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ROTATIONAL SURFACES IN A PSEUDO-RIEMANNIAN 3-SPHERE
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(Received December 27, 1984)

1. Introduction. K. Akutagawa has recently shown the following
interesting result.

THEOREM A. Let S?+1(c) be a pseudo-Riemannian (n + l)-sphere of
signature (1, n) and of constant positive sectional curvature c. Let M
be a complete, space-like hyper surface with constant mean curvature h
in S?+1(c). If

(i) \h\ ^ c1/2 when n = 2,
(ii) | Λ | < (2/n)[(n - l)c]1/2 when n^3,

then M is totally umbilical.

In this paper, we shall show in case n = 2 that the estimate in
Theorem A is sharp. In fact, for each constant h > 1 we shall construct
some families of complete, space-like, rotational surfaces in SI (: = SJ(1))
with constant mean curvature h, none of which are umbilical.

(Added on March 6, 1985). K. Akutagawa has kindly sent us his
preprint [1] in which he proves the above Theorem A and also indepen-
dently shows that the estimate in (i) is sharp.

ACKNOWLEDGMENT. The present author would like to express his
gratitude to the referee for his useful comments on the original version
of this note.

2. Statement of results. All the surfaces in the following Theorems
1, 2 and 3 except those in Theorem 3 (iii) turn out not to be umbilical
by Proposition 1 in Section 3 and (4.7) in Section 4. We refer the readers
to Section 3 for the terminology.

THEOREM 1. (Spherical rotational, space-like surfaces). Let h be a
constant, h > 1.

(i) For each constant a > (h2 — l)1/2/2, we define the function u(s)
by

u(s) = [ah + {a2 - (h2 - 1)/4}1/2 cosh 2{h2 - l)1/2s]/2(h2 - 1) ,

s e R, and the functions φ(s), x^s), a?8(s) and x^s) by
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φ(s) = Γ[4tt(<r)2 + n'{σf - l/ψ\2u(σ) - l/2)-\2u(σ)
JO

^(s) = (2u(s) + 1/2)1/2,

xs(s) = (2u(s) - l/2)1/2sinh φ(s) ,

x,(s) = (2u(s) - 1/2)1/2 cosh φ(s) , s e j? .

fce one-to-one analytic making f: RxS1 —> SI,

(2.1) f(s, ί) = α;1(s)(cos te1 + sin te2) + xz{s)ez +

defines a complete, space-like surface with constant mean curvature h in
SI, where S1 is the unit circle in R2 and {ek} is a basis of L4 satisfying

{x, y) = xMi + + xsy5 - x^i for x = Σ * ^ek and y = Σ * »*β*
(ii) Tfe define the function u(s) by

u(s) = exp[2(/&2 - l)1/2s] + h/4(h2 - 1)1/2 , s e Λ ,

and the functions φ(s), x^s), xB(s) and x^s) as in (i). Then the one-to-one
analytic mapping f: RxS1 —>SI given in (2.1), defines a complete, space-
like surface with constant mean curvature h in SJ.

THEOREM 2. (Hyperbolic rotational, space-like surfaces). Let h be a
constant, h > 1.

(i) For each constant a > (h2 — l)1/2/2, we define u(s) as in Theorem
1 (i), and φ(s), x^s), xz(s) and xA(s) by

φ(s) = \μu(σ)2 + u\σ)2 - l/i]1/2(2u(σ) + l/2)-\2u(σ) -
Jo

^(8) = (2u(s) -

x,(s) = (2u(s) + 1/2)1/2sinφ(s) , seR .

Then the analytic mapping f: RxR-+ SI

(2.2) f(s, t) — α?1(s)(cosh tex + sinh te2) + xQ(s)e3 +

defines a complete, space-like (immersed) surface with constant mean
curvature h in SI, where {ek} is a basis of & satisfying (x, y) =
—x$i + x2y2 + + xAJt for x = Σik %>Φk and y = Σ * VΦ^

(ii) We define u(s) as in Theorem 1 (ii), and φ(s), Xχ(s), xs(s) and xA(s)
as in (i). Then the one-to-one analytic mapping f: RxR-> SI given in
(2.2), defines a complete, space-like surface with constant mean curvature
h in SI

THEOREM 3. (Parabolic rotational, space-like surfaces).
(i) Let h be a constant, h > 1. For each positive constant a, we
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define u(s) by

u(fl) = [ah + acosh2(h* - l)1/2s]/2(/ι2 - 1) , seR,

and Xj.is), xt(s) and xs(s) by

xt(s) = * , ( (
JO

seR .

the one-to-one analytic mapping f: RxR-> SI

(2.3) f(s, t) = â βXβx + te2) - [y f^( s ) -

defines a complete, space-like surface with constant mean curvature h in
SI where {ek} is a basis of L4 satisfying (x, y) = xxyz + x2y2 + xzy1 + a;4̂ 4

/ o r x = Σ & â fcβfc αtwί 2/ = Σ& #*e*

(ii) Lei h be a constant, h > 1. We

- l)1/2s] , s 6 R ,

and x^s), #4(s) and xz(s) as in (i). Then the one-to-one analytic mapping
f: RxR-* SI given in (2.3), defines a complete, space-like surface with
constant mean curvature h in SI.

(iii) For each positive constant a, the one-to-one analytic mapping
f:RxR->Sl,

M t) = a[e, + te2] - [atf/2 + (s2 - l)/2α]e3 + se4 ,

defines a complete, space-like surface with constant mean curvature one
in SI, where {ej is a basis of & as in (i).

3. Preliminaries. In this section, we shall recall umbilical surfaces
and rotational, space-like surfaces in the pseudo-Riemannian 3-sphere S\
of signature (1, 2) and of constant sectional curvature one (see [4], [5]).
We denote by L4 the space of 4-tuples x — (xl9 , #4) with Lorentzian
metric < , > = — (dxtf+(dx2)

2 H h (cto4)
2, and consider the pseudo-Riemannian

3-sphere Sl(c) of signature (1, 2) and of constant positive sectional curva-
ture c as a hypersurface of L4, namely,

Sl(c) = {xeLi;(x,x) = l/c}.

First, we note (cf. [2]) thέit umbilical, space-like surfaces in SI are
given by the intersection of SI with affine 3-spaces of IΛ Up to iso-
metries of SI, they are represented explicitly as follows: for each constant
a, 0 ^ a < 1, the isometric embedding /: S2(l — a2) -> SI, f(x, y, z) =



32 H. MORI

(α/(l —α2)1/2, x, y, z), of the Euclidean 2-sphere S2(l —a2) of constant Gaussian
curvature 1 — a2 into SI, defines an umbilical, space-like surface M(a)
with constant mean curvature α; for each constant a > 1, the isometric
embedding/: iϊ2(l—a2)-*SI, f{x, y, z) = (x, y, z, a/(a2 —1)1/2), of the hyperbolic
2-plane ίf2(l — α2) of constant Gaussian curvature 1 — a2 into SI, defines
an umbilical, space-like surface M{ά) in S\ with constant mean curvature
α; and finally, for each positive constant b, the isometric embedding
/: R2 -> SI fix, y) = be, + xe2 - ((x2 + y2 - l)/26)e8 + ye,, of the Euclidean
2-plane R2 into SI, defines an umbilical space-like surface N(b) in SI with
constant mean curvature 1, where {ek} is a basis of ΊJ defined by e, =
(1/vT, 0, l/i/Y, 0), e2 = (0, 1, 0, 0), ez = (-1/i/ΊΓ, 0, 1/i/lF, 0) and e, =
(0, 0, 0, 1).

Next, we recall some properties of rotational, space-like surfaces in
SI (cf. [5]). We denote by Pk, 1 ^ fc ^ 3, a fc-subspace of L4 passing
through the origin, and by O{P2) the largest subgroup of the identity
component of the Lorentzian group 0(1, 3) which leaves P 2 pointwise
fixed. We note that 0(1, 3) is the group of all isometries of S\ (see [6]).

DEFINITION. Choose P 2 and P*Z)P2, and let C be a regular space-
like C2-curve in Sln(P* - P 2). The orbit of C under the action of O{P2)
is called a rotational, space-like surface M in S\ generated by C around
P 2 . The surface M is said to be spherical (resp. hyperbolic, resp. para-
bolic) if the restriction < , > | P 2 is a Lorentzian metric (resp. a Riemannian
metric, resp. a degenerate quadratic form).

We now write down the parametrization of the rotational surface
explicitly (cf. [3]). It is easily seen that we can choose a basis {ek} of
L4 satisfying the following conditions:

( 1 ) P 2 is the plane generated by e3 and e4;

( 2 ) P 3 is the 3-subspace generated by e, and P 2 ;

(3 ) for two vectors x — Σ f c xkek and y = Σ f c ykek, we have

#i2/i + + #3̂ /3 — #4/4 (spherical case) ,

(p9 V) = —Bi#i + #2̂ /2 + + x^i (hyperbolic case) ,

PiVi + E2I/2 + %iVi + 4̂̂ /4 (parabolic case) .

Let x1 = x,(s), xz = xB(s) and x4 = x,(s), seJ, be the equations of the
curve C which is parametrized by arc length and whose domain of defini-
tion J is an open interval of the set R of real numbers. Then we see
that for each fixed seJ, the intersection U(s) of SI with the affine plane
passing through (0, 0, #3(s), #4(s)) and parallel to the plane generated by
e, and e2 is a circle (resp. a hyperbola, resp. a parabola) in the spherical
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case (resp. hyperbolic case, resp. parabolic case), and we may give the
following parametrization of the surface M (see [4]):

(3.1) f(s, t) = x^costβί + x^smtβz + xs(s)es + #4(s)e4 ,

seJ , teS1 , the unit circle in j?2, (spherical case),

(3.2) f(s, t) = ^(^cosh te1 + ίc1(s)sinh ίe2 + xs(s)es + #4(s)e4 ,

s 6 J , teR , (hyperbolic case) ,

(3.3) f(s, t) = ^(sjβ! + ίsc^s^

s e / , teR , (parabolic case) .

From the parametrization, we see that the first fundamental form J of
the C2-mapping / is

(3.4) I = ds2 + x^sfdt2 in each case ,

and the following relations hold on J:

(3.5) x\ + x\ - x\ = 1 , x[2 + x'3
2 - x[2 = 1 (spherical case) ,

(3.6) -a£ + x\ + x\ = 1 , -αί 2 + CC32 + x? = 1 (hyperbolic case) ,

(3.7) 2a51a?3 + x\ = 1 , 2 ^ 3 + α? = 1 (parabolic case) .

From (3.4)-(3.7) and the assumption that / is an immersion, we may
assume that on the interval J,

(3.8) a?i(s) > 1 (spherical case)

sci(s) > 0 (hyperbolic or parabolic case) .

It is convenient to use the notation Mδ, δ = 1, 0 or — 1, to denote a
rotational, space-like surface in S*, where δ = 1 (resp. δ = 0, resp. δ = — 1)
means ikfδ is a spherical (resp. parabolic, resp. hyperbolic) surface. After
a long calculation we can show the following result (cf. [3]).

PROPOSITION 1. Let Mδ be a rotational, space-like surface in SI
defined by the mapping f. Then the directions of the parameters t and
s are principal directions, the principal curvature along the coordinate
t (resp. s) being given by (x\ + x'2 - δf^/x, (resp. (x[' + x^Kx2 + x[2 - δ)1/2).

4. Rotational, space-like surfaces in S\ with constant mean curva-
ture. From Proposition 1 and (3.8) it can be shown that the mapping /
is an immersion with constant mean curvature h if and only if, on the
interval J", the following relations hold.

(4.1) x,x[f + x[2 + 2x1-δ = 2hxλ(x2 + x[2 - δ)1/2 , in each case ,

(4.2) x\ + x[2 - δ > 0 , in each case ,
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(4.3) xz = (x2 - 1)1/2 sinh φ(s) , x, = (xl - 1)1/2 cosh φ(s) ,

φ(β) = (* (z2 + a£2 - l) 1 / 2(z2 - l ) " 1 ^ , and
Jo

Xi > 1 , (spherical case) ,

(4.4) x3 = (a$ + 1)1/2 cos 0(β) , z4 = (xl + 1)1/2 sin φ(s) ,

^(s) = Γ (xl + χ[* + l)v\χ\ + l)-'dσ , and
Jo

xx > 0 , (hyperbolic case)

(4.5) x3 = (-«ϊ + I)l2x1 , x4 = x\* (xl + xi2)1/2^-2d(7 , and
Jo

a?! > 0 , (parabolic case) .

We now try to solve the equation (4.1) explicitly under the conditions
(4.2) and

and(4.6)

Defining

(4.7)

u(s) by

x1 >
>

0
1

in

in

u(s)

cases δ =

case δ =

= *i(β)72 -

0, - 1 ,

1 .

-δlA,

we can easily show (cf. [5]) that (4.1) with the conditions (4.2) and (4.6)
is equivalent to

(4.8)

with the

(4.9)

and

(4.10)

%'2 =

conditions

— a

-- i{W -

+ 2hu :>o,

74

— 4αΛw + α2 + δ:

α : constant ,

for each δ ,

provided the subset of J, consisting of zero points of the first derivative
of the solution u(s) of (4.8), is discrete. This restriction, however, will
turn out to be satisfied as we solve (4.8) explicitly. From that point on,
our argument is almost the same as that in [5], and we only give an
outline.

We first consider (4.8) in the case where \h\ > 1. There are three
subcases: the constant A := a2 — δ\h2 — l)/4 is positive, zero and negative.
When A is positive after replacing the parameter s by the new one s + c
for a suitable constant c, we have an explicit form of the solution u =
u(s) of (4.8):
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(4.11) u(s) = [ah + {a2 - δ\h2 - 1)/4}1/2 cosh 2{h2 - l)1/2s]/2(h2 - 1) .

From (4.11) it follows that J, the domain of definition of u(s), can be
extended to R, and we denote the extended function by the same symbol
u(s). Then we see that for the extended function u(s), the conditions
(4.9) and (4.10) are equivalent to

(4.12) a > \δ\(h2- l)1/2/2 for Λ > 1 ,

and that there are no solutions with domain J = R of (4.8) with (4.9)
for h < - 1 .

Putting (4.11) with (4.12) into (4.7) with xx > 0 and (4.3), (4.4), (4.5) the
functions u(s), x^s), xs(s), a?4(s) and φ(s) are determined in the following form.

( i ) (Spherical case). For h > 1 and a >(h2 - l)1/2/2 we have

(4.13) u(s) = [ah + {a2 - (h2 - l)/4}1/2cosh 2{h2 - l)1/2s]/2(h2 - 1) ,

(4.14) φ(s) = \°[4u(σ)2 + u\σ)2 - l/4]1/2(2^(σ) - l/2)"1(2^(σ) + l/2)~1/2dσ ,
Jo

(4.15) a ̂ β) = (2«(β) + 1/2)1/2 ,

(4.16) xz(s) = (2tt(β) - l/2)1/2sinhί4(s) ,

(4.17) x4(s) = (2u(s) - 1/2)1/2 cosh φ(s) .

(ii) (Hyperbolic case). For h > 1 and a > (h? — l)1/2/2 we have M (S)
as in (i) and

(4.18) φ(s) = ([4tt(σ) 2 + %'(<τ)2 - l/4]1/2(2%(σ) + l/2)-\2u(σ) - l/2)1/2dσ ,
Jo

(4.19) ^(β) = (2u(s) - 1/2)1/2 ,

(4.20) x3(s) = (2u(s) + 1/2)1/2 cos φ(s) ,

(4.21) xt(s) = (2u(s) + 1/2)1/2 sin φ(s) .

(iii) (Parabolic case). For h > 1 and a > 0 we have

(4.22) w(8) = [αΛ + a cosh 2(/ι2 - l)1/2s]/2(fc2 - 1) ,

(4.23) ί φ ) = (2w(s)Γ ,

(4.24) x4(s) = xAsύ'Mσf + xKσyγηxAσfdσ ,
Jo

(4.25) xs(s) = (-x,(sγ + l)/2^(s) .

When A = 0, after replacing the parameter s by the new one s + c,
for a suitable constant c, we have an explicit solution u = u(s) of (4.8)
with the maximal domain of definition (i.e., J = R in this case):

(4.26) w(β) - exp(2(fc2 - l)1/2s) + hδ2/i(h2 - 1)1/2 for λ > 1 ,
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which satisfies the conditions (4.9) and (4.10) automatically, and there are
no solutions with maximal domain satisfying (4.9) and (4.10) for h < — 1.
Just as in the case where A is positive, we can also define the functions
#i(s), #s(s) and x±(s) explicitly corresponding to the cases d = 1, 0 and —1.

When A is negative, it can be shown that there are no solutions of
(4.8) with maximal domain satisfying (4.9) and (4.10).

Next, we consider (4.8) in the case where \h\ — 1. There are two
subcases: a Φ 0 and a = 0. When a = 0, after replacing the parameter
s by the new one s + c for a suitable constant c, we have an explicit
form of the solution u — u(s) of (4.8):

(4.27) u(s) = ±ds/2 + b , b: constant .

From (4.27) it follows that J, the domain of definition of u(s), can be
extended to R> and we denote the extended function by the same symbol
u(s). Then we see that for the extended function u(s), the conditions
(4.9) and (4.10) are equivalent to

(4.28) u(s) — b, 6: a positive constant, for δ = 0, h — 1 ,

and that there are no solutions with maximal domain satisfying (4.9) and
(4.10) for fe=—1, o r 5 = ± l . When a Φ 0 it can be easily shown that there
are no solutions with maximal domain of (4.8) satisfying (4.9) and (4.10).

Finally, we consider (4.8) in the case where \h\ < 1. In this case
we see that there are no solutions with maximal domain of (4.8) satisfy-
ing (4.9) and (4.10).

Reversing the above argument and taking the completeness into
consideration we see that our main results in Section 2 are true.
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