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ON A BARGMANN-TYPE TRANSFORM AND A HILBERT
SPACE OF HOLOMORPHIC FUNCTIONS
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0. Introduction. In [1], Bargmann studied an integral transform of
L*(R™) onto a Hilbert space consisting of entire holomorphic functions on
C". His transform may be regarded as a half-form pairing between real
and complex polarizations of R™ = C" (see [8, §2]). In [7], Rawnsley
showed that 7T*S (the cotangent bundle of the (» — 1)-sphere minus
its zero section) has a Kaehler structure with the Kaehler form equal to
the natural symplectic form. Furthermore, he studied in [8] the half-
form pairing between real and complex polarizations of Io’*S"“‘, but it is
not unitary. Also, we know that there does not exist a distinguished
kernel, the definition of which is given in [2, IV. 5], for these polariza-
tions. More precisely, there does exist a “distinguished kernel” defined
in a neighborhood of the diagonal of TS ’.IO’*S"“, but it does not
extend globally. This “kernel”, however, suggests us to consider an
integral transform:

T f - flz) = Ssn_l e*fl@)dS(x) ,

where zeC" 2*=0 (for the notations, see Section 1). Incidentally,
transformations of the same form as &% have been studied by several
authors (see, for example, [3, §4], [6, §7], [4, Theorem 2.10], [8, p. 175]
and [5, § 4]). In the present note, motivated by these works, we consider
the integral transform & of L*S"™") into a space consisting of holomorphic
functions on the Kaehler manifold 7*S" = {zeC"|z"=0,2+0}. & is
injective. In Section 2, we construct, in the case of even-dimensional
spheres, a “Plancherel measure” on T*S™ to describe the image of L*(S*™)
under this transform. The “inversion formula” is also obtained. As an
application, we give in Section 3 an integral representation of a one-
parameter group of unitary transformations on L*S™™') generated by a
pseudo-differential operator —i{A + (n — 2)*/4}'*, where A is the Laplace-
Beltrami operator on S*' (cf. [8, p. 177]).
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For the sake of simplicity, we shall assume n = 8 throughout this
paper. In Sections 2 and 3, we furthermore assume that n is odd. The
reason why we exclude the case of even n is that, in this case, we cannot
identify the function p, which satisfies the equation in Lemma 2.1. The
Lie differentiation with respect to a vector field X is denoted by <.
Volume forms and measures are used interchangeably.

I would like to thank Professor F. Uchida for his encouragement,
and Dr. E. Sato for his kind help and useful discussions. I would also
like to thank the referees for the care with which they read the paper
and for a number of important suggestions.

Added September 6, 1985. R. Wada has informed us that she is able
to identify the function o, also for even n, and to remove the assump-
tion in Section 2 that n is odd.

1. Preliminaries. Let R" = {x = (v, ---, 2,)} be the n-space with
the inner product z-y = 3 2,4, and the norm |z| = (x-2)"?, and S"*' =
{x € R*||x| = 1} be the unit sphere. The volume element on S™* is denoted
by dS. The volume of S**' is given by vol(S*™*) = 2z"*/I'(n/2). Let
L*S™*) be the Hilbert space of square-integrable functions on S™! with
the following inner product and norm:

Soe=| _ Foas, 17ls= Dy

sn—1

The subspace of L*(S*!) consisting of spherical harmonics of degree m is
denoted by H,(S" ™), m =0,1,2, --.. The following is well-known (see,
for example, [4, §3]):

LEMMA 1.1. (i) dim H,(S")=Q@m+n—2)'(m+n—2)/'(n—1)X
I'(m + 1).

(ii) The subspaces H,(S*™), m =0, 1, 2, -+ -, are mutually orthogonal
with respect to the inmer product <, .

(iii) Let f,e H,(S"™), m=0,1,2, ---. Then f = 3,f. belongs to
L¥ S if and only if 3, || fulli < o, and in that case, || fl% = Dl fnllk-

(iv) For any ze€C™ with 2t =0, the function on S*™*, x+ (x-2)",
belongs to H,(S™™), where z*=>,22 and x-z =D, %2,. Furthermore,
H,(S*") is spanned by these functions.

For any 1 <4, +++, i, = n, let us define an element of H,(S*™) by
m—1 -1
Bt = (10 @ = 0 = 20) " ["0 "oz, -+ 92,1 S,

where we assume n = 3. Note that H,(S*™") is spanned by these functions.
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LEMMA 1.2. (i) hyei,@) = 2, -+ 2, —1/2Cm+n—4)) Dass LI PR
ottt By e + B'(x), where b e Dp=t H (S™).

(1) hipsy = hiponiyi + 1@m +n —2) 350, 0, ik 3y, — 1/(@M + 10—
2)2m + n — 4) Dass Ouihiy iy dyinir Where x; denotes the fumction x+— x;
on S™.

2,

For the proof of (ii), recall that the multiplication of #; is a symmet-
ric operator on L*(S™"). Then, from (i) and the orthogonality of the sub-
spaces H,(S8"™), m =0,1,2, .-+, we have z;h, ..., € H, (S DBH,_,(S" ).

LeMMA 1.3. For any m = 1,2, -+, we have
CPigovetgy Py s

1 m
= g 2 Duin ity R D

1 N
BT B T =D 2t B

Proor. Let ¢&; denote the restriction to S*™* of the vector field
1= (0;; — x;x,)0/0x, on R". Then ¢; is tangent to S"~'. Since &% dS =
—(n — 1)z;dS, we have from

|, ZFads) =0

that &; — (n — 1)x,;/2 is a skew-symmetric operator on (C*(S™%), (, Ds).
Then, by Lemma 1.2, we have

(gj S ; 1 00,->hil---i,,,

_ n—1 2m +n —38 & _ .
= (o PG s+ I B bt

— 2m +n —3 > az‘aibhil"'ia”“‘\b"‘imj :

2@2m +n — 2)@2m + n — 4) =

Using this formula on both sides of the equation:

<(E,-,,, - i;—lxjm)hh...,-m, h,-l...,.m_1>s

_ —<h¢1-~~imv (?Sjm n ‘2‘ 1xim>hi1""’m—1>s ’

we obtain our lemma.

Now, we shall consider an integral transform (cf. [3, § 4] and [6, § 7]):
For any feL¥S™*) and zeC", let us define
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fo = e masw .
Then we have:

LEMMAA1.4. (i) Fis an entire function on C™.

(ii) [Sf2)] = (vol(S™))*| f || se'™e*'. .

(iii) If fe LXS*™), f= 3. f. with f.c H,(S™™), then 3, f, converges
to f uniformly on any bounded set in C™.

PropOSITION 1.5. If 2* =0, then

vol(S™~ 1)I“(n/z) .
2" (m + n/2) A

Proor. We shall prove this by induction on m. If m = 0, then both
sides of the equation are equal to vol(S**). Now, let m > 0 and assume
that the proposition holds for m — 1. Since, by (i) of Lemma 1.2,

Ssn_l By o By P (@)AS@) = gy ionsds »

By (2) = 2,

m ®

we have

~ 1
hil---im(z) —" Z‘ <hil i) “ :m>sz“ 7
.71
Then, since z* = 0, by Lemma 1.8 and the induction assumption, we see

that the proposition holds also for m.

Let 7: T*S™' — St be the bundle consisting of non-zero cotangent
vectors to S*~'. The canonical one-form § on T*S"! is defined by 6.(X) =
a7, X) for any ae T*S** and Xe T,,(f’*S"“). The symplectic form and
the Liouville volume form on T*S** are given by 2 = —df and dM =
(=1)n=De=22((ny — 1)1)7'Q™", respectively. For any real-valued function
he C“(f’*S"“), the unique vector field X, on T*S» for which X,12=dh
is called the Hamiltonian vector field of #. By means of the metric, we
may identify Io‘*S"‘1 with the space fS"“l consisting of non-zero tangent
vectors to S*!, which is identified with

M= {x yveR'xR"||2|=1,2y=0,y #0}.
Furthermore, by an injection (x, ¥)— 2 = |yJx +1 —1y of M into C*, M
is identified with a complex cone {z€C"|2* = 0, z = 0}. This identification
gives M a complex structure J. It is known (see [7] and [8, p. 173]) that
J is compatible with the symplectic structure, i.e., (X, Y)— —2(J(X), Y)
is a Kaehler metric on M.
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Let Holo(M) and P,(M) denote, respectively, the restrictions to M
of entire holomorphic functions and homogeneous polynomials of degree
m on C*. For any @ € Holo(M), there exists a unique o, € P,(M) such
that @ = >.»_, @,; uniformly convergent on any bounded set in M. If
we define ¥ ...;, € Pn(M) by ..., (2) = 2, -+ 2,,, then P,(M) is spanned
by these functions. Since 2} + :--- 4+ 2, =0, we have dimP,(M) =
dim H,(S*"). (Cf. [5, §3].)

The unit cotangent bundle T*S**' to S is identified with N =
{(x, Y e M||y| = 1}. The canonical volume element on N is denoted by
dN. If we define a function reC~(M) and a projection p: M — N by
rx, ¥) = |y| and px, y) = (x, |y¥|'y), respectively, then we have dM =
p*dNAr"*dr. An inner product in C°(N) is defined by

@, ¥y = | PPN

The restriction of 4, ...,, onto N will also be denoted by the same letter.

m

LEMMA 1.6. (i) If 1l #m, then {y...p ¥i..inon = 0.
(il) For any m=1,2, -+-, we have

(m+n—3)2m+n—2) o
5 {Piyovimy Vigooimd ¥

= (2m +n — 4) a2=1 573afm<1#i1"’ia"'im’ ’I//‘jl...jm_1>N
- a% aiaib<'1/fil...24...§b...imjm, 'll/‘jl...jm_1>N .

PrOOF. (i) The Hamiltonian vector field of the function r is given
by

1 0 0
X, is tangent to N. Denoting the restriction of X, to N also by X,,
we have &% dN = 0. It follows that (X,p, ¥py = —{(p, X,4r)y for any
@, +€C>(N). On the other hand, from X,z,= —V —1z2; we have
X Ariyoiy = —V —1mapy....,. Then (i) follows immediately.
(il) The Hamiltonian vector field X; of the function (x, y)— y; on
M is given by

Z 0 0
Xl = g; {(Bn - iji)a_wi + (w9, — iji)a_yi} .

Xlw = 35 (

Since [X;, >, ¥x(0/0y,)] = 0, X; induces a tangent vector field ; to N.
7, is given by
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n

0
Thew = 353 {0i = im0zl — vt -

Since & dN = —27(n — 1)(z; + Z;)dN, we have from

[, @van) =0,

<7]i¢, "l">N + <q)9 77j"p‘>N = L 1 (<zj¢s "I/\>N + <¢, zi“l">N)

for any @, 4 € C*(N), where z; denotes the function (x, y)+—z2; =x; +
=1y, on N. If we put j =74, @ =+, and ¥ =;.; ., then
using (i) we have

<7]jm’lp‘¢1...,;m, ’Il/‘jl...jm_1>N + <’lp‘7;1...im, vjmql/\jl"'jm—l freees >N .

Now, since 9;(z,) = 0; — (1/2)2,;2, — (1/2)2;2;, We have
Njpiyevims Viyoim ) N

and

<")b‘i1"‘im’ 77:',,."!’]’1---:',,,_1>N = - m 1 <"l"'il"'im’ q/ril“'im>N .

It follows that

m+n—2

2 <’l/l‘i1...,;m, 'lp‘jl...jm>N

m 1 m
= z Biajm<q//\i1"'£a"'im’ ’l//‘jl...jm_1>1v - ? Z= <"l"i1"'2a"'1m.‘fm’ f'lf‘jl"'jm-—lia>N y

a=1
from which we obtain (ii).
LemmA 1.7. For any m =0,1,2, -+, we have
<h‘il'--im’ hjl---j,,,>s = cm<i’:i1---im’ ﬁjl---jm>N ’
where

_ I'm + n/2)["(m + 1)dim H,(S"™)
(vol(S™))*vol(S**)I"(n/2)

PrOOF. By Proposition 1.5,

i _ vol(S" HI'(n/2)
igoe i 2mr(m + n/z) YVigeorim
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Hence it suffices to show that
<hil---1,,.v hjl---j,,.>S = c:n<"1"11---i,,,y "/fjl--~jm>zv ’
where
¢ = I’'n/2)["(m + 1)dim H,(S™™?)
" 2:m vol(S**) [ (m + n/2)
We shall show this by induction on m. If m = 0, then both sides of

the equation are equal to vol(S*!). Now, let m > 0 and assume that the

equality holds for m — 1. Then by Lemma 1.3 and (ii) of Lemma 1.6,
we have

<hi1‘"im! hjl...jm>s

Crm—1

N @m +n—2)2m +n — 4) {(2m tn—4 az=1 Osain iyt Wigoimoi)

= S0y tnies Pirerim D)

_(m+n—3)em
2@2m +n — 4)

ProPOSITION 1.8 (cf. [6, §4]). For any x€S™, we have

1<’lp‘,;1...im, ’l]f‘jl...jm>N = c:”<,'lb‘il"'im’ ’l‘lf‘jl...jm>1v .

. _ vol(S")vol(S)2n
|, @D ANE) R IR

This proposition is proved by induction on m, where we use (ii) of
Lemma 1.2 and (ii) of Lemma 1.6,

2. Hilbert space P(M) and integral transform .&. From now on,
we shall assume that n =3,5,7, ---.

LEMMA 2.1. There exists a unique polynomial o, which satisfies

Sw ,,.2m+n—2e—2rpn(,r)d,r =c,
0
for all m=0,1,2, ---.

PrOOF. If there exists a polynomial o,(r) = 3>, a,,r* which satisfies
the condition in our lemma, then the -coefficients must satisfy
S @, 27 + 2m +n — 1) = ¢, for all m. This condition is
rewritten as

I'k+2m+n—1)
D A Tmm—
T*2m + n — 2)['(m + n — 2)
(vol(S™))=vol(S™ ) I'(n — 1)I'(n/2)"(m + (n — 1)/2)
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forallm =0,1,2, -.-. Since n is odd, both sides of the equation above
are polynomials of m. Hence, a, , are determined uniquely. The existence
of p, also follows from the above equation.

Note that the degree of the polynomial p, is (n — 1)/2, and the
coefficient of the highest degree is positive. For example, we have
Os(1) = aa,(r — 1/2),  0s(r) = az(r* —7) and  O(r) = ar4(r* — " — 7/2).
Unfortunately, since a,,=0 and a,, <0 for n =5, 0,[(0, «) is not a
positive function. It is to be desired that there exists a positive function
on (0, ) which satisfies the equation in Lemma 2.1. We also remark
that for even n, there does not exist any polynomial which satisfies the
condition in Lemma 2.1. This is the reason why we restrict our atten-
tion to the case of odd «.

Now, for any @, o € Holo(M), let us define

@ u = | PRI,

where dp,(2) = e, (ly)dM(z), z = |yle + V' —1ye M (cf. [8, p. 174)]).
Although the measure dg, is not positive, we have:

THEOREM 2.2. For any @ € P,(M) and + € P, (M),

Py VD u = CulPy ¥

where @ and + on the right hand side stand for the restrictions of @
and + onto N, respectively. In particular, {, )y s positive definite on
P.(M), and f—F is a unitary isomorphism of (H,(S™™), {,>s) onto
(Pu(M), <5 Du)-

PROOF. Since dM = p*dNAr"~*dr, we have, by (i) of Lemma 1.6
and Lemma 2.1,

@ pou = | om0, midr | @wdN = eulp, 9o -

Then, the unitarity of f— f follows from Lemma 1.7.
The following lemma is due to Bargmann [1, p. 190].

LEMMA 2.8. Let S = 3\, b, be a series with non-negative real terms,
let 7,(t), t >0, be so chosen that (1) 0 < 7,(t) =1, (2) lim,..7() =1,
and set S@t) = 7. (t)b,. S converges if and only if S(t) are uniformly
bounded, and in that case S = lim S(t).

PROPOSITION 2.4. Let @ € Holo(M), ¢ = >, p,, with @, € P,(M). Then
(P, Pou = 2Py Pl »



HILBERT SPACE OF HOLOMORPHIC FUNCTIONS 65

1.€., either both sides are infinite, or both sides are finite and equal.

PROOF. For any ¢ > 0, let

Io)= |, Iprdp..

where M(o) = {z = |yle + vV —1yeM||y| £ 0}). Then o+ I(o) is, for
large o, monotone increasing and (@, ), = lim,.. I(s). Since >, @,
converges uniformly to ¢ on M(cs), we have by (i) of Lemma 1.6 and
Theorem 2.2,

I(0) = mZ:o Sm PR)Pn(2)d e, (2) = Z=.0 §: plimin=tg=irg (fr)dfrs P0.dN
,:2:‘., So wmtn=2g=5 0 (1)AT Py Prmyy = mi:.o c";(") ( Py Pudu s
where

cm(o.) — S 2m—+n— 2 —27 (,r)d,r

Since there exists ¢, > 0 such that c¢,(o) >0 for all ¢ >0, and m =
0,1,2, --., applying Lemma 2.3, we have the desired result.

Now, let us define
P(M) = {p e Holo(M) |{@, P}, < oo} .

Then it follows from Theorem 2.2 and Proposition 2.4 that (, ), is a
Hermitian inner product in P(M). The corresponding norm is denoted

by || lx-
THEOREM 2.5. . :f f is a unitary isomorphism of (LHS™™), <, ds)
onto (P(M), {, Yu)-

PROOF. Let feL¥S*™), f=>.f. with f,e H,(S**). Then, by (iii)
of Lemma 1.4, Proposition 2.4, Theorem 2.2 and (iii) of Lemma 1.1, we
have . .

1 flle = Z Sl = XN Falls = I1FII5 < oo
It follows that f € P(M) and that & is unitary. The surjectivity of &
is also shown easily.

We have from Theorem 2.5 and (ii) of Lemma 1.4 the following:

COROLLARY 2.6. (i) (I_JQI ), s Yu) 18 a Hilbert space. (ii) For any
peP(M) and z = |ylx +1V —1yeM,

[P(R)| < (VOl(S"™))*||@ |l €' .
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From (ii) of Corollary 2.6, it follows that, for a fixed we M, the
map @ — @(w) defines a bounded linear functional on P(M). It is neces-
sarily of the form

P(w) = {ew Pdu
with a uniquely defined e, € P(M). If we define function on Mx M by

Kw, z) = S 1e”""e"‘idS(oz:) ,

sn-
then K(w, z) = K(z, w) and K(w, -) € P(M) immediately from the definition.
LemmA 2.7 (cf. [1, §1c]).
e.(2) = K(w, 2) .
Proor. It is sufficient to show that
KW, +)y Pigigysr = Pigeoig (W) -

Making use of Theorem 2.2, Lemma 1.6 and Propositions 1.8 and 1.5,
we have

KT, een = | (]

— Ssn_l e,.wdu e,.zw___im(z)dp,,(z))ds(x)

1 Ssn_l eM(SM (x -2)"'«1»{1...im(z)dp,,(z))dS(x)

m!

&6 () Wry-n(DAf1(2)

Il

— On_ Ssn—l ez-w(SN (02) iy 0 (2) AN(2) ) dS(@)

m

¢, vol(S*Y)vol(S™2)2m ow

= e Ssn_le Py ()88 (@)
= "b‘tl""[m(w) .

K is the reproducing kernel for P(M), i.e.,

pw) = | Kw, 99@du @) -

Now, we shall consider the inverse operator & ~*. Let P?P(M) = {pe€
Holo(M)|for a suitable ¢ > 0, |@(2)| < ce! for all z = |ylx + 1V —1y e M}
(0 <A <1). Then P®(M) is a subspace of P(M). If, for each ¢ € P(M),
we define ® by @?(2) = @(\z), then @? € P*(M).

LEMMA 2.8 (cf. [1, p. 197]). (i) @ e PM) if and only if all ¥ ¢
P(M), 0 <\ <1, and their norms ||@? ||y are uniformly bounded.
(i) If pe P(M), then || — @®||lx—0 as x—1.
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Proor. Let @ e Holo(M), ¢ = > @, with ¢, € P,(M). Then we have
PP(2) = p(\z) = 3, A"@,(2). It follows from Proposition 2.4 that ||¢®? ||% =
SiA™| @, % Then by Lemma 2.3 we have (i). (ii) follows immediately

from || — 2? i = 3 A — AN P 5.
THEOREM 2.9 (cf. [1, p. 202]). If @ € PP(M) for some n, 0 <\ <1,
then
(o)) = | ep@dn ),

for any xe S
PROOF. Since ¢ e P?(M), the integration converges absolutely. It
suffices to prove that
e (| e o@in@)is@ = pw),
sn M
which we show easily by interchanging integrations and wusing the
reproducing property of K.
COROLLARY 2.10 (cf. [1, (2.14)]). For any @ € P(M),

(& 9)@) = Lim | e 0022,

where Lim means the strong convergence in L*(S™).
We also have another explicit expression for & .
THEOREM 2.11 (cf. [1, (2.15)]). For any @ € P(M),

(& "'p)@) = Lim S @) )

(o

Proor. Let ¢ = 3, ¢, with @, € P,(M). Define, for xe S,

fou =\ erp@dune)
and
9 (g) = SMM e, (2)d . (2) .

Then, by Propositions 1.5 and 1.8, we have for any w e M,
(wrow = _e(|  erpu@ine)as@
sn—l M(o)

= @ (] @ reaNe)ase = 2 e w).

By the uniform convergence of ¢ = >, @, on M(s), we have
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(FF ) w) = S e” e *p(2)d 1, (2)dS(x)

S7—1x ¥ (o)

e* e, (2)d 1, (2)dS(x)

Ss"-lxu(a)

= S (T w) = 32 Dgp () |
It follows from Proposition 2.4 that
2
lo = 7 I = 2 (1 - =D ) p, i -0

as ¢ — . Here recall that there exists a constant ¢, > 0 such that
¢.(6) >0 for any ¢ >0, and m =0,1,2, --.. Since & is a unitary
isomorphism, we have . ~'¢ = Lim,_. .

3. An application. The mapping & establishes a unitary isomor-
phism between the linear operators on P(M) and those on L*(S"*). In
this section, we shall consider a one-parameter group of unitary trans-
formations, which is easily analyzed on P(M), and translate the results
into the language of L*S") (see [1, §38] and [8, p. 177]).

The one-parameter group of canonical transformations on M generated
by the Hamiltonian vector field X, is given by ¢,: 2 +— e'*z. Since X,r =0
and <% dM =0, ¢, preserves the measure dy, as well as the complex
structure J on M. Hence ¢, induces a unitary transformation @ — @ o ¢_,
on P(M). Let us define a one-parameter group {V.|t€ R} of unitary
transformations on P(M) by

(Vt¢)(2) = e—“"_m/?@(e-—nz)
(see [8, p. 177]). Then
Vﬂ’m = e—i(M+(n—2)/2)t¢m

for any o, € P,(M), and {V,} is strongly continuous in ¢. The infinitesimal
generator of {V,} is given by X, — i(n — 2)/2. Now, let U, = & o V,0 &
be the operator corresponding to V, under the unitary isomorphism .-
Then, for any fe L*S™*) and 2’ €S, we have from Theorem 2.11

(U.f)(@') = Lim SM e FgTin R L L& T f(@)dS(@)dpa(2)
(o) n=

g—00

= Lim [ U« 9f@)dS) ,

g—00

where

U(a)(t’ xl’ x) — e—i(n—2)t/2 Suw) ez‘oi+exp(—ic)z~zd#n(z)
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(cf. [1, (8.10a)]). Since U.,f, = e iimtin-22if  for any f, € H,(S*™"), we
have U, = exp[—i{A + (n — 2)*/4}/*t], where A is the Laplace-Beltrami
operator on S™* (see [8, p. 177]). Thus, we have the following:

THEOREM 3.1. The one-parameter group of unitary transformations,
U, = exp[—{A + (n — 2)}/4}%t], on L*S™™) genmerated by the operator
—{A + (n — 2)*/4}* is represented by

(UNE) = Lim | _ U, @, )f@)dS) .
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