 to determine those func-
tions as is seen in the following paragraph.

Suppose that f is of direct C*-type on P?. By a topological lemma
in Chapter III, we know that f has prime curves C,, C,, C; such that the
restriction f)|, of a rational function f, to V = P*\(C,UC,UC,) is of
proper C*-type, where C, is the closure of C, in P®. Let ¢ be a homo-
geneous polynomial defining C,. Theorem 1 implies that, for each triple
(o, gy ) (#=(0,0,0)) of integers satisfying «,deg(t) + a,deg(t,) +
a; deg(t,) = 0, the rational function g = t&1¢22¢52 is of special type on P2
By this fact, if f belongs to &1, f is related to a rational function
belonging to the class (D,). Hence f can be determined concretely. On
the other hand, there exists no rational function of torsional C*-type on
P? as is seen in Chapter III, §38, which completes our study.

§2. Statement of results.

1. Here, we give a summary of Chapter II to explain our recurrence
formulas. Suppose that a primitive rational function f belongs to the
class (D,). Let o: M — P? be the minimal resolution of the points of
indetermination of f by a finite sequence of ¢-processes. We denote by
F, the level curve of o*f with value ¢. If the level curve F, of o*f
with value 1 contains n — 1 irreducible components with the self-inter-
section numbers smaller than —2, we say that f belongs to D,. The
class (D,) divides into subclasses D, (n =1,2,8, ---). We have the fol-
lowing in Chapter II.

PROPOSITION 0. If f belongs to D,, then F, is represented by the
diagrams in Figure 1.

212 51 4 27127 57127 3

ogo oo— o(Dood o(Dood)——
FIGurE 1.

In this diagram, a circle or a square represents a non-singular rational
curve. A circle represents an irreducible component of X(f). A square
represents the proper image of L, (the closure of the level curve L, of f
with value 1 in P? under the mapping o'. The numbers attached to



RATIONAL FUNCTIONS OF C*-TYPE 127

circles and squares are those obtained by the multiplication of —1 to the
self-intersection numbers of the corresponding curves. A short segment
connecting circles or squares represents a transversal intersection of the
corresponding curves.

A long line with a non-negative integer p attached in Figure 2(i) is
the abbreviation for the diagram in Figure 2(ii). A sign with a non-
negative integer r attached in Figure 2(iii) is the abbreviation for the
diagram in Figure 2(iv). A sign with a non-negative integer r attached
in Figure 2(v) is the abbreviation for the diagram in Figure 2(vi).

P 22 22 T 77 77
00---=-= 00 @ 00- - ----00
p times 7 times
(i) (ii) (iii) (iv)
’ 4 3 4 3 4 3
D I W o Y — 0
7 times
(v) (vi)
FIGURE 2.

We shall see in Chapter II, §2.1, that, in the case where the graph
of 3(f) is linear, 3(f)UF.UF,UF, is represented by the diagrams in
Figure 3.

31,

et

9 2

1

(n=1)

FIGURE 3.

In each diagram, a square represents the proper image of the closure
of one of the prime curves of f with values 0, 1, « under the mapping
o~'. The connected square in the center of each diagram represents the
level curve F, of ¢*f with value 0. The components intersecting F, are
the basic sections of ¢*f. The right-hand side of each diagram is the
level curve F, with value 1 and the left-hand side is the level curve F,
with the value oo.

If f belongs to D, and if the graph of 3(f) is linear, then we say

that f belongs to D?. There exists only one rational function belonging
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to D! up to the projective transformations of P®. In Chapter II, using
the diagrams in Figure 3, we see that a function belonging to D} has a
connection with a function belonging to D;/,. Therefore, a function f
belonging to D! can be written as f = v,,,v,_,/v2 for a homogeneous
coordinate (X:Y:Z) of P? where v, is a homogeneous polynomial of
(X, Y, Z) defined by the following recurrence formula;

Vg = (W} + u™)/v,, (m; = deg(v); 1 =0,1, ---,n),
v,a=X, vb=Y, u=XYZ—-X*—Y°*.

Let {b;} be the so-called Fibonacci sequence satisfying b_, =0, b, =1 and
b, =0b+0b_,. We know that m, = b,,.

We divide the complement D,\ D¢ into D}* and D!~ according to
the shape of XY(f) where the integer k is the number of the diverging
components of X(f) (for the definition of a diverging component, see
Chapter I, §2.1). A function belonging to D)* has a connection with a
function belonging to D!™'*. By induction, a function f belonging to
D!+ has a connection with a function belonging to D! so that f can be
represented as f = w,w,_,/v2®™“*¥ for a homogeneous coordinate (X:Y :Z)
of P?, where u, and w, are homogeneous polynomials of (X, Y, Z) defined
by the following recurrence formulas;

— (n)+apdeglwy_y) __ My deg(wy—;) 81(n)
Uy = ul—lvgl ! -1 Pal(wl—l, Vn =1 )wl—l ’

where P,(z, 2,) is a homogeneous polynomial in (z,, 2z,) of degree a, with
P,1,00+0(¢=12,---,k), and

w, = (Ve + ur)fw,_, .

When f belongs to D}, we define s;(n) and w, as follows; s,(n) = [b,, +
3(—1)"b,,_5]/2 and w, = v,,,. When f belongs to D}, we define s;(n) and
w, as follows; s,(n) = [b,, + 8(—1)""",,_,]/2 and w, = v,_,. In both cases,
t(n) = [sy(n)deg(w,_,) — deg(u,_)}/m, ¢ =1,2, --+, k). When f does not
belong to D}, we define u, = u. When f belongs to Df~, we define u,
as 4, = X. (In the case where n =1, we may suppose that a;, >0, | =
1,2, ---,k — 1. When f belongs to D}, a, must be positive.)

2. Set R, , = wi™/vie™e-V where w,_, and v, are those defined above.
The rational function R, , is of C-type on P*. If the rational function f
does not belong to D}, then R, , belongs to .. Otherwise, R,, belongs
to 1. Conversely, a rational function R of C-type belonging to &1
can be expressed in the form R = A(R,,) for a homogeneous coordinate
(X:Y:Z) of P? where A(z) is a non-constant rational function in one vari-
able z. Set 4, = u,_ 0™ /wi*. If f dose not belong to D}, then the
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rational function 4, , is of C*-type on P*and belongs to #7;. Otherwise,
4, is of C-type on P? and belongs to &#;. The mapping z defined by
(p) = (R, x(D), ¥n1(P), »€P*\{v,w,_, = 0}, is a biregular birational map-
ping of P*\ {v,w,_, = 0} onto C* xC.

Set ¥(z) = P(z)/72*, where € ZTU{0} and P(z) is an arbitrary poly-
nomial in z. Set @, = (R, ) (¥ — T(R, )} where peZ, geZ* and
(p, @) = 1. Except when f belongs to D}, the rational function ¢, is of
C*-type on P? and belongs to 7. Conversely, we get the following in
Chapter III, §2.

THEOREM 2. A ratitonal function @ of C*-type belonging to F11 can
be expressed as @ = Alp,) for a homogeneous coordinate (X:Y :Z) of P:.
Here A(z) is a non-constant rational function inm one variable z.

3. Suppose that a rational function f belongs to the class (D,). If
f belongs to D}*, we call the graph of Y(f)UF.,UF,UF, simply the graph
of Dk, The following is the list of the graph of D}=*.
(a) The graph of D},

(Dr)

1
4 gg a,-Hg a,+1 g_
2 a,—1 2 al_l a,—1 2 a,—1

(DY)

1 a+1l 6 a,+1 6
o— —o 5 —o-
a—-192 a,—1 a—1 2 a—1

FIGURE 4.

In the above, the circle labeled H,(a,) represents the following diagrams:

FIGURE 5.
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In the graph of D}, the case a, = 0 does not occur.
(b) The graph of D} (n = 2).

@H Kat) H K1) || Kt || KiGa) frmmmmmms @

Ko 1| Koo || Kito) Fommmmmm e Fotoro } 03

(k: even)
FIGURE 6.

(¢) The graph of D~ (n = 2): Figure 7.

-I K} (a,)H Ku(as) H K2 (as) H Kn(ay) ]— --------- Kn(ax) @

(k: odd)

-I K (a) H Kn(as) H K (a) H Kn (a)) }— ————————— @

(k: even)
FIGURE 7.

Kn(a)
K» (a) 2

"

2

r

T at+1l T
a—l 2 a—1
(a>0) (a=0)

Fi1GURE 8.
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In Figures 6 and 7, the marks labeled K, (a,), KX(a), H,(a.), HXa.),
T., Ty, represent the diagrams in Figures 8 through 13.

(i) Case n=2r+1(r=1,2,-:): Figure 8 through 10.

Hn(a)
H: (a)
FIGURE 9.
1
r r—1
T* o{{}ooog- T, Do
2 2222 5
FiGgure 10.

(ii) Case n=2r+2 (r=0,1, --.): Figure 11 through 13.

When »r =0, T, is empty. The square in the graph of T* is the
proper image of L. under the mapping ¢~'. In the case where f belongs
to Dk-, the proper image of L., under the mapping o' intersects a com-
ponent in the part labeled Kj}(a,), as is illustrated in Figure 14.

Chapter I. Curves with the property (P). In this chapter, we state
several elementary facts on level curves of rational functions of P-type.

§1. Definition.

1. Let f be a non-constant rational function on a compact smooth
algebraic surface X.

PROPOSITION 1. If the set I, is mot empty, then there exists a pair
of a primitive rational function f, on X and a rational function @ on
P such that f = @ o f,. If another pair of a primitive rational function
fi on X and a rational function N on P satisfies the condition f =\ o fi,
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5

4
22322
(r>0, a=0) (r=a=0)

FiGcure 11.

then there exists an analytic automorphism (a linear fractional trans-
formation) T of P such that fi=Tof, and ¢ = rno T.

PrROOF. We recall the “Stein fractorization”. Let ¢: M — X be a resolu-
tion of the indetermination points of f by a finite sequence of g-processes.
The mapping ¢ of the smooth surface M onto X is holomorphic and the
pull-back o*f of f by ¢ has no indetermination point. If two points p,, P,
on M are contained in the same connected component of (o*f)~'(c*f(p.)),
then we write the fact as p, ~ p,. The relation ~ is an equivalence
relation. Let w be the canonical projection of M onto the quotient space
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(r>0, a=0) (r=a=0)
FIGURE 12.

R = M/~ provided with the quotient topology. The space R is connected
and there exists a unique mapping @ of R onto P such that ¢*f = @ o 7.
By Stein’s theorem on a proper holomorphic mapping, R has an analytic
structure such that ¢ and 7= are holomorphic. (cf. Nishino [4])

Set Y(f) = 07*(I;). The algebraic curve X(f) consists of a finite
number of non-singular rational curves. Let B, (=1, 2, ---, m) be the
basic sections of ¢*f. The mapping x| of B, into R is non-constant and
holomorphic. Hence R is the Riemann sphere. Setting f, = (¢™)*x, we
see that f, is a primitive rational function on X and that f =@ o f,. We
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r r
T*
n Tn ( :).
5 322
Ficure 13.
1 1
(Tn—goo-—-—— (Tnog———-—
2 2 2 2 2
K: (a,) K: (al)
(n: odd) (n: even)
FIGURE 14.

easily get the remainder of the statement.

Suppose that f is primitive. If there exists a neighbourhood U, of
a point ¢ on P such that the triple (N, f|y, U,> defines a trivial topo-
logical fibre bundle where N = f~(U,), then ¢ is called a regular value of
f. The fibre L, = f~*(c), that is, the level curve of f with regular value
¢, is called a regular level curve of f. A regular level curve is irreducible,
non-singular and of order one. A point ¢ on P which is not a regular
value of f is called a critical value of f. A level curve of f with critical
value is called critical.

Let E be the set of critical points of the mapping o*f: M — P. The
image o*f(E) of E consists of a finite number of points on P. Set
E' = (6*f)Mo*f(F)) and R’ = ¢*f(M\E"). For each point p on R’, there
exists a neighbourhood V of p such that the triple (N, x|y, V) is a
trivial topological fibre bundle with the projection 7|, where N = n~'(V).
For each point p on R’ except for a finite number of points, the number
of ‘intersections of the fibre F' = z~'(p) with the sum B,UB,U---UB, of
the basic sections of o*f equals a constant number independent of p.
Hence the set of critical values of f is finite and prime curves of a
rational function on X are homeomorphic to each other except for a finite
number of them.

Let n be the number of boundary components of general prime curves
of f. Denote by #(I;) the number of indetermination points of f. We
see easily that #(I;) <m < n. If f is of C*-type, then n =2. If fis
of direct C*-type, that is, if m =2, then #(I;) is 1 or 2. If f is of
torsional C*-type, that is, if m = 1, then #(I,) = 1.



RATIONAL FUNCTIONS OF C*-TYPE 135

2. The following lemma will be applied again and again in this
paper.

NOETHER’S LEMMA. Let C be a smooth irreducible rational compact
curve on a compact smooth rational surface M. Suppose that the
self-intersection nmumber (C?) of C is zero. Then there exists a rational
function h of P-type on M such that C is a regular level curve of h.

The rational function A of P-type in the above lemma is primitive
because the level curve C is of order one.

If a compact algebraic curve C on a smooth rational surface M is a
level curve of a primitive rational function f of P-type on M, then we
say that C has the property (P). Suppose that C is also a level curve
of a primitive rational function g on M. For each compact prime curve
S of g not intersecting C, the restriction f|; does not take the value
f(C) so that f|; must be constant. Hence there exists an analytic auto-
morphism 7T of P such that ¢ = T o f. This means that the order of an
irreducible component C, of C is independent of the choice of the func-
tion f. We call this order of C, as a component of a curve C with the
property (P) the component order of C, with respect to C. Suppose that
C is irreducible. The curve C must be non-singular and rational. The
self-intersection number (C?) of C must be zero. By Noether’s lemma,
there exists a primitive rational function g of P-type on M such that C
is a level curve of order one of g. Hence the (component) order of C as
a curve with the property (P) is one.

Suppose that C is reducible. Denote by [C] the divisor defined by
the equation f — f(C) = 0. (When f(C) = «, [C] denotes the divisor defined
by the equation 1/f = 0.) The self-intersection number ([C]?) of the divisor
[C] is zero. The virtual genus of [C] is zero because f is of P-type. As
is well-known, at least one component D of C is an exceptional curve of
the first kind. Let o: M — (M) be the g-process which contracts D. The
image curve ¢(C) is the level curve of (¢7*)*f with the value f(C). Hence
the curve ¢(C) has the property (P). Let D’ be any component of C
different from D. Clearly, the component order of ¢(D’) with respect to
o(C) equals the component order of D’ with respect to C. Contracting
exceptional components of the first kind of C successively, we get an
irreducible curve with the property (P). Hence we obtain the following
lemma.

LEMMA 1. An algebraic curve with the property (P) on a smooth
rational algebraic surface contains at least one irreducible component of
order one.
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The following proposition is fundamental in our later discussion.

PROPOSITION 2. Suppose there exists an algebraic curve C on a
compact smooth rational surface M such that the complement M \C
contains no compact algebraic curve. Then there exists a pair of rational
functions (h, h,) such that the mapping 0: M — PX P, defined by 6(p) =
(hy(D), hy(p)) (PEM), is a biregular isomorphism of M onto PxP if C
satisfies one of the following three conditions (i), (ii), (iii): (i) C consists
of two irreducible components C, C, with the property (P) such that
(C,-Cy)) =1, (ii) C consists of three irreducible components C,, C,, C, with
the property (P) such that (C,-C,) = (C,-C;) =1 and (C,-C,) = 0, and (iii)
C consists of four irreducible components C,, C, C,, C, with the property
(P) such that (C,-C,) = (C,-C;) = (C4-C,) = (C,-C) =1 and (C,-C;) = (C,-C,) =0.
(See Figure 15)

0

0 0 0 0 o

00 0-0-0 oo@oo
0

(i) (ii) (iii)
FIGURE 15.

PrROOF. Suppose first that (i) holds. There exist primitive rational
functions h,, h, of P-type on M such that C, (I =1, 2) is a regular level
curve of h;,. We prove that each level curve of h, is irreducible. Assume
that a level curve F), of h, is reducible. The restriction ks of h, to C,
is a rational function of degree one on C,. Hence F intersects C, at a
regular point of F, transversally. Let D be an irreducible component of
F, which does not intersect C,. We get DNC,=DNC,= @. Hence D
is a compact curve in M \\C, a contradiction to the assumption. There-
fore each level curve of h, is irreducible. Similarly, each level curve of &,
is irreducible. For each level curve F of h,, we have (F;-C,) = 1. Hence
the restriction h,lp; of h, to F] is a rational function of degree one on
F,. This means that ¢ is a biregular isomorphism of M onto Px P.

Next suppose that (ii) holds. Since C, and C, satisfy (i), it is sufficient
to prove that there exists no compact curve in M\ (C,UC,). Let A, h,
be the same functions as in the first case. There exists a primitive
rational function %, on M such that C; is a level curve of h;. Since
C.NC, = @, there exists an analytic automorphism 7, of P such that
hy = T, o h,. Suppose that a compact algebraic curve D is contained in



RATIONAL FUNCTIONS OF C*-TYPE 137

M\ (C,UC,). By assumption, D must intersect C,. Hence the restriction
hs|p is not constant. On the other hand, since C,ND = @, the restriction
h,, must be constant, a contradiction to the fact h; = T, o h, Hence there
is no compact algebraic curve in M\ (C,UC,).

Finally suppose (iii) holds. Since C,, C, and C, satisfy (ii), it is
sufficient to prove that there exists no compact algebraic curve in
MN\(C,UC,UC;). There exists a primitive rational function h, on M such
that C, is a level curve of h,. Since C,NC, = @, there exists an analytic
automorphism T, of P such that A, = T,o h,. Suppose that a compact
algebraic curve D is contained in M \(C,UC,UC;). By assumption, D
must intersect C,. Hence k], is not constant, a contradiction to the fact
h,= T,o h,, Thus we have our proposition.

§2. Reducible curves with the property (P).

1. A compact connected algebraic curve E on a smooth algebraic
surface V is called an (reducible) exceptional curve of the first kind if
there exists a sequence of regular mappings of smooth surfaces

V=V, =5V, =5 SV, =5V, =V
such that each 7, is a o-process which contracts an irreducible component
of the curve (74,070 +++o7,)(&) on V, and that z,07,0 -+« o, (F) is

a one point set. Hence E is a tree of rational curves on V and a singular
point of E is an ordinary double point where two components of E inter-
sect each other.

An irreducible curve of the first kind is non-singular, rational and
with the self-intersection number —1. Conversely, by Castelnuovo’s
theorem, we know that a compact non-singular irreducible rational curve
E with the self-intersection number —1 on a smooth algebraic surface V
is an exceptional curve of the first kind. If an algebraic ecurve C on V
intersects E, then (z(C)?) = (C? + k* where k is the multiplicity of the
point z(E) on the curve z(C).

LEMMA 2. Suppose that E is reducible exceptional curve of the first
kind on V which contains only one irreducible component with the self-
intersection number —1. If E is a linear tree, then the graph of E 1is
given by Figure 16.

Here the numbers a, and b, are non-negative integers.

PrROOF. We prove this lemma by induction on the number of the
irreducible components of E. Let z,: V—7,(V) be the ¢g-process which
contracts the component D, of E whose self-intersection number is —1.
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ll,-+3 ar_1+3 a1+3 1 a, Qr_y ar
_——0---- 00— 00— 0O ----O0—O——
bria b, by p+2  b+3 b,_,+3 b+3
b, 1
or —0 (6,>0)
FIGURE 16.

The image 7,(E) of E is an exceptional curve of the first kind on z,(V).
Since each singular point of z,() is an ordinary double point, D, inter-
sects at most two other components of E. The self-intersection number
of a component D of E differs from the self-intersection number of z,(D)
if and only if D, intersects D. Suppose that D, intersects two other
components D,, D, of E and that (z,(D)?* = (r,(D,)?) = —1. Let z;:7,(V) —
7,(t:(V)) be the o-process which contracts z,(D,). The self-intersection
number of 7,(z,(D,)) is 0. Noether’s lemma leads us to a contradiction
because 7,(7,(E£)) must be an exceptional curve of the first kind on z,(z,(V))
or one point. Hence we see that z,(F) contains only one component with
the self-intersection number —1. Therefore we have our lemma.

Now, we can study the case where E is non-linear. Let E be an
exceptional curve of the first kind which contains only one component D,
with the self-intersection number —1. A component D of E is called a
diverging component of E if D intersects at least three other components
of E. Let A] be the maximal connected linear tree of components of E
containing D, which does not contain a diverging component of £. Then
A! must intersect a diverging component D, of E at one of the edge of
A!l. Set A, = AlUD,. The curve A, is an exceptional curve of the first
kind. Denote by o, the composite of g-processes which contracts all the
components of A,. The self-intersection number (¢,(D,)?) of the image
o,(D,) must be —1. Hence we obtain the following lemma.

LEMMA 2. If the number of diverging components of K is k — 1,
then the outline of the graph of E is as in Figure 17.

FiGure 17.

Especially, each component D of E intersects at most three other
components of E. In the above figure, if we substitute —1 for the self-
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intersection number of the diverging component common to A, , and A4,
then the part A, of the graph becomes the graph of an exceptional curve
of the first kind satisfying the condition in Lemma 2. The part of E
represented by A, is called the [-th branch of E. By the sequence
Tn Ty ***s Ty T1» the branches of E are contracted successively.

2. An algebraic curve C with the property (P) on a rational smooth
surface consists of non-singular rational curves. Each singular point of
C is an ordinary double point. If C is reducible, then the self-intersection
number (C}) of each component C, of C is negative. This fact is easily
proved by Noether’s lemma. The first Betti number of C is zero.

LEMMA 3. Suppose that C is a reducible algebraic curve with the
property (P) on a smooth rational surface M.

(i) If the component order of a component C, of C (with respect
to C) is ome, then each comnected component of the closure of C\C, is an
exceptional curve of the first kind.

(ii) If two irreducible components C,, C, of C satisfy (C,-C,) =1
and (CH = (C}) = —1, then the component orders of the curves C,, C, with
respect to C are both one and C consists of only these curves, that is,
C = C,UC.,.

(iii) Suppose that C, is the unique exceptional component of the first
kind of C and suppose that the closure of C\C, consists of two connected
components, both of which contain components of component order one
with respect to C. Then the graph of C is given by Figure 18.

(],—"r‘3 (Irfl_(73 Q1+3 1 1 qr 2

Pr Pr-1 Py P12 p,+3 prt3

Q1+2 1 '
P pt2
(r=0,1)

FIGURE 18.

Here, the numbers p,, q, are non-negative integers. When C has
n — 1 components with the self-intersection number smaller than —2,
the number » in the graph of C means the integer [n/2].

Proor. (i) Let C, 1 =0,1,2, ---, n) be the irreducible components
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of C and v, be the component order of C, with respect to C. By assump-
tion, the divisor [C] = X1, v,[C)] satisfies ([C]®) = =n([C]) = 0, where z([C])
is the virtual genus of [C]. Let K be the canonical bundle of M. Since
z([C]) = {([CP)+(K-[C]}/2+1, we have (K- [C]) = (K-[C,]) + i vi(K-[C]) =
—2. By #([C]) =0, we get (K- [C])=—-2—-(C) I=0,1, ---,n). The
fact (C?) < —1 shows (K-[C,]) = —1. Hence >, v (K:[C)) = i, v{—2 —
(CH} £ —1. Therefore, there exists a component C, such that (C2) = —1.
By (C2) < —1, we get (C2) = —1. By Castelnuovo’s theorem, we see that
C, is an exceptional curve of the first kind. Let z: M — z(M) be the
o-process which contracts C,. The image 7(C) of C is a curve with the
property (P) on 7(M). The component order of z(C,) with respect to z(C)
is also one. By induction, we thus have (i).

(ii) Let 7: M — (M) be the o-process which contracts C,. The self-
intersection number (z(C,?) of the image z(C,) is zero. By Noether’s
lemma, 7(C,) has the property (P). On the other hand, the image z(C)
has the property (P). Hence (C) = z(C,), C = C,UC, and the curves C,
C, are of order one.

(iii) Let GC,, C; be the components of C intersecting C, and z: M —
7(M) be the g-process which contracts C,. We may suppose that the
self-intersection number (z(C,)?) of ¢(C,) is —1. Assume that the
self-intersection number (¢(C,)?) is —1. By (ii) of this lemma, we get
C=C,UC,UC,. This is the case where r = p, = ¢, = 0 in Figure 18.
Assume (z(C,)*) < —1. The curve 7(C,) is the unique exceptional com-
ponent of the first kind of z(C). By (i) of this lemma, the component
order of 7(C,) with respect to 7(C) is not one. Since 7(C,) intersects at
most two other components of z(C), the closure of z(C)\7(C,) consists of
two connected components, each of which contains a component of order
one. By induction, we thus have (iii).

By the following lemma, we can calculate orders of components of
C in Lemma 3. The proof is easy and may be omitted.

LEMMA 4. Let I' be the bicylinder {(z, y)eC?||x| <1, |y| <1}. De-
note by o:07(I") — I" the o-process which gives the blowing-up at the
origin (0,0)el'. Set flx, y) = x*y* for a pair of mon-negative integers
D, q. Then the curve ¢7*((0, 0)) s a prime curve of order p + q of o*f.

Chapter II. Functions belonging to the class (D,).

§1. Outlines.

1. Sketch of the graph of X(f). We say that a primitive rational
function f of C*-type on P? belongs to the class (D,) if f satisfies the
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following conditions: (i) f has only one indetermination point p,, (ii) the
level curve of f with value 0 consists of two prime curves S,, S, of
C-type and of order one, and the curve S, intersects S,, transversally at
a point in P*\ {p,}, (iii) the level curve of f with value o consists of
only one prime curve S. of C-type, (iv) the level curve of f with value
1 consists of only one multiple prime curve S, of C*-type, and (v) the
other level curves are irreducible and of C*-type. By the classification
in Chapter III, §1.4, f is of direct C*-type. In this section, we suppose
that f belongs to the class (D,) and give a sketch of the graph of X(f) =
o7 (p,) and level curves of ¢*f where o: M — P*? is the minimal resolution
of the indetermination point of f.

There exist two basic sections B,, B, of ¢*f. Since ¢ is minimal,
we may suppose (Bf) = —1. Each restriction ¢*f|s, (¢ = 1, 2) is a rational
function of degree one on B,. Hence each level curve F, of o*f with
value ¢ intersects B, transversally at a regular point of F',. The prime
curve of F, intersecting B; must be of order one. Let S be a prime
curve of f with value ¢. We denote by S the proper transform by ¢!
of the closure of S in P%: If a component C of F', is not a proper trans-
form of the closure of a prime curve of f, C is a component of X(f),
and, since ¢ is minimal, (C*) < —1. Suppose that F', is reducible. Since
F', has the property (P), at least one component of F, is an exceptional
curve of the first kind. Hence at least one proper transform of the
closure of a prime curve with value ¢ is an exceptional curve of the first
kind. Suppose ¢ # 0. The level curve of f with value ¢ consists of only
one prime curve S,. Hence the proper transform S, of the closure of S,
must be an exceptional curve of the first kind.

Suppose that ¢ =0, <. If S, is of order one, Lemma 3 (i) shows that
F, is irreducible, that is, F', is the proper transform of the closure of S,.
Since S, is of C*-type and since F, is simply connected, F', intersects each
B; (7 =1, 2) at one point and (F,NB,) # (F,NB,). If S, is multiple, then
F, must be reducible. Hence S, is an exceptional curve of the first kind.
Since S,N(B,UB,) = @ and S, is of C*-type, F, and S, satisfy the
condition of Lemma 3(iii). Especially F, must be a linear tree of rational
curves. Since a component of F, intersecting B,U B, must be of order
one and since X(f) must be connected, two components represented at
the edge of the graph in Figure 18 intersect B,UB,. We denote by K,
(7 = 1, 2) the component of the level curve F, with value 1 which inter-
sects B,. Let 7: M — (M) be the composite of ¢-processes which con-
tracts F,\K,. Then K; (¢ # j) is the last component contracted by those
g-processes.
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By assumptlon, S, and S, are of order one. By Lemma 3(i), both
of S, and S02 are exceptional curves of the first kind. By Lemma 3(ii),
F,=8,U8,. We may suppose that S,, intersects B, and that S, inter-
sects B,. Since S. is of C-type, S. intersects Z(f) at only one point.

Here we prove that B, and B, have no common point. Suppose that
B,NB,# @. Since J(f) is simply connected, B, intersects B, at only one
point q. The level curve of ¢*f with value ¢*f(q) intersects B,U B, only
at q. Hence ¢*f(q) = . Since a singular point of X(f) is necessarily
an ordinary double point, F. = S.. Since (B = —1 and since J(f) is
an exceptional curve of the first kind, B, intersects at most two other
components of X(f). Hence S, is the unique multiple prime curve of
C*-type. The shape of 3(f) is given by solid lines in Figure 19, while
interrupted lines in the figure represent proper transforms of the closure

of prime curves of f.

FIGURE 19.

Let 7: M — (M) be the composite of g-processes which contracts the
closure of F\\ K, and S,,. The curve z(B,)Uz(K,) satisfies the condition
of Proposition 2(i). Hence ¢(M) is biregularly isomorphic to PxP. On
the other hand, since 3(f) is an exceptional curve of the first kind,
(B}) £ —2 (see Lemma 2). Hence (r(B,)? < —1, a contradiction to the
fact that there is no algebraic curve with the negative self-intersection
number in Px P. Hence BNB,= Q.

Since 3(f) is connected, S.N(B,UB,) = @ and the closure of F..\S.
intersects both B, and B,. Since B, intersects at most two other com-
ponents of X(f), S, must be the unique multiple prime curve of C*-type.
Since S.. is the unique exceptional component of the first kind of F.,
we have by Lemma 3(i) that a component of F. intersecting B,UB,
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interrects only one more component of F.. One or two components of
F_ intersect B,UB,. Denote the component of F, intersecting B, by T.
By Lemma 3(i), the closure of F..\ T is an exceptional curve of the first
kind.

FI1GURE 20.

Suppose that T also intersects B,. In this case, the shape of X(f)
is as in Figure 20. Let z: M — t(M) be the composite of o-processes

FIGURE 21.



144 T. KIZUKA

which contracts S, the closure of F,\K, and the closure of F.,\T.
The curves =(T), ©(K,), 7(B,) satisfy the condition of Proposition 2(ii).
Hence 7(M) is biregularly isomorphic to PxP. Hence (z(B,)? =0, and
(B) = —1.

Suppose that T does not intersect B,. In this case, the shape of
3(f) is as in Figure 21. Let o: M — po(M) be the composite of o-processes
which contracts the branches of the closure of F.\ T except the last
branch. Then p(F.) satisfies the condition of Lemma 3(iii). Hence the
component of F', intersecting B, is the last component of F,,\ T contracted
by this sequence of og-processes.

Let z: M — (M) be the composite of g-processes which contracts S,
the closure of F,\ K, and the closure of F,\T. The curves z(T), (K)),
7(B,) satisfy the condition of Proposition 2(ii). Hence z(M) is biregularly
isomorphic to PxP. Thus (¢(B,)? = 0 and (B} = —2.

2. Basic examples.

[A] In the first place, we introduce the simplest rational function
f, which satisfies the conditions (i), (ii), (iii) and (v) in the former sub-
section. Suppose that the graph of X(f,) is as given by solid lines in
Figure 22. The mapping o: M — P* is the composite of g-processes which
contracts exceptional components of 3(f;,) successively. Hence we can
calculate the self-intersection numbers of the curves S, S, S. on P2
by this graph. It shows that the degrees of the curves S, S,, S. are
2, 1, 1, respectively. There exists a homogeneous coordinate (X:Y :Z)
of P* such that S, ={YZ— X*=0}, S,={X=0} and S, ={Y =0)}.
By Lemma 4, S. is a prime curve of order 8 of ¢*f, with value . Hence,
by using a suitable constant a, we can write f;, as (x) f;, = aX(YZ — X?)/Y".

Conversely, for a homogeneous coordinate (X:Y : Z), a rational fune-

FIGURE 22.
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tion f, given by (x) has only one indetermination point (0:0:1) whose
level curve L, with value ¢ (¢ #0, ) is given by {aX(YZ — X? —
¢Y?® = 0}. Hence L, is irreducible, of C*-type and of order one. The graph
of X(f,) is the same as that in Figure 22.

Consider the level curve L, of f, with value 1. By the projective
transformation @: X' = aX, Y' = «*Y, Z' = Z where oa® = a™, f, can be
written as f, = X'(Y'Z' — X'*/Y". Hence L, = {X'Y'Z' — X" — Y" = 0}.
This fact is used in the next example.

[B] Here, we introduce the simplest rational function f;, belonging
to the class (D,). The function f,, belongs to D/. Suppose that the
graph of 3(f,,) is as in Figure 23. (See also Figure 3.) By Lemma 4,
the prime curve S, of f,, is of order 2 and the prime curve S, of f,, is

FIGURE 24.
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of order 3. Denote by T, the component of F, intersecting B,, and by
7: M — ©(M) the composite of o-processes with contracts 7,UB,UK, and
gives the blowing-up at the intersection of S, and K,. The graph of
the total image of 3(f,,) under 7 is as in Figure 24, where the image
7(S,) of S, is omitted. Denote by z(S,) the proper image of S, under .
Removing z(S,) from this graph, we get the same graph as that of 3(f;),
with S, removed, of f, in Example [A]. Denote by w:z(M)— w(z(M))
the composite of g-processes which contracts z(S.) and z(T,)Uz(B,)U
7(K)U7(S,). The graph of the total image 3* of 3(f,,) under wo<t
is as in Figure 25, where the cross represents the point w(z(S.)). Since

0

—%

0 w o T(gl)

et an - - e -
(=)

0

Fi1Gure 25.

® o T(M)N(Z*Uw o =(S)) is analytically isomorphic to the complement of
an algebraic curve on P2, it contains no compact curve. By Proposition
2(iii), w(z(M)) is biregularly isomorphic to Px P. There exists a rational
function & on w(z(M)) such that w(z(S)) is a level curve of order one
of h. NSet f=(@orto a‘i)*k. We may suppose that h(w(z(S,))) = oo,
k(@(z(S.))) = 0 and h(w(z(S))) = 1. Then f(S,) = o, f(S.) =0, f(S) = 1.
Denote by S’ the level curve of » with value 0 and denote by S the
proper transform of S’ under (wozoc¢™*)™* Then AS\{p}) =0 and
oot (M) — P? is the minimal resolution of the indetrmination point of
f. By the graph of 3(f), we see that f if the function f, in Example
[A]. Hence, in a homogeneous coordinate (X:Y:Z) of P?, S, = {XYZ —
X' —Y*=0},S.={YZ—-X*=0}, S,={Y =0} and S={X=0}. Set
v, =X, v=Y, v,,=YZ—-X* u=XYZ— X*—Y? Consider the
rational function g = v}u* on P2 Since S, is a level curve of order 2 of
fio and since S, = {v, = 0}, there must exist an analytic automorphism @
of P such that f,, = ®og. The level curve of g with value —1 is {v} +
u* = 0}\{p,}. Since v} + u* = v} + (v_v, — v,)* = v¥(v, + v%,) = 0 (mod. v,),
v, = (v} + u’)/v, is a homogeneous polynomial of (X, Y, Z). Hence the
level curve of g with value —1 is S,US, Thus S, = {v, =0} and
Jio = (g + 1)/g = vyv./vi.
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Conversely, starting from the graph of X(f,), we can construect f,,.
Consider the rational function f, = X(YZ — X?/Y*® for a homogeneous
coordinate (X:Y:Z) of P:. Removing S, from the graph of 3(f,) and
applying to the graph the operation inverse to z, we get Figure 26(a).
Contracting the encircled components, we get Figure 26(b). By Prop-
osition 2(iii), there exists a rational function h such that the curves
corresponding to the vertical solid lines are level curves of &. We may
suppose that % takes the values 0, 1, and o on the proper images of
the curves S., S, and S,, of f,. The graph of X(f) of the transform f
of & on P? is as in Figure 23, which assures the existence of the funec-
tion belonging to D).

(b)

FIGURE 26.

Another proof of this fact is as follows. A smooth rational surface
M and a rational function f on M for which the graph of X(f) is as in
Figure 23 are constructed by a finite sequence of blowing-ups on PXP.
Let ¢': M — N be the composite of o-processes which contracts 3(f). By
the formula on the Euler characteristic in Chapter III, §1.4, the Euler
characteristic of N is 3. Hence N = P-*.

[C] In the last place, we introduce a rational function f,, belonging
to D}*. Suppose that the graph of 3(f,,) is as in Figure 27. (See Figures
4 and 5.) The order of S, is 2. Denote by po,: M — p,(M) the composite of
o-processes which contracts the encircled components of X(f,,) in Figure
27. The graph of 0,(X(f,,) is given in Figure 28. Denote by C the
component of JI(f,,) with the self-intersection number —(a + 1). The
self-intersection number (0,(C)*) of the image p,(C) is —1. Denote by
: 0,(M) — w(p,(M)) the composite of g-processes which contracts the com-
ponents of pl(z(fl,l)uS;USz) encircled by fine interrupted lines. The
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FI1GUuRE 27. FIGURE 28.

¥--5 ot
FIGURE 29.

graph of w(0,(2(f.,)) is as in Figure 29. The interrupted curved line
represents the image a)(pl(§1)). The curve a)(pl(§1)) is tangent to w(pe,(C))
with order a — 1, that is, (@(0,(S))-(0,(C))) = a. By Proposition 2(ii),
there exist rational functions h,, h, on ®(0,(M)) such that the curves
corresponding to the vertical lines in the graph of w(p,(2(f.,)) are level
curves of h, and such that w(o,(C)) is a level curve of h,., The mapping
0 defined by 6(p) = (h,(p), hy(p)) for p € w(o,(M)) is a biregular isomorphism
of w(o,(M)) onto PxP. Set R = (wo p,°0")*h,. The rational function
R is of C-type on P*. The graph of po,(2(f,,)) is that of the minimal
resolution of indetermination points of R. In the graph of w(o,(2(fi.)),
the crosses represent the images a)(pl(g,,o)), w(pl(gm)). Hence the curves
S., S are level curve of R. Set « = (wo p,007")*h,. The rational
function + is of C*-type on P*. Denote by S’ the level curve of h, which
contains the image a)(,ol(gm)). Denote by S the proper transform of S’
under the mapping (@ o p,). The curve (¢(S)\{p,})US. is a level curve
of 4 and the curve S,, is another level curve of 4. Denotes by p: 0,(M) —
r(o,(M)) the composite of g-processes which contracts the component of
0.(2(f.,)) encircled by a fine curved line in the graph of 0,(¥(f,,) in
Figure 28. The graph of u(0,(¥(f,,)) is as in Figure 30. In this graph,
S is the proper transform of S = ¢(S) under the mapping pop o0t
This graph is the same as that of 3(f,,), with S, removed, of f,, in
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Example [B]. By Proposition 2(iii), we can show that there exists a
rational function k& on x(0,(M)) having the same family of level curves
as that of ¢*f,, in Example [B]. Especially, the level curve of k with
value k(u o p1(§02)) consists of two prime curves one of which is po Px(§02)
and another of which is an algebraic curve relevant to S, of fio in
Example [B]. Hence, in a homogeneous coordinate (X:Y:Z) of P?,
Se ={v,=0}, S, ={v,=0} and S = {u=0}. Since R is primitive and
since deg v, and degw, are coprime, we may suppose that R=R,, =
vies@ [yles2) = 42/3%.  From the graph of po,(3(f.,), we see that the curve
p1(§02) is a prime curve of order one of w*h, and that 0,(S) is a prime
curve of order one of w*h,. Hence we may suppose that 4 = 4, = v,u/v,.
Then w(0,(S,) is defined by the equation h, = P(h,) on w(o,(M)), where
P(z) is a polynomial in z of degree a. Hence S, is the level curve of
order one of the rational function +,, — P(R,,) on P* with value 0.
Hence, for a homogeneous polynomial P,(z, z,) in (2, 2,) of degree a with
P,1,0) 0, we have S, = {uv*** — P,(v3, v})v, = 0}.

\

v\
\ —
-1 2\\
\ |
\
-‘1|Sn
|
-2
Ficure 30.

Set u, = uv?®™ — P,(v% v})v,. Then S, = {u, = 0}. Since g, — P(RyY)
is a rational function of degree deg v, + adeg v’ = 10a + 5 on P2, S, is
of degree 10a + 5. Consider the rational function g = v¥s™/’/y? on P
Since S, is a level curve of order 2 of f,, and since S, = {v, = 0}, there
must exist an analytic automorphism @ of P such that f,, = &(g). The
level curve of g with the value —1 is {vi*s™’ + u? = 0}\{p,}. Since
’l)feg(ul) + uf = ,vtlieg(ul) + u“'vi’“““’ — vi(5a+l){v? + uz} — ’UE(MH)’UO’Uz =0 (mod 'Uz)r
we see that w, = (vis“ + u?)/v, is a homogeneous polynomial of (X, Y, Z).
Hence the level curve of g with the value —1 is S,,US,;. We obtain
S = {w, = 0} and f, = (9 + 1)/g = vyw,/v}"*.

Conversely, starting from the graph of X(f,,), we can construct the
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graph of X(f,,), using Proposition 2(ii). It assures the existence of the
functions R, ,, 4, fi,,, for a homogeneous polynomial P,(z, z,) in (2, 2,)
satisfying P,(1, 0) = 0.

§2. Determination.

1.1. Now we prove that, if f belongs to the class (D,) and if the
graph of X(f) is linear, the graph of 3(f) is given by Figure 3 in Chap-
ter 0. Suppose that T intersects B,. Then, as was seen in §1.1, the
shape of 3(f) must be as in Figure 31. Let p: M — p(M) be the g-process
which contracts S.. Since ¢ is minimal, (T?) < —2. So (o(T)» < —1, a
contradiction to the fact that o(7") must have the property (P). We
thus obtain TNB, = @ and (B = —2.

FiGure 31.

For simplicity, we suppose that F', has at least one component with
the self-intersection number smaller than —2. Let K; ( =1 or 2) be
the component of F), corresponding to the left edge of the graph in
Lemma 3(iii) and K, (m =2 or 1) be the component corresponding to
the right edge of the graph.

(i) The case (I, m) = (1,2). By Lemma 2, the graph of 3(f) must
be as in Figure 32. In Figure 32, the portion in the parenthesis may
not exist. First we prove p, = 0. Suppose that p, >0. Then the number
of components of F, with the self-intersection number smaller than —2

TB,
¢ k “ qr- qr 21 Pr Pr-r P _
Si+— p+3 pt+3 p+3 g-+3 q,,+3 a+3 — Sy

1

FiGure 32.
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is 2. Hence the portion in the parenthesis must exist. By Lemma 3(iii),
we have k=0 and p, + 3 = p, + 2, a contradiction. So we obtain p, = 0.

If the portion in the parenthesis does not exist, we have ¢, + 3 =
¢, + 2 by Lemma 3(iii), a contradiction. Hence the portion in the paren-
thesis must exist. Let po: M — p(M) be the og-process which contracts
S.. As was seen in §1.1, p(F.) satisfies the condition of Lemma 3(iii).
We thus see that the graph of F..NJ3(f) must be as in Figure 33.

T
qT
B, +— O0——mm0 —* B,
prt3 2

(pr+3=q,11)

F1Gure 33.

Therefore, the graph of F, must be as in Figure 34.

Sy
K 1 3 r—
B, - o Pr o P . DR LN Lo e S )
QT+3 qr—1+3 q.+3 Pz+3 pr_,+3 Kz
FiGure 34.

By Lemma 3 (iii), weseek +2=¢,+ 3, ¢, +3=¢,+ 3, -*+,q¢,_, + 3 =
¢:+38, @.—2)+3=¢,+3;3=0,+3, p.+3=0+3, -+, p,, +3 =
p, +3. Hence p=p,=:-+=p,=0; ¢,=2, ¢, =¢_,=+-+=¢ =4
and k¥ = 5. Thus f belongs to D) (r=1,2, ---).

(ii) The case (I, m) = (2,1). By Lemma 2, the graph of X(f) must
be as in Figure 35.

B\K,
~ E 3 m—1 P2 Pr 12 gqr q1 ~
S~ (———o——o0——0----- -oO0————000——O0 - --~—~ o———o0 — §,
q|+3 (Ir—l+3 q,+3 Pr+3 p;+3 P1+2
T
(P1>0)
B\K,
~ k pr 12 ¢, 2 ~
3, — L N G- S LA R . LU S — 35,
at4  ¢+3 qm}3 pr-+3 p.+3
(pl:O)

FiGUuRre 35.
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The portion in the parenthesis may not exist. If p, = 0, the number
of components of F, with the self-intersection number smaller than —2
is 2r — 1 and a component of F., cannot exist in the graph, a contradic-

tion. Hence p, must be positive.
By Lemma 3(iii), the graph of F.N2(f) must be as in Figure 36.

pr_l
B, e— —_0 — B,
q,+3
T
(¢:+3=p,—1)
FIGURE 36.

Therefore, the graph of F, must be as in Figure 37.

K, S,
2 q, o 1 k 3p—1 p Pra
B ~— o—o----- -o0———o0—O0——0—0----- o——o0 — B,
pr+3  pt2 pt2 +3 ¢.+3 qrt+3
K,
FiGure 37.
By Lemma 3(iii), we see p, =k, p, =0, —1, Dy =Dy ***, D, = D,_}
$.=0,¢=¢,,9 =4¢,,. Henceg,=¢,=:--=¢, =0, p,=p, = -+

=p,=4, p,=5, k=5. So we see that f belongs to D,,, (r =0,1, --.).
By (i) and (ii), we obtain the graph of 3(f) in Figure 8 in Chapter 0, §2.

1.2. Let f,, be the rational function belonging to D?. Let o: M, —
P* be the minimal resolution of indetermination points of f,,. We define
a r-tramsformation t,: M, — t,(M,) of f,, as follows. If n is odd, z, is
the composite of og-processes which contracts the components of X(f,,)
represented by the diagram in Figure 38(i). If » is even, 7, is the
composite of g-processes which contracts the components of 3(f,,) repre-
sented by the diagram in Figure 38(ii).

_ 312 . 221
(i) ooo (ii)  ooo
Ficure 38.
The graph of 7,(3(f,)US,US,US.) is the graph of D, with S,
removed. By Proposition 2(iii), there exists a curve relevant to S, in

the graph of D! ,. Hence there must exist a unique rational function
Jaoso on P? belonging to D}, such that X(f,_,.) = ,.(3(f..), whose
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minimal resolution of indetermination points is ¢ o z;': 7,(M,) — P%. Set
M, =7z,M,). Let z,_:M, ,— 7, (M, be the z-transformation on M,_,
of f,_.,. As stated before, there exists a curve relevant to S, in the
graph of D!_, and a unique rational function f,_,, on P?* belonging to
D?_, such that ooz;'o k7, (M, ) — P* is the minimal resolution of
the indetermination points of f,_,,. Set M, , =<7, (M,.,). Repeating
these processes, we get a sequence of z-transformations

M, M, , =5 M, 25 2 M- M,
and rational functions f;, (j =1,2, --+-,n) on P* belonging to D] such

that 3(f;,) = T;(3(fo,0), wWhere T; = 7,070 o+ 0T,

By Example [B], f,, is written as f,, = v,0,/v}, where v, =Y, v, =
YZ - X?, u=XYZ— X*—Y® and v,= (v + 4?)/v, in a homogeneous
coordinate (X:Y :Z) of P®. Denote by S§, Si, Si, Si the prime curves
Sos Sezs 1y S. 0of f;,, respectively. We get the recurrence relation S =
Si+, Si =84 (=1,2,---,n —1). Suppose that v, 1 =75—2,75 —1,
7, 7 + 1) are irreducible homogeneous polynomials defining S%, respectively.
Suppose furthermore wv,,, = (v} + w™)/v;,., and wv; = (v}, + w™i-1)/v;_,,
where m, = deg(v,). Since Si = S! = {u = 0}, the level curve of a rational
function v;,,v;_,/v} with value 1 is S{. Hence f;, is written as v;,,v,_,/v}
and 3m; = m;,, + m;_,. So we have

V3 (V3 + wmit) = (V) + u™)® + vfumitt = w4 vd_um™i+t (mod. v;)
= ymit(ymi-t 4+ ;) = umitww;, = 0 (mod. v;) .

By our assumption, v; and v;_, are coprime. Hence v;,, = (v}, + u™i+)/v;
is a homogeneous polynomial.

Consider the rational function g = v},,/u™i*t. Since {v;,, = 0}\{p,} is
the level curve of f;,,, of order 8 and since Si*' = {u = 0}, there must
exist an analytic automorphism @ of P such that f;,,,=®o-g. Since
{9 = =1} = (vl + u™i+1 = 0} = {wv;,, = 0}, we have Si* = {v,;,, = 0}, so
that f;1.0 = (9 + 1)/9 = v4,v;/v}1,. By induction, we get the recurrence
formula in Chapter 0, §2.1.

Conversely, starting from the graph of 3(f.,), we can construct the
graph of X(f,,) by a method similar to that in Example [B]. It assures
that the function gotten by the recurrence formula for a homogeneous
coordinate (X:Y :Z) belongs to D,,.

The restriction f, .|, of f., to V = P>\ (S,,US,US.) is of proper C*-
type. Since m, and m,,, are coprime, the rational function R = v,7 /v,
is primitive. By Theorem 1, the restriction R|, is of proper direct C*-
type. By the classification in Chapter III, §1.4, R must be of C-type.
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Let &: N — P? be the minimal resolution of the indetermination points of
R. The graph of Y(R) = &7'(p,) is easily determined, which appears in
2.2 in this section.

2.1. In this subsection, we suppose that the graph of 3(f) is not
linear and X(f) has k (> 0) diverging components. For simplicity, suppose
furthermore that F', has at least three components with the self-inter-
section number smaller than —2. Suppose that T intersects B,. Then,
using Lemma 3(iii) for F,, we see that X(f) cannot be an exceptional
curve of the first kind, a contradiction. We thus obtain TNB, = &.

Define K, and K, as in §1 and define K, and K, as in §2.1.1. Denote
by A; (3 =1,2, -+, k + 1) the j-th branch of X(f) (see Chapter I, §2.1).
By Lemma 3(i), the curve F,\ T is an exceptional curve of the first kind
which contains only one irreducible exceptional curve S, of the first kind.
Denote by A} the j-th branch of F,.\T. By assumption, F..\ T has k
diverging components. There occur four cases, that is, (i) (I, m) = @, 2)
and p, >0, (i) ¢, m)=(2,1) and p, >0, (iii) ({, m) =(1,2) and p, =0,
@iv) ¢, m)=(2,1) and p, =0. In the following, we determine X(f) in
the case (i). In the remaining cases, 3(f) is determined similarly.

By Lemma 3(iii), we know that the graph of F, is as in Figure 39.

S,
pr p 1 q1 qr 2
B ~ o0—0-----0—0D0——0----- o——o0 — B,
q,+3 qr..t3 ¢;+3 n+2 p,+3  p+3 K
K, !
FIGURE 39.
By Lemma 2, the graph of A, is as in Figure 40.
B,

a—1 q v qr 21 pr Dr N
(——O——0----- O——O0——000——O0———O - - == o—
Cr ~— p+3 p,+3 pr+3 g +3 gy +3 at+3 — 8,

K,
F1GURE 40.

The portion in the parenthesis may not exist. In such a case, we
put a, = 0. We denote by C; the diverging component of F,,\ T common
to A} and A},,. By Lemma 3, the graph of Aj,, is as in Figure 41.

Hence, by Lemma 2, the graph of A, is as in Figure 42.

In Figure 42, the symbol in Figure 43 (i) is the abbreviation for the
diagram in Figure 43(ii) and the symbol in Figure 43(iii) is the abbrevi-
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s T
q¢-|-3 qro1+3 ¢, +3 axtl’ p1+3 p.+3 pr+3 2
B, ~ o——o0------ o—o0b—0—0----- ©o—o0o——o0 — B,
Pr P 2a,—1 @ qr-1 qr
C
" (ak>0)
A z
¢rt+3 ¢r1+3 g3 a2 g, Qr-1 Gr 2
., — 00— 0 -mm0—0b——0----- -o——©o——0 — B,
pr P2 p,+3 p,+3 prt3
C
* (akzo)
FIGURE 41.
A,
L\lk—l_];\)pl*loc pr G O ak—lggﬁl ‘1523 qm;gc qr @
c 3 @t3 ¢+5p+3 mt3 2 pr 22 p+3 pit2
k-1 Cs (a,>0) B.K, S
4
(ak-l—l =l _ p. _ qr o '!‘In+2 qr‘ggc qr g @
3 @+3 ¢+5 p,+3 mt3 Pr 22 pt mt2 _
Cir+— Cy B,K, —- S,
(akzo)
FIGURE 42.
ation for the diagram in Figure 43 (iv).
q.+3 qr-2+3  qr+3
i <& (i) —© O -o0—0
2 Pra
Prat+3 pst3 p+3
(iii)  -&F (iv) —_— 00 O- . o8
qr-a 2

FIGure 43.

By Lemma 3, the graph of A; is as in Figure 44. When q, = 0,
the portions in the braket must vanish. By Lemma 2, the graph of A4,
is as in Figure 45.

Repeating these processes, we obtain the graph of A,. If k is odd,
the graph of A, is the same as the graph of A,. If k is even, the graph
of A, is the same as the graph of A,. So we see that the graph of
AN S.. must be as in Figure 46.
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+1':A'°I"
q‘+3 pr 4rt+2 ‘hak‘l :akﬂ_lpl—l pr  d4r q1 ax—1
—_— o o ood o oF—o0—O0@—fo——1
2 qr+3 p+3 p+22 3 ¢+3 ¢+5 p+3 p+3_ Cy
Ch-
o (ak—l>0)
AL
‘11'&'}3(:‘l Dr Aq7+2 ptlip—1 Pr  qr q, ak—]-]
P +3 prt3 @ 3 @td ¢+5 p 43 3 .
Ce
o (ar-1=0)
Figure 44.
a1
rag—1p—1 Pr qr @ ap2—1

+3 pr qrt2
ql{)-G P i O-Gq‘ O—
Py a-+3 p+3 pt22 3 @+3 ¢t5 prt3 mt3 L |

Ciar (ak—1>0)
I
1A,
V. — ax_,—1
:+3 p, Uqr+2°@ p&éﬁx 1c><3 pr_ dr @ Gkl
Dy q,+3 p,+3 ¢ 3 . +3 (IT+5pr+3 pi+3 — C;;,z
Crn (akA\ZO)
FIGURE 45.
l 'R qr Pr p—1 a,—1
¢ ) -0 O >0 fo -] —
pl+3 pr+3 qr+5 q1+3 3
(k: odd)
l p—1 Dr qr 'R a,—1
(——oo—oF—o0—oxF—Ff—-] — C(
3 q:+3 ¢r+5  p.+3 pt+3
(k: even)
FIGURE 46.

The portions in the braket must vanish if a, = 0. Since 4] is an
exceptional curve of the first kind, we can determine p;, ¢; ( = 1,2, -+, 7)
by Lemma 2. If k is odd, the portion in the parenthesis does not exist.
Weseeq, +3=3,¢.+3=¢,+8,--+,¢,+8=¢q,,+3,¢,+5=p,+1,
Pp+383=p,_,+38, -, 0+3=p,+3 and p,+8 =(p, —1) +3. Hence
,=¢=++=¢=0,p,=p,=:+-=p,=4and p, =5. So, if k is odd,
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we see that f belongs to D&%, (r =2,8, ---). If k is even, the portion
in the parenthesis must exist. We see [ +3=p,+38, (p,— 1)+ 3 =
P.+3, 0, +3=p9+38,--,0,,+3=9,4+3,p,+1=¢q,+5,q¢,_,+3 =
9. +3,-,¢,+3=¢q¢,+3and 3=¢q,+3. Henceq,=¢,=+:--=¢q,=0,
p,=P;=--+,0,=4 and p,=1=05. Thus, if k¥ is even, we see that
f belongs to Df3, (r =2,8, -.-). In the remaining cases, we can deter-
mine the graph of Y(f) similarly. We get the graph of X(f) in Chapter
0, §2.8. Thus we obtain Proposition 0.

2.2, Let f = f,, be a rational function belonging to D}*. Let
M, =M, -Z=M_ . 2 -2 M= P

be the minimal resolution of the indetermination points of f,, by o-pro-
cesses. We define the birational mapping 0,: M, — N, as follows. Let
v, w be homogeneous polynomials which define S., S;. The restriction
fly of f to V=P>\(S,,US,US.) is of proper C*-type on V. Consider
the rational function R = w*/v* on P*? for coprime positive integers «,
and «, satisfying «,deg(w) = a,deg(v). Since @, and a, are coprime, R
is primitive. Hence, by Theorem 1, the restriction R|, is of proper direct
C*-type on V. Hence R is of special type on P? and is not of torsional
C*-type. By the classification in Chapter III, § 1.4, R must be of C-type.
Let &,: N, — P* be the minimal resolution of the indetermination point
p, of R by o-processes. The graph of X(R) = &' (p,) is easily obtained
from the graph of X(f,,.) = ¢%v'(p,) where &, = 0,0 0,0 -+ 00,. Set p,=
(&) o 6% The definition of p, is independent of the choice of », w.
Another definition of p, is as follows. Suppose a, > 0. If fe D} and &
is odd, or, if fe D¥~ and k is even, then p, is the composite of o-processes
which contracts the components of X(f,,) represented by the graph in
Figure 47.

If feD}" and k is even, or, if fe D} and k is odd, then p, is the
composite of g-processes which contracts the components of 3(f,,) repre-

2 312 2 61
————0——000 (y= _0—o0—— =
ay—1 ay—1 (n=1) ar—1  ax—1 4 (n=2)
2 8 21 2
a—1  ap—1 TC—I :Er (n=2r+1)
2 8 51 2
a—1  a—1 r:~1 3 ®T : (n=2r+2)

FIGURE 47.
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sented by the graph in Figure 48.
If a, =0, the birational mapping p, is determined similarly. The

graph of Y(R) when k =1 and fe D! is as in Figure 49.

2 312 2 3 15
(n=1) O— O -00 -
a,—1 a,—1 ax—1 a,—1 3 (n=2)
2 3 12
=2
a—1 a1 L : (n=2r+1)
2 3 15
ap—1 O ar—1 :®r 3 OO@T (n=27+2)
FI1GURE 48.
251222 32271
——gooogo4 (n=1) p 408000 80 (n=2)
1 1
2 25 12 22
D 3 8 @ EDS @ (n=2r+1)
T 1 T r 1 r
322 12 25
5 4 1 71 r 3 1 r (n=2r+2)
FIGURE 49.

If ¥ =1, by the shape of the graph of XY(R), we can determine S,
and S,, by a method similar to that in Example [C]. If feD}*, then
S.={v,=0}and S,, = {v,1, = 0} in a homogeneous coordinate (X:Y:Z7)
of P:. If feD}, then S, = {v, = 0} and S,, = {v,_, = 0}.

In the following, we suppose f¢ D}~. Let H, H. be the level curves
of &R with values 0, «, respectively. The graph of H, is linear. Let
E be the unique exceptional irreducible component of the first kind of
Y(R). The restriction ¢}R|; of &R to E is non-constant. Let C. be the
irreducible component of H,, intersecting E and let C, be the irreducible
component of H, located at the edge of the graph of H, which does not
intersect E. Let the mapping w: N, — w(N,) be the composite of o-pro-
cesses which contracts (H,\C,)U(H.\C,). The image w(Z(R)) consists
of three smooth rational curves w(H.), w(E), w(H,) with the property
(P) such that (w(H.)-w(F)) = (w(E) -w(H,)) =1, (o(H.) -w(H,)) =0. By
Proposition 2(ii), there exist rational functions %,, h, of P-type on w(N,)
with no critical value such that w(H.) and w(H,) are level curves of h,
and such that w(F) is a level curve of h,. Since R is primitive, we may
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suppose that &R = w*h,. Let S’ be the level curve of h, passing through
the point w(H.\C.). The curve S’ satisfies (S'-w(H.)) = (S"-w(H,)) =1
and (S'-w(E)) = 0.

For k = 2, we define the birational mapping z,: M, — 7,(M,) in the
following way. If » =1 and a, = 0, then 7, is the composite of g-pro-
cesses which contracts one of the parts of 3(f,,.) represented by the
diagram in Figure 50(i). If » =2 and a, = 0 and if the right hand side
of the graph of 3(f,,) is H,(a;), then 7z, is the composite of o-processes
which contracts the components of 3(f,,) represented by the diagram in
Figure 50(ii). If » =2 and a,_, =0 and if the right-hand side of the
graph of X(f,,) is H}X(a,), then 7, is the composite of g-processes which
contracts the encircled components of 3(f,,) in the graphs in Figure 51

1 2 1 4
(0 0] o—
(i) (ii)
Figure 50.

(ax>0) (@x=0)
FIGURE 51.

and blows-up a point marked by a cross in these graphs. In the other
cases, we define 7, by 7, = 0,4, ° 0420 *++ ©0,, Where ¢ is the integer
such that o, M/ — M/_, is the o-process which contracts the image of
G102+ 0o0,(B,) on M]. We call the mapping 7, the z-transformation
with respect to f,, and set M,_, = 7,(M,).

Let S’ be the proper image of S’ under the mapping 0;'c w™. The
graph of 7,(3,US,US.US) is the graph of D}'* with S, removed and
74(S") corresponds to S, in this graph. By Proposition 2(iii), there exists
a curve relevant to S, in the graph of D!'* (see Example [C]). Hence
there exists a unique rational function f,,_, on P? belonging to D '*
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whose minimal resolution of the indetermination point is &, o z7;*: M,_, — P*
and such that 3(f,,_,) = 7. (2(f..). If feDFt, then f,, ,eDk'+. If
feD}, then f,, ,eDF'". Let z,_;: M,_, — 7,_,(M,_,) be the z-transfor-
mation Wlth respect to f,,_, and set 7,_,(M,_,) = M,_,. As stated before,
we know that there exist curves relevant to S, and S, in the graph of
D}**, There exists a unique rational function f, ,_, on P? belonging to
D}** such that X(f,._.) = 7,_.(Z(f.r1). Repeating these processes, we
get a sequence of z-transformations z;: M; — M;_, and rational functions
f..; on P* belonging to Di* (7 =1, 2, ---, k), such that 3(f, ;) = #,(3(f..r)
where T; = 7;,,07;4,0 +++ o7,. The level curve of f,, with value oo is
also the level curve of f,; with value « (j=1,2,---,k —1). Hence
we may suppose that » = v,. Denote by S, ;, Si;, S.; the prime curves
Sus Sees S, of f,; respectively. We get the recurrence relation S, ; =
S02,j+1° _ N

Let u,_, be a homogeneous polynomial defining S, ,_, = G,(S). The
proper image of S, under the mapping ® o &' is the point w(H.\C.).
The proper image of S, , under w o &' is the point w(H,\C,). Hence
we may suppose (@ o &')*hy, = u,_,v¥/w™, where p, and s, are positive
integers detemined as follows. Let %,: N — P* be a minimal resolution
of the indetermination point p, of 4 = (w o &*)*h,. The graph of S(v) =
N (p,) is easily obtained from the graph of Y(R). The graph of the
level curve of ¢ with value o is given in Figure 52(a) if » = 1, given
in Figure 52(b) if fe D¥* and k is odd, or, if fe Dt and k is even, and
given in Figure 52(c) if fe D" and k is even, or, if fe DF~ and k is odd.

0
(a) o

(b) o 0@30@ oe)—gO@

r— l1 r—1
(n=2)
(n=2r+1) (n= 2r+2)
4 2 6 22 6 52
() og——— o@oe® o@oo——0
1 3 r—1 1 r r—1 1 3 r
(n=2) (n=2r+1) (n=2r+2)
FiGure 52.

By Lemma 4, the order s, of the level curve S, of 4 with the value
o is determined. If feD}*, then s, = (b,, + 3(—1)*b,,_,)/2. If fe D},
then s, = (b, + 3(—1)*7"b,,_5)/2. The integer p, satisfies p, = (s, deg w —
deg u,_,)/m, for m, = degwv,.
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The proper image S of §1,k under the mapping w o &* is a smooth
rational curve satisfying (S-w(E)) = a, and (S-w(H,)) = (S-w(H,)) = 1.
If a, >0, then S is tangent to w(#) with order @, — 1 at the point
o(E)Nw(H,). Since w(H.) is the level curve of h, with value « and
w(E) is the level curve of h, with value <, the equation h, = P, (h,) on
@(N,) defines S, where P, (z) is a polynomial of degree a,. Hence S,,
is the level curve of the rational function 4 — P, (R) of order one with
the value 0. Set w,_, = w. The polynomial %, = u,_jvfterdeswr— _
P, (we, vas @)k, defines S,, where P, (2, 2,) is a homogeneous poly-
nomial in (2, 2,) of degree @, and P, (1,0) # 0. The degree of wu, is
aym, deg(w,_,) + s, deg(w,_,) = m, (¢4 + a, deg(w,_,)) + deg(u,_,). Suppose
furthermore wvi*s®“s— + o™ = w,_,w,_,, where w,_, is a homogeneous poly-
nomial defining So”_l = —01,,,_2.

Consider the rational function g = vie™“®/y» on P?. By Proposition
0, S, is the level curve of f,, of order m,. Since S, = {v, = 0}, there
must exist an analytic automorphism @ of P with f,, = @(g). The level
curve of g with the value —1 is defined by vi¢™“¥ + ypr». Since

,vt’:lleg(uk) + ’M)T” = ,Ugeg(uk) + (uk_l,v’;:k+akdeg(wk_1))m,,, (mod. wk—l)

d n ( d -
— {,Uneg(uk_l) + uk_nl},vr,,, sr+agdeglwg_y))

Wy Wy _pVpn ekt @i—1) = 0 (mod w,_,) ,

w, = (vE™¥ 4+ yPs)/w,_, is a homogeneous polynomial. Hence the level
curve of g with the value —1 is S, ,US,, and S, , is defined by w,.
Hence f, , = (9 + 1)/g = w,w,_,/vi*“¥. We obtain the recurrence formula
in Chapter 0, §2.1 by induction.

Conversely, starting from the graph of X(f,,), we can construct the
graph of 3(f,,) using Proposition 2(ii). So the function obtained by the
recurrence formula belongs D}*,

Since deg(v;) and deg(v;4,) are coprime and since deg(w,) = m, deg(u,) —
deg(w,_;), we can prove inductively that deg(w,) and m, are coprime.
Hence the rational function R, , = wip™/vi*™-1 is primitive. Kashiwara
has proved that a rational function R of C-type belonging to .&#;; on P?
is written as R = A(R,,) in a homogeneous coordinate (X:Y :Z), where
A(z) is a rational function of z. By a method similar to those in Chapter
II and Chapter III, §1, we can prove the result of Kashiwara. Set
W = Up_ VEE[wi,. As was seen in this section, the mapping 6 defined
by 6(p) = (R, (D), ¥, (p)) is a birational biregular isomorphism of
P>\ (S,US,,,) onto C*xC.

When f belongs to Di~, we can also prove the recurrence formula in
Chapter 0, §2.1 similarly. The rational function R,, of C-type belongs
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to #1.

Chapter III. Rational functions of C*-type on P2,

§1. Critical level curves.
1. Rational functions of proper C*-type. Here we prove the following.

PROPOSITION 3. Let f be a primitive rational function of direct
C*-type on P2 Thre exist a triple S, S,, S; of prime curves of f and
an analytic automorphism T of P such that the restriction T o f|, of
Tofto V=P (S,US,US,) is of proper direct C*-type, where S, is the
closure of S, in P*.

We use the following lemma to prove this. (See M. Oka [5, p.233].)

LEMMA 5. Let C be an algebraic curve on P®. If C hasl irreducible
components, then the first Betti number b,(P*\C) of P*\C equals [ — 1.

PrOOF OF PROPOSITION 3. Let ¢: M — P*? be the minimal resolution
of the indetermination points of f by o-processes. Let B, and B, be basic
sections of o*f. We may suppose (B}) = —1. The curve B, intersects
the other components of X(f) = o7'(I;) at most two points. Hence, for
a suitable analytic automorphism T of P, each point p of B, satisfying
To f(p) # 0, = is a regular point of 3(f). Clearly, ¢ is the minimal
resolution of the indetermination points of g = T'of. Since o*gls, is a
rational function degree one on B,, each level curve F, of g*g with value
¢ intersects B; at one ordinary point of F', transversally for each 7. Since
a componet of F, intersecting B, is of order one, Lemma 3 (i) shows that
the union E, of all prime curves of the level curve F, which do not
intersect B, is an exceptional curve of the first kind. Let the mapping
7: M — (M) be the composite of o-processes which contracts the curve
UE,, where ¢ varies over C*. The restriction ki|,, of A = (6 o z7)*g to
V'=tM)\N{h =0U{h = «}Ur(B)U(B,) is of proper direct C*-type.
The restriction o o 7%, of the birational mapping ¢ o z™* is a biregular
mapping of V' onto V = ¢ o z7*(V’). Since the first Betti number of V'
equals 2, Lemma 5 implies that P*\V is an algebraic curve with three
irreducible components C,, C,, C; which are the closures of prime curves
S, S,, S, of f, respectively. Since hl,. is of proper direct C*-type, T o f|,
is of proper direct C*-type.

2. The first Betti numbers and the Euler characteristics of level
curves.

LEMMA (Nishino). Let f be a primitive rational function on P2
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Denote by L the topological model of regular level curves of f and let
L, be a critical level curve of f. Then b,(L,) < b(L) and X(L,) = X(L),
where b,(x) and X(*) are the first Betti-number and the Euler character-
istic of x, respectively.

PrOOF. Let (X:Y:Z) be a homogeneous coordinate of P*. Suppose
that f is a rational function of degree n on P?:. The function f is
represented as f = P/Q, where P, Q are homogeneous polynomials in
(X:Y:Z) of degree m. Set N=,,,C,— 1. We denote homogeneous co-
ordinates in PY be W,,., where k, k, k, are arbitrary non-negative
integers such that k, + k, + k., = ». The Veronese mapping »: P* — P¥
defined by W,,,, = X*Y*Z" is an analytic imbedding of P* into P".
The so-called Veronese variety v(P?) is smooth in P?. Suppose P =
A, XY ZR and Q = 3 By, X0 YMZ%. Set p = > Ap i, Wiy, and
Q= > Bigieyi, Wigiyg- ~’Ilhen, the rational function P/Q of degree one on
PY satisfies f = v*(P/Q).

Let L, be a critical level curve of f with value ¢, and let ¢, (# ¢,)
be a complex number. We regard H = {P — ¢, = 0} as the hyperplane
at infinity and denote by (w,, w,, ---, wy) an inhomogeneous coordinate
of C¥ = P"\H. The manifold V = v(P)\ H is biregularly isomorphic
to the domain V = {pe P:\I;|f(p) #e¢}. Set 2= {3V, |w,P<a’}nV
for each real positive number a. Denote by 2~ the inverse image v“(ﬁ"‘).
Then 2°ccV. Set o =3V |w.* and ¢ = v*®. The function ¢ is
strongly pluri-subharmonic on V. Let «, be a number such that
L,Nn2* % @. Then there is an open neighbourhood U of ¢, such that
Lo =L,N02% #%= @ for any ce U, where L, is the level curve of f with
value ¢. For each real number a > a,, we denote by L2 the analytic
continuation of L% in Q-

If a, <a<pB, then b(L2) = b(Lf) and X(L%) = X(Lf). To see this,
suppose that | = b,(L%) > b,(Lf). Let c,c, --+, ¢, be I cycles on L* whose
homology classes [c.]., [C)es ***, [¢]« generate H(LZ, Z). There must exist
a set of integers (m,, m,, -+, m;) such that at least one m; is not zero
and such that the homology class [c]; of ¢ = m,¢, + me, + -+ + mye, is
the zero element of H,(L!, Z). Hence there exists a subdomain S of L#
such that oScCsuppc and such that SZL2?. Since dSC 2% ¢|; takes a
maximal value at an interior point of S, which contradicts the fact that
@ is strongly pluri-subharmonic. Hence b,(L%) < b,(Lf). Suppose that
X(L% < X(Lf). By assumption, there exists a simply connected component
of LN L? whose boundary is contained in 02°. It leads us to a contra-
diction. Hence X(L%) = X(L%).

From the above fact, we see that b,(L%) < b,(L,) and X(L2%) = X(L,).
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Suppose that a, is so large that L: intersects all the irreducible compo-
nents of L,. Let p, p, -+, », be the singular points of L.. For a
sufficiently large @, we have b,(L%) = b,(L,,), X(Ls) = X(L,,) and {p;}CLs,.
Suppose that L, is a regular level curve of f. There exist bicylinders
v, with the center p; (j =1,2, --+, k) in coordinate neighbourhoods such
that Lg N7; is simply connected and for ¢ sufficiently near to ¢, L¢N\U";
is a topological covering surface of Lf\U7; (with no branch point and
with no relative boundary). Hence b,(L¢) = b,(L5), X(L$) < X(L:). There-
fore b,(L,) = b(L,) and XU(L,) = X(L,).

COROLLARY. Fach prime curve of a rational function of special
type on P? is of C-type or of C*-type.

REMARK. Let S be a prime curve of f with value ¢ and {p;} be the
set of intersections of S with the other prime curves of f with value c.
Then S’ = S\ {p,;} satisfies b,(S") < b,(L) and X(S’) = X(L). The proof is
almost the same as that of Lemma 6.

3. Proof of Theorem 1. Let C be an algebraic curve on P? such
that the restriction f|, of a rational function f on P* to V = P*\C is
of proper C*-type. Let g: M — P? be a resolution of the indetermination
points of f by a finite sequence of o-processes. Set V =o' (V). The
mapping gl;: V — V is a biholomorphic mapping of V onto V. Set & =
o*fly and M’ = M\ ({o*f = 0}U{o*f = =}). Let L, denote the level curve
of & with value ¢ and F, be the level curve of &, = ¢*f|,, with value ec.
Assume that F, is reducible. Since L, is irreducible and of order one,
we see by Lemma 3(i) that the closure of F,\ L, is an exceptional curve
of the first kind. Let z: M’ - z(M’') be the composite of o-processes
which contracts U(F,\L,). Set h = (r")*h and set h, = (t")*h,. The
function h, is of P-type and each level curve of h, is irreducible. The
image of the union of basic sections of ¢*f under ¢ is H = t(M")\z(V).
So H intersects each z(F,) at two points transversally. Hence H is a
smooth algebraic curve in z(M’).

Let g be a primitive rational function on P? whose restriction g|, to
V does not take the values 0, « on V. Set k = (6 o 77)*g|.s, and k, =
(6 °o7t™)*g|. . Since k does not take the values 0, « on z(V), k has no
point of indetrmination on H. Therefore, if the restriction k|, of &
to some level curve 7(L,) of h is constant, then the restriction of %k to
any 7z(L,) must be constant. Hence g is of proper C*-type.

Suppose that the restriction k|, is non-constant for each ceC*.
For a fixed number ¢, let g, 7(L, — C* be an analytic isomorphism of
7(L,) onto C*. The variable { = g, (p) (p ez(L,) is a global coordinate of
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7(L,). The mapping ko ¢;' is a non-constant regular mapping of C* onto
C*. Hence we have ko p;* = al™ for a non-zero constant « and a non-
zero integer m. So each prime curve of k is non-singular and of order
one and the mapping k: (V) — C* is surjective. An irreducible component
of H is a prime curve of k, with value 0 or «. Hence the closure of
a prime curve of k& does not intersect H. A prime curve S of k is a
covering surface over C* with the projection hls: S — C* which has no
branch point and no relative boundary. Hence each prime curve of k is
of C*-type. By Lemma 6, each level curve of k is irreducible. Therefore
k is of proper C*-type on z(V). This means that the restriction g|, of g
to V is of proper C*-type. If f is of direct C*-type, the first Betti
number of 7(V) is 2. Hence g must be of direct C*-type, if f is of direct
C*-type. This Theorem 1 is established.

4. Classification. Let f be a primitive rational function of C*-type
on P? and B be the union of basic sections of o*f. For a suitable set
e* = {a, a, -, a,} of values of ¢*f the triple F' = {M*, 6*f|y, P\e€*)
is a locally trivial analytic family of curves with the fibre C*, where
M* = MN\(BU U, (6*f)a,)). If fis of direct C*-type, then b,(M*) =m.
If f is of torsional C*-type, then b,(M*) = m — 1.

Set C = U, L,, where L, is the level curve of f with value a,. Since
P*\C is homeomorphic to M*, we get the following proposition from
Lemma 5.

PROPOSITION 4. If f s of direct C*-type on P?, then f has one level
curve with two irreducible components and the other level curves of f
are trreducible. If f is of torsional C*-type on P2, then each level curve
of [ 1s irreducible.

Since each level curve of ¢*f is simply connected, a singular point
of each level curve of f is an ordinary double point. Since each level
curve of o*f intersects B at most two points, a connected component of
each level curve of f has at most two boundary points. Each prime curve
of f is smooth and non-compact. If a level curve of f is irreducible, of
C*-type and of order one, then it is regular. By Lemma 6 and Remark
after it, we see the following facts for a critical level curve L, of f. (a)
If X(L,) =0, then L, is of C*-type, irreducible and multiple. (b) If
X(L,) = 1, then one of the following three cases occurs. (i) L, consists
of two prime curves both of which are of C-type. They intersect each
other at one point in P*\ I, transversally. (ii) L, consists of two prime
curves disjoint in P*\I; and one of them is of C-type and the other is
of C*-type. (iii) L, is irreducible and of C-type. (c¢) If X(L, = 2, then
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L, consists of two prime curves disjoint in P?*\ I, both of which are of
C-type.

Let e = {c, ¢, -+, ¢,} be the set of critical values of f and L, be the
level curve of f with value ¢;. Set X = P*\([,U(U™,L,;). The triple
(X, flx, P\e) is a locally trivial analytic family of curves with the fibre
C*. Hence X(X) = X(C*)X(P\e). Therefore, X(P*\I;) = X(C*)X(P) +

7 AX(L,)—X(C*)}. Since X(C*)=0, we see X(P*\I;)=>™ X(L,). Suppose
that f has two points of indetermination. Since X(P*\I;) =1, we have
m X(L)=1. By Lemma 6, X(L,) =0 for each i. Hence one critical
level curve L, satisfies X(L;) = 1. If 4 # 14, then X(L,) =0 and all the
level curves of f, except L,, are irreducible. Since f must be of direct
C*-type, Proposition 4 shows that L, must be reducible. Therefore, f
belongs to one of the following two classes.
Class (A): A level curve L, satisfies the condition in (b), (i) and the
other level curves are irreducible and of C*-type.
Class (B): A level curve L, satisfies the condition in (b), (ii) and the
other level curves are irreducible and of C*-type.

Suppose that I, consist of only one point. Since X(P*\I;) =2, we
have >\, X(L,) = 2. We may suppose that X(L,) = X(L,) = 1and X(L,) =0
for + #1,2, or that X(L,) =2 and X(L,) =0 for ¢ # 1. Assume that
X(L) = X(L,) =1. If f is of direct C*-type, then, by Proposition 4, we
may suppose that L, satisfies the condition in (b), (iii) and L, satisfies
the condition in (b), (i) or (b), (ii). Therefore, f belongs to one of the
following two classes.

Class (C): A level curve L, satisfies the condition in (b), (iii) and another
level curve L, satisfies the condition (b), (ii) and, furthermore, the other
level curves are irreducible and of C*-type.
Class (D): A level curve L, satisfies the condition in (b), (iii) and another
level curve L, satisfies the condition (b), (i) and, furthermore, the other
level curves are irreducible and of C*-type.

If f is of tosional C*-type, then, by Proposition 4, each level curve
of f is irreducible. Hence we have the following class.

Class (T): Two level curves L,, L, satisfy the condition (b), (iii) and the
other level curves are irreducible and of C*-type.

Assume that X(L,) = 2. Then we have the following class.

Class (E): A level curve L, satisfies the condition in (¢) and the other
level curves are irreducible and of C*-type.

By Proposition 4, f is of torsional C*-type if and only if f belongs
to Class (T). This fact is used in §3. Suppose that R is a primitive
rational function of C-type on P%. By the same method as in the proof of
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Proposition 4, we can prove that each level curve of R is irreducible.
By Lemma 6, each level curve of R is of C-type.

§2. Functions of direct C*-type.

1. Functions of C*-type with one point of indetermination. In
this subsection, we determine the rational functions of direct C*-type on
P?* with one point of indetermination. By Proposition 3, there is an
analytic automorphism 7 on P such that T o f|, is a rational function
of proper C*-type on V = P*\(C,UC,UC,), where each C;, (: =1, 2,3) is
the closure of the prime curve S; of f. Let S, be a prime curve of
C-type of f with value a different from S,, S,, S;,. Since S,NV is a
prime curve of C*-type of f|,, the level curve of f with the value a
must satisfy the condition (b) (i) in §1.4 of this chapter. By the classi-
fication of rational functions of C*-type in that subsection, at least two
of the prime curves S,, S,, S, are of C-type. We suppose that S, and S,
are of C-type.

Let ¢, be an irreducible homogeneous polynomial defining C; for each
4. The function T o f is written as T o f = a,tMt2t® for a non-zero con-
stant a, and three integers a,, a,, a, satisfying >3, a,degt, =0. We
may suppose that «, is positive. Let B, and B, be coprime positive
integers such that B, degt, = B,degt, The rational function R = tfi/tf
is primitive. By Theorem 1, the restriction R|, of R to V is of proper
direct C*-type. Since R is not of torsional C*-type, the classification in
§1.4 shows that R must be of C-type. Each level curve of R with the
value different from 0, o is irreducible and intersects C, at a point in
P*\I;. Since the restriction R|,, is a rational function of degree one on
C,, a level curve L of R is of order one and each L intersects C, trans-
versally.

Suppose that f belongs to .#7;. Then R belongs to 7. Since R
is primitive, R is written as R = a,R,, or as R = a,(R,,)™" in a homo-
geneous coordinate (X:Y : Z) of P? where a, is a non-zere constant. So
degt, and degt, are coprime and B, = degt,, B, = degt,. Hence there
exists a rational function +,, of C*-type on P* such that the mapping 6
defined by 0(p) = (R, (D), ¥...(p)), » € P*\(C,UC,) is a birational biregular
isomorphism of P\ (C,UC,) onto C*xC. Then the equation 4, , = ¥(R, )
on P\ (C,UC,) defines C, for some rational function ¥'(z) = P(2)/z', where
P(z) is a polynomial in z and [ is a non-negative integer. Hence C, is a
prime curve of order one of the rational function «+,, — ¥(R,.). The
locus of poles of «,, — (R,,) is contained in C,UC, Since degt¢, and
degt, are coprime, there exists an integer p such that S, is a prime
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curve of order a, with the value 0 of f, = (R, )" {¥n: — T(R, )} Then
the function f is written as f = a,f, for a non-zero constant a,. Since f
is of C*-type, a, = 0. Since f is primitive, the integers p and «a, are
coprime.

Conversely, in a homogeneous coordinate (X:Y :Z) of P? the equa-
tion 4, , = ¥(R,;) on P*\({w,_, = 0}U{v, = 0}) defines a prime curve S
of order one of the rational function 4, , — ¥(R,,) on P* where ¥(z) =
P(z)/2" and a polynomial P(z) and a non-negative integer [ are arbitrary.
Since the level curves of R,, with value 0, c are multiple, the closure
S does not intersect them. Hence S is of C*-type. The restriction R, |,
of R,, to V=P \({w,_,=0}U{v, =0}US) is of proper direct C*-type.
Consider the rational function f, = (R, )" {¥., — ¥(R,..)}* for coprime
integers p and q (# 0). The curve S is a prime curve of C*-type of f,
with the value 0. Hence, by Theorem 1, f, is direct C*-type on P2 The
curves {w,_, = 0} and {v, = 0} must be the closures of prime curves of
f,- Hence f, belongs to 7. The restriction |, of 4 = 4, , — T(R, )
to each level curve L of R,, is a rational function of degree one on L.
Hence the mapping 6, defined by 6,(p) = (R, .(p), ¥(p)), p € P*\({w,_, = 0}U
{v, = 0}) is a birational biregular isomorphism of P*\ ({w,_, = 0}U {v, = 0})
onto C* xC. Hence f, is primitive. As is seen in Proposition 5, a rational
function of C*-type with two points of indetermination belongs to .&7.
Hence we obtain the following theorem announced in Chapter 0, §2.2.

THEOREM 2. A primitive rational function f on P*® is of direct C*-
type and belongs to i if and only if f is represented as f= T o f,
where T is an analytic automorphism of P and f, = R: (¥, — U(R, )}
Here (R, ., ¥ar) 18 @ patr of rational fumctions of special type belonging
to 1 given in Chapter 0, §2, p and q (# 0) are coprime integers and
T is a rational function P(2)/2' in ome variable z for a polynomial P in
z and a non-negative integer 1.

Suppose that f belongs to .#7. Then R belongs to .&;. Let C,bea
prime curve of degree one. The rational function R defines a regular
function T, on C* = P*\C,. Let (x, y) be an inhomogeneous coordinate
of P* with C, regarded as the complex line at infinity. Then T, is a
polynomial function of (x, ¥). By Jung [1], we know that there exists a
polynomial T,(x, ) such that the transformation («', ¥') = (T\(x, ¥), Ty(x, %))
is an algebraic automorphism of C®. Hence fis written as f = o, T7{T, —
¥(T)}* for copime a, € Z* and a, € Z \ {0}, where ¥ (2) = P(z)/z}, P(z) is a
polynomial in 2z and ! is a non-negative integer. Since f is primitive,
a, and «, are coprime. The converse is not true. There is a case where
THT, — T(T)}* is of C-type.
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2. Functions of C*-type with two points of indetermination. In
this subsection, we determine the rational functions of C*-type with two
points of indetermination. We use the following lemma.

LEMMA 7. Let C be an algebraic curve on P* whose complement
P2\ C 1is simply connected. Then C is an irreducible curve of degree
one, that is, a complex line.

PROOF. Suppose that the degree v of the curve C is not 1. Let L
be a curve of degree one on P2 Let (X:Y:Z) be a homogeneous co-
ordinate of P? such that L = {Z =0}. Let P(X, Y, Z) be an irreducible
homogeneous polynomial of (X, Y, Z) defining C. Consider an analytic
function ¢ = {Z*/P(X, Y, Z)}'*. The Riemann domain of & over P>\ (C is
y-sheeted and unramified with no relative boundary, which contradicts
the assumption that P*\C is simply connected. Thus we have our
lemma.

Let f be a primitive rational function of C*-type with two points
of indetermination on P:. Let g: M — P? be the minimal resolution of
indetermination points of f by o-processes. Let B,, B, be two basic sec-
tions of ¢*f. Since ¢ is minimal, we have (B?) = (B2 = —1.

First, we prove that there is at most one irreducible multiple level
curve of C*-type of f. Suppose that f has two irreducible multiple level
curves with the values ¢, ¢, respectively. The graphs of level curves
o*f with the value ¢,, ¢, are determined by Lemma 3(iii) in a way similar
to that of Chapter II, §1.1. Each B, (# =1, 2) intersects at most two
other components of X(f) = 07*(I;). Hence a level curve of ¢*f with the
value different from e, ¢, consists only of proper transforms of prime
curves of f under the mapping ¢~'. Since the restriction ¢*f|5, of o*f
to B, is a rational function of degree one on B,, f satisfies the condition
of Class (A) in Chapter III, §1.4. Only one level curve L of f consists
of two prime curves S,, S, of C-type which intersect at a point in P*\ I,.
Denote by S,, S, the proper transforms of S,, S, under the mapping o7,
respectively, The curve §1U§2 is a level curve of o*f. We may suppose
that S, intersects B,. Denote by F,,F, the level curves of ¢*f with the
value ¢,, ¢,, respectively. Let K, be the component of F, intersecting B; for
each 1. Let 7: M — (M) be the composite of g-processes which contracts
the curve (F, \K,U ¥, ,\K,U S,. Then (z(B)?) = (¢(F,)) = (z(F,)") = 0.
By Proposition 2(ii), z(M) is biregularly isomorphic to PxP. On the
other hand (z(B,)?) = 1, which contradicts the fact that the self-intersec-
tion number of an algebraic curve on Px P is even. Hence we have
proved our assertion.
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The function f has only one reducible level curve L, which consists
of two prime curves S,, S,. At least one of them is of C-type. We
suppose that S, is of C-type. If f has an irreducible multiple level curve
of C*-type, denote it by S,. If f has no irreducible multiple level curve
of C*-type, denote by S, an arbitrary regular level curve. Let ¢, be an
irreducible homogeneous polynomial which defines S; (i = 1, 2, 8). Consider
the rational functions g, = t&/t&, g, = t£3/tf:, where coprime positive inte-
gers ay, a, satisfy a,degt, = a,degt, and coprime positive integers B3,, B
satisfy B,degt, = B,degt,. Since the restriction f|, of fto V = P*\(S,U
S,US,) is of proper direct C*-type, Theorem 1 shows that the restrictions
9.lv, gslv are of proper direct C*-type. By the classification in §1.4 in
this chapter, g, and g, are of C-type on P2 Since g, is of C-type on P?,
the restriction g,|s, of g, to S; is a rational function of degree one on S;.
Hence each level curve of g, intersects S, transversally at a point and
is of order one. Since g, is of C-type on P’ the restriction g,|;, of g,
to S, is a rational function of degree one on S,. Hence each level curve
of g, intersects S, transversally at a point and is of order one. We obtain
a, = 3; = 1. Hence the restriction of g, to each level curve L of g, with
a finite value is a rational function of degree one on L. The restriction
of g, to each level curve L’ of g, with a finite value is a rational function
of degree one on L’. Hence the mapping 6 defined by 0(p) = (9,(p), 9:.(»)),
pe P\ S, is a biregular isomorphism of P?\ S, onto C®. By Lemma 7,
S, is an algebraic curve of degree one. By Proposition 1, we obtain the
following.

PROPOSITION 5. If a rational function f of C*-type on P? has two
indetermination points, then f belongs to Z1. In an imhomogeneous
coordinate (x, y) of P2, f is written as f = A(T™Ty) for coprime integers
m, n, and conversely. Here T.(x,y), Ty(x, y) are polynomials of x, ¥y
such that (2', y') = (T\(x, ¥), T(x, ¥)) 1s an algebraic automorphism of C*
and A(z) is a rational function of z. If both T, and T, are of degree
one, then (m,n) = (1, 1).

3. Transformation group defined by C*. Here we give an alterna-
tive proof of the first half of Proposition 5. We also obtain a result on
an analytic transcendental automorphism of the complement of an algebraic
curve on P? Let S be a prime curve of C-type of f. The restriction
fly of £ to V= P>\ S has only one point p, of indetermination. Each
level curve of f|, is irreducible and of C*-type. Let S, be a level curve
of order v of f with the value a. Let g,: S, — C* be an analytic isomor-
phism of S, onto C* = {w|0 < |w| < 1} which maps a neighbourhood of



RATIONAL FUNCTIONS OF C*-TYPE 171

p, into a neighbourhood of the origin w = 0. For a fixed non-zero com-
plex number ¢, we consider an analytic automorphism ¢ of C* defined
by ¥$(w) = c*w. The transformation T = p;* o 4% o p, of S, is independent
of choice of y,. The mapping T, of V \{p,} into itself defined by T,(p) =
T/ (p), pe V\{p), is bijective. We prove the following.

LEMMA 8. The mapping T, is an analytic automorphism of V \{p.}.

PROOF. To see that T, is holomorphic in a neighbourhood of S,, we
may suppose that ¢ = 0. For a sufficiently small positive number 7, the
punctured disc I', = {z]z # 0, |2| < r} does not contain a critical value.
Consider the tube V, = {pe V\({p}|f(®)eI,}. Denote by V, the domain
of existence of the function (f]y)"*. Denote by @: V, — V, the canonical
projection. The set S, = @*(S,) is an irreducible curve on V, which is
a y-sheeted covering surface of S, with no branch point and with no
relative boundary. Hence the domain V, is analytically isomorphic to
I',xC*. Since @'oT,o® defines an analytic automorphism of V,\S,
whose analytic continuation to V, is still holomorphic on V,, Ty, is
holomorphic on V,, which proves the lemma.

By putting T.(p,) = p,, T, defines an analytic automorphism of V.
Suppose that |¢| > 1. Let U be a solid sphere with the center p,. Since
V =lim, ., T*(U) for n-times iteration T of T, V is simply connected.
Hence, by Lemma 7, S is a curve of degree one. Thus we have proved
the first half of Proposition 5.

We also obtain the following.

COROLLARY TO LEMMA 8. Let C be an algebraic curve in P: Sup-
pose that the complement P*\.C has a regular rational function of C*-type
any level curve of which is irreducible and of C*-type. Then P*\C has
an analytic transcendental automorphism.

4. Exposition of examples. In this section, we give simple examples
of the graphs X(f) of rational functions of C*-type with one point of
indetermination, which will help the reader to understand the proof of
Theorem 2.

Class (C): Figure 53.
Class (D): Figure 54.
Class (E): Figure 55.

5. Class (A). Let f be a primitive rational function of C*-type on
P* Dbelonging to the Class A in §1.4 in this chapter. Let o: M — P? be
the minimal resolution of the indetermination points of f. We determine
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Fi1GURE 53.

p apt+1 a1 t1 a+1
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the graph of 3(f) and f in another way, which shows a way to construct
functions of C*-type with multiple prime curves of higher order.

We suppose that the level curve of f with the value 0 satisfies the
condition (b)(i) in §1.4. As was seen in § 2.2, we may suppose that each
level curve of f with a finite non-zero value is of order one. Denote by
S,, S, the two prime curves of f with the value zero and by S, the level
curve of f with the value . Let §i be the proper image of S, under
the mapping ¢~ for each ¢. Let B,, B, be the basic sections of ¢*f.
Then (B2 = (Bf) = —1. The level curve F, of ¢*f with the value 0
intersects each B, (¢ = 1, 2) at a simple point of F, transversally. The
component of F, intersecting B, is of order one. At least one of S, and
S, is an exceptional curve of the first kind.

(1) The case where (82 = (§2) = —1. Lemma 3(ii) shows F, = S,U
S. We may suppose that (S,-B) = (S,-B,) = 1. Suppose that the level
curve F.,, of ¢*f with the value «~ is irreducible. Denote by 7z the
o-process contracting S,. Then (z-(§2)2) = (¢(B,)*) = 0. Hence, by Proposi-
tion 2(i), (M) is biregularly isomorphic to PxP. On the other hand,
(6(B,)?) = —1, a contradiction. Hence F', must te reducible. The graph
of F, is that in Lemma 3(iii). By Lemma 2, the graph of 3(f) must be
as in Figure 56. From this, we see that S, and S, are of order one and

B
1
_ 2
S 1
1 8§,
5. 1 ”
1
B,
FIGURE 56.

that S; is of order two. Since (a(gl)g) = (0(§2)2) = (0(§3)2) =1, the curves
S,, S,, S, are algebraic curves of degree one on P*. Let (X,:X,: X, be
a homogeneous coordinate of P? such that S,={X,=0} (=12 3).
Under the inhomogeneous coordinate (x, ) = (X,/X,, X,/X;) of P% f is
written as f = axy for a non-zero constant a.

(2) The case where (S?) = (§§). Suppose that (S?) = —1. The
closure of F’O\g2 consists of two connected components each of which
intersects a basic section of ¢*f. Hence F, satisfies the condition in
Lemma 3(iii). Therefore the graph of 3(f) is as in Figure 57. By
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Lemma 2, we have q, = ¢q,. Let r be the composite of g-processes which
contracts B, and B, The graph of z(3(f)US,US,US,) has the same
property as the graph of Y(f) and is shorter than it, from which, using
Proposition 2, we obtain another rational function belonging to the Class
(A). The loci of zeros and poles of this new function are the same as
those of f. Repeating these processes, our case (2) is reduced to the
former case (1), Hence f is written as f = ax™y" for positive integers
m, n and for a non-zero constant a. Since f is primitive, m and n must
be coprime.

Ps+3 1 95113

gs+2

qr

Figure 57.

§3. Non-existence of a rational function of torsional C*-type on P2

1. Let f be a primitive rational function of torsional C*-type on
P: Let S, S, be two irreducible level curves of C-type of f. The other
level curves of f are irreducible and of C*-type. Let g: M — P? be the
minimal resolution of the indetermination point p, of f by o-processes.
The basic section B of ¢*f satisfies (B?) = —1. The restriction ¢*f|; of
o*f to B is a rational function of degree two on B. Hence the curve B
is a two-sheeted ramified covering surface over P with the projection
o*f. By Lemma 3(iii), we see that the two ramification points of this
covering surface are over the points f(S, and f(S,. Denote by F'; the
level curve of ¢*f with value f(S,) (+ =1, 2) and by S, the proper image
of S, under the mapping ¢

Suppose that each level curve of o*f is irreducible. Then B = ¢7*({p,})
and o is the blowing-up at p,. The curve F, must be tangent to B with

pr+3 pt+3
qr 1 9r @ P2
B S
q,+2 ! ’
Pr~——O—— O - — P D
qr+3 @+3

FI1GURE 58.
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order one. Hence S, = ¢(F,) must be singular at p,. Since the multi-
plicity of S, at p, is two and (F2) =0, we have (S2) =4. This means that
S, is an algebraic curve of degree two. Hence S, has no singular point,
a contradiction. Hence at least one level curve of ¢*f must be reducible.

Suppose that a level curve F, of ¢*f with value a, different from
f(S) and f(S,), is reducible. Since the level curve S, of f with value a
is of C*-type, by Lemma 3(iii), it must be multiple. Since B intersects
at most two other components of 3(f), each level curve of ¢*f with value
different from f(S,) is irreducible. The graph of X(f) is as in Figure 58,
where S, denotes the proper image of S, under the mapping o' It
means that X(f) has the property (P), which contradicts the fact that
Y(f) is an exceptional curve. Hence each level curve of C*-type of f
must be of order one. The curve 3(f) consists of B, the closure X, of
F,\S, and the closure %, of F\S..

2. If Y,#+@, then a component K, of ¥, intersects B at a point trans-
versally. Suppose that K, and S, are prime curves of order one of ¢*f
and S, intersects B at K,N B transversally. By Lemma 3(i), the closure
of F,\S, is an exceptional curve of the first kind, which contradicts the
fact that ¢ is minimal. Hence K, is a prime curve of order two of o*f
and S,NB= .

Since F', is reducible, §¢ is only one exceptional component of the
first kind of F,. Let 7, M — 7,(M) be the o-process which contracts S,.
Since S; is of C-type, 7,(F,) has only one exceptional component of the
first kind. Let

_ T
M_i_,Ml_fz_, _fi_l,Mk_l_"_,Mk
be a sequence of g-processes z; (j = 1,2, --+, k) which contracts a com-
ponent of z;_joz; ,o0 -+ o0 (F,). Set T;=7;07;;0++07,07,. For a

G

j—

FIGURE 59. FI1GURE 60.
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sufficiently large j, the image %;(F),) contains only components of order
one. Since (Z;(B)-%,(F,)) = 2 for each j, there exists j such that 7;(B)
is smooth and 7,(B) intersects two components C,, C, of order one of
T,(F;) transversally at the point fj(gi). Figure 59 gives a sketch of
#,3(f)). Hence the graph of BUZ, is not linear. Since X(f) is an
exceptional curve of the first kind containing only one irreducible excep-
tional component of the first kind, at least one of the graphs of BUJ,
and BUJ, is linear. Hence at least one of 3, and X, must be empty. So
we may suppose that 3, = @. By the fact stated in §3.1, X, is not
empty.

3. We suppose 7 =1 in the former subsection. By Lemma 3(i),
we know that (C2) = (C2) = —1 and #;(F) = C,UC,. Set C/ = 77 (%,(5)).
Denote by C/, C; the proper transform of C,, C, under the mapping z;*, re-
spectively. The graph of #;_,(3(f)) is as in Figure 60. The image fj_l(gl)
must be a point because S, is of C-type. Suppose that the point f,._,(gl)
is neither C/NC, nor C;NC;. Denote by C;” the proper transform of C,
under the mapping #;'. Since C/’ is a component of F, of order one, by
Lemma 3(i), the closure of F,\C;” is an exceptional curve of the first
kind. On the other hand, the proper transform of C;/UC,UC! under the
mapping #;!, is the last branch of 3(f). So F, must be exceptional, a
contradiction. Hence the point fj_l(gl) is C/NC; or C;NC;. We may
suppose that z”'j_l(gl) = C/NCy. The graph of #;_,(Z(f)) is as in Figure 61.
Since Y(f) is an exceptional curve of the first kind, three components of
2(f) near B must be as in Figure 62(a). Suppose that the graph of
%, is linear. By Lemma 2, the graph of X(f) must be as in Figure 62(b).
On the other hand, 7,(F),) = 7,(J,) has the graph in Lemma 3(iii), which

2213
74(C) OQO0
1
7. (B)
Fi1GuRE 61.
223 223 k
C 0-80— ————— C; 0-80—-————

1 1
B

FIGURE 62.
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is impossible. Hence X, has at least one diverging component. Since F),
has the property (P), the graph of X(f) is as in Figure 63(a) or (b).

Suppose that 3, has only one diverging component. Since I (f) is
an exceptional curve of the first kind, the graph of X(f) is as in Figure
64(a) or (b). The portion in the parenthesis may not exist. This contra-
dicts the fact that F), has the property (P). Hence X, has at least two
diverging components. Since F, has the property (P), the graph of 3(f)
must be as in Figure 65(a) or (b). In Figure 65, the mark labeled T(p)
represents the diagram in Figure 66.

Suppose that X, has two diverging components. Since X(f) is an
exceptional curve of the first kind, the graph of X(f) is as in Figure 67.
This contradicts the fact that F, has the property (P). Repeating these

4
3
22 223 mt+1
B S o ose— 8
3 y4 2
1 1
B B
(a) (b)
FIGURE 63.
3 4
c 2202 3 ) 223 m+1 323
" c
' %3 k ' p—1 2 p—1 k
1 1
(a) (b)
FIGURE 64.
3 4
22 2 22 23 p+1
o 28 70 28 - - - ,, 23 o1
1 08' (Pl) 3 C; T(p) -1 o
1 1
() (b)
FIGURE 65.
4
3
-8- 3 p+1 3
(p=0) (p>0)
3 p—1 2 p-1

FIGURE 66.
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processes, we see that Y(f) must have the graph with infinite length as
in Figure 68.

2 2 2 2 3
1 0'8" T(p) O~ T (p.) —O@-————)
k
1
FIGURE 67.
2 2 2 2 2
C"’ 0-8- T(Pl) —O- T(pz) —O- T(pa) -O_ -t T
1
FIGURE 68.

It is a contradiction. Thus we have proved the following theorem.

THEOREM 3. There exists no rational function of torsional C*-type
on the two-dimensional complex projective space.
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