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Introduction. The asymptotic periodicity of the iterates of Markov
operators has been studied in [3], [4] and [5]. It has been proved to hold
for

(i) strongly constrictive Markov operators
(ii) weakly constrictive Frobenius-Perron operators.
This paper is devoted to the proof of the conjecture formulated (in

the invited address at the International Congress of Mathematicians in
1983) by Lasota. We extend the results mentioned above to the case of
an arbitrary weakly constrictive Markov operator P.

1. Asymptotic properties of P. Let (X, Σ, μ) be a ^-finite measure
space. We shall deal with the spaces Lp = LP(X, Σ, μ) and the norms
| | . | | p = | |. | |Lp. By D we denote the set of densities on Xf i.e., the set of
all normalized nonnegative elements of L1.

(1.1) D = {feL

A linear operator P: L1 —> L1 is called a Markov operator if

P(D)dD .

DEFINITION 1.1. We say that P i s strongly (resp. weakly) constrictive
if there exists a strongly (resp. weakly) compact set FcL1 such that

(1.2) lim d(Pnf, F) = 0 , for / 6 D ,

n—*oo

where d(g, F) is the inflmum of \\g - f\U for feF.

REMARK 1.1. It is obvious that for any geL1 the set

is weakly compact. For geL1 we define the support of g by

(1.3) supp (g) = {x 6 X: g(x) Φ 0} .

The following theorem is a generalization of the main results of [3] and

[4]
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THEOREM 1.1. Let P be a weakly constrίctive Markov operator. Then
there exists a sequence of densities {#J (i = 1, , r) with mutually dis-
joint supports and a sequence of linear functionals {λJcL1* such that

(1.4) l im \Mf - Σ Uf)9i) 1 = 0 for
π-*oo Π \ ί = l / |i

and

(1.5) Pig,) = gaW for ί = 1, , r ,

where a is a permutation of the integers 1, , r.

From the above theorem it follows that the n-ίh power Pn of P can
be written in the form

(1.6) P»/ = ±Uf)*g«^ + Rnf for / e U ,

where an denotes the w-th iterates of the permutation a and the remainder
Rn(f) converges strongly to zero as n —• ©o. Thus every sequence {Pn/}nejv
is asymptotically periodic with a period which does not iexceed r\.

We shall prove Theorem 1.1 under the additional assumptions

(1.7)

which can be released (using ergodic theorem) in the same way as in [3]
and [4].

2. Comments and applications. Let P be a Markov operator. Below
we present a new criterion for the asymptotic stability of the sequence
{Pn}n=i based on Theorem 1.1.

DEFINITION 2.1. The sequence {P71} is asymptotically stable if there
exists a density f0 such that

(2.1) lim ||Pnf - f 0 | | x = 0 for every feD.
π—κ»

DEFINITION 2.2. A set A with positive measure is called a lower set
for P if

(2.2) Pnf(x) > 0 for every xeA, feD, n^no(f) .

LEMMA 2.1 (See [5]). Suppose that P is strongly constrictίve and has
a lower set. Then {Pn}n=i is asymptotically stable.

EXAMPLE 2.1. Let X = [0, oo) and μ be the Lebesgue measure. Let

(2.3) Pf = \~K(x, y)f{y)dy ,
Jo

where K is a stochastic kernel. Suppose that K satisfied the conditions
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(2 .4) Γ s u p K(x, y)dx<<χ> f o r a l l reR
JO 0£y<oo

and

(2.5) \ x K ( x , y ) d x < Z 7 - y + δ, f o r y ^ O
Jo

for some constants 7 and δ, 7 < 1.
We show that P is weakly constrictive.
Applying the same arguments as in [6] we obtain form (2.5) that

(2.6) En(f) = fWdx^
Jo 1 - 7

for sufficiently large n^no(f). Hence

(2.7) μ{(x:Pnf))}
a

for every a > 0 and n ^ no(f). It is obvious that the set

(2.8) F=n\geL1: μ{x; g(x) > a} < M-9 g(x) ^ sup K(xf y)\
α>0 i, d 0£y<oo )

is weakly compact and that

(2.9) lim d{Pnf, F) = 0 .

71-+OO

As an example we consider the kernel

(0 if x ^ y/2
(2.10) K(x, y) = \ Γ 2 r 2 . Ί

(4^/c).exp -±2L + J L if a? > y/2
v L c 2c J

where c is a positive constant.

The corresponding operator P is given by

(2.11) Pf(x) = (4x/c) exv{-2x2/c}λ2Xexv(y2/2c) f(y)dy .
Jo

This operator was used in [6] for modelling the cell division cycle in a
population of cells. Pf means the density of distribution of mitogen level
after one cell cycle if the initial density was /. It is easy to check that
the conditions (2.4) and (2.5) are satisfied. Hence P is weakly constrictive.
Moreover, P has a lower set A = Y — {0}. Therefore P is asymptotically
stable. The same result was obtained in [6] in a more complicated way.

3. Construction of a limiting set Q. In the sequel we suppose that
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P is a weakly constrictive Markov operator and that the conditions (1.7)
are satisfied.

DEFINITION 3.1. A set BeΣ will be called a nice set if Pn(lB) is a
characteristic function for each positive integer n. The characteristic
function of a nice set B is called a nice function. We denote by Q the
linear subspace of L1 spanned by nice functions.

We shall utilize the following results obtained in [4].

LEMMA 3.1. (i) There exists a real number δ > 0 such that μ(B) > δ
for every nice set B with μ(B) > 0.

(ii) The system C of nice sets is a finite algebra with atoms Xlf

•••, Xr, where r ^ δ~\
(iii) There exists a permutation a of the set {1, , r} such that

(3.1) P\X%) = Xan{i) for i e { l , . . . , r } .

(iv) There exists an integer n0 ^ r\ such that

(3.2) Pno(f) = f for feQ.

(v) QcL~, dim(Q) = r.
(vi) If f and f2 are nonnegative elements of L1 with the same sup-

ports, then PΛ and Pf2 have the same supports.

Utilizing the fact that a Markov operator is positive and applying
the Riesz convexity theorem we obtain the following.

LEMMA 3.2. (i) The operator P preserves mean values, i.e.,

(3.3) EPf = Ef( = \fdμ) for feL1.

(ii) Let 1 ^ p ^ <*>. The subspace Lp is P-invarίant and

(3.4) IIP/II,^ 11/11, for feL-.

This enables us to consider P as an operator on L2 with the dual
C7=P*.

THEOREM 3.1. There exists a symmetric operator A on L2 such that

(3.5) lim || Af - UnPnf ||2 = 0 and (Af, f) = lim || Pnf\\\
n—*oo n—*oo

for every feL2.

Moreover, the following set equality holds:

(3.6) Q = Ker(I - A) .

PROOF. The existence of A and validity of (3.5) are direct conse-
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quences of the fact that P is a contraction on U (cf. [9]). We have

(3.7) I ̂  UnPn ^ Un+1Pn+1 ^ A ̂  0 for n e N .

We show that

(3.8) Ker(f - A) = {/ e L2: (A/, /) = ||/||2}

= {feU:VneN\\P"f\\2=\\f\\2}.

The last of these set equalities follows from (3.5). Now we prove the
first one. Let (Af, f) = \\f\\\. Then | | (I - A)1/2/||2 - 0, hence / e
Ker(J — A). The converse inclusion is obvious.

Now we prove the inclusion QcKer(/ — A). It suffices to prove that
l x . e Ker(/ — A) for any nice set Xifie{l, , r}. From (3.1) we obtain

II p n i 112 — M l ||2 — II 1 II — II 1 II — II 1 112

II * J-xJU — II LxanH) Ik — II Lxan(i) 111 — II J-zJIi — ll L z J U

Finally we prove that Ker(I — A)dQ. We have

hence lx e Ker(J — A) according to (3.8). Therefore / 6 Ker(J — A) implies
f -ceKer(7 - A) for c eR. Consider /eKer(I - A), / = /+ - / - . We
have

II / llϊ = II Pf \\l = II Pf+ \\l + II Pf- ill - 2 ( P / + , Pf~)

^ \\r\\\ + ||/-||i - 2(Pf\ Pf~) = 11/111 -

However Pf+ ^ 0, Pf' ^ 0. Hence Pf+-Pf~ = 0, and Pf+ and Pf' have
disjoint supports.

Using the same arguments we obtain that the functions Pn(f — c)+

and Pn(f — c)~ have disjoint supports for any n e N and c e R.
Suppose that c e R is such that μ(f~\c)) = 0. Put

We have

x) = supp((/ - c)-), supp(/ι2) = supp((/ - c)+) .

According to Lemma 3.1 (vi) the functions Pnhx and Pnh2 have disjoint

supports for any fixed neN. However Pnlfiλ + Pnh2 = 1. Therefore, P71/^

is a characteristic function and f~\0f c) is a nice set. Suppose that

μ(f-\c)) > 0. There exists a sequence c ^ c such that f~\— °o, c) =

UΓ-i/^C-oo, c,) and M/-1^)) = 0.

Nice sets form a finite algebra which is a α-algebra as well. There-

fore f~\— °°, c) is a nice set for every ceR, which yields that f eQ.
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COROLLARY 3.1. Let n0 be as in Lemma 3.1 (iv). Then

(3.9) Un°f = f for feQ.

PROOF. From (3.6) and (3.7) we get

0 ^ ||(/ - U^Pnψ2f\\\ = (/, (7 - UnΨn°)f) ^ (/, (7 - A)f) = 0 .

Hence (I-UnΨn°)f = 0 for feQ. Utilising (3.2) we get (3.9).

4. Asymptotic periodicity of P. Let Xlf , Xr and n0 have the
same meaning as in Lemma 3.1. Put

(4.1) R = P n o

and

(4.2) L^ifΛxr.feU) for i = l f . . . , r .

First we present the weak version of Theorem 1.1.

THEOREM 4.1. (i) The subspaces Lt are R-invariant.
(ii) For feLi the sequence {Rnf} converges weakly to the function

\i lZi, where

(4.3) λ, =

(iii) For any / e L 1 the sequence

(4.4) P"/-Σλ,li^

converges weakly to 0.

PROOF, (i) The functions lx. are invariant under the Markov operator
R. Therefore RfeLt for feLiΓiL00, which is dense in Lt.

(ii) Let feLiΓϊL2. The sequence {Rnf} is weakly sequentially com-
pact (cf. [10]). There exists geL^L2 and a subsequence {nk}cN such
that {Rnkf} converges weakly to g. We have

hence

(4.5) lim || Rn*f \\l = lim || Λ"*/ - g \\\ + \\ g \\\ .
fc-»oo fc-+oo

For any meN and heL2 the sequence

(Λ"*+ / f h) = (Rnkf, R*mh)

converges to
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(ff, R*»h) = (Rmg, h) ,

hence {R"k+Mf} converges weakly to Rmg and

lim ||2f*+"/lli = Hni \\Rn"+mf - Rng\\l + \\Rmg\\\
k k

^ lim | |R""f -g\\\+ \\Rmg\\l = lim ||Λ"»/||i - \\g\\l + ||i2"fir||!.
&-κκ> fc-*oo

Using (3.5), (4.1), (3.4) and (3.8) we get

\\R™g\\*=\\g\\> for meN,

hence

Therefore g is constant on Xif g = λ l x . for some xeR. We have

\ μ(Xt) = (g, 1Σ.) = \im(Rnkf, lz.) = lim(/, R*nklx) = (/, l z ) = \ /dμ

because of (3.9) and (4.1).

The part (iii) is a direct consequence of (ii). We omit the detailed proof
of it, because we do not need it in the proof of Theorem 1.1 which con-
tains a stronger result.

Finally we present the proof of Theorem 1.1.
It suffices to prove that

(4.6) lim \\Rnf — λ l̂xjlx = 0
n-*oo

holds for every ΐe{l, -- ,r} and feLt. It is easy to show that (4.6)
implies (1.4).

For feL1 and neN we can write n = k-n0 + m, where 05^
We have

Rk{fΛx%) - v i z ,

Let F be the weakly compact subset of L1 mentioned in Definition 1.1. It
is easy to check that for any ί e {1, , r} the sets

Ft = {f-lZi:feF]

are weakly compact and the restriction of R on Lt = L\X^ is weakly
constrictive.

For the sake of simplicity we shall omit the index i. Hence we shall
restrict our attention to the case r = n0 = 1. Moreover, we can suppose
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that μ(X) = 1.
We obtain from Theorem 4.1 (ii) that for any feD the sequence

{Rnf} converges weakly to l x . Our aim is to prove that this convergence
is strong.

We shall utilize the following simple notions and results. For / e L\
such that / ^ 0, 11/llχ > 0 we put

(4.7) v{f) = fj\\f\l.

DEFINITION 4.1. Let 0<^peR, meN. Nonnegative ZZ-f unctions
/it* 9 fm are p-orthogonal if there exist nonnegative U-ίunctions hίf -,hm

with disjoint supports such that

(4.8) l l / i - M ^ / o for i = l, . . . , m .

PROPOSITION 4.1. (i) Let flf , fm be p-orthogonal and | |/, W, ^ e0 > 0
for i = 1, , n. Then

are p-orthogonal with ργ = ρ/e0.

(ii) Lei / M , , / ί > m i δe p-orthogonal and/2|1> , /2>m2 6e p-orthogonal.

Then m-m^ functions / M l Λ /2f<2, ^ e r e ^ e {1, , m j , i2 e {1, , raj, are

Pi + Pz-orthogonal.

PROOF, (i) Let hu -- ,fcm be as in Definition 4.1. The functions
h\ = hJWftWi for i = 1, , ra have disjoint supports. We have

(ii) Let

h1Λ, , h1>ni and h2yU , fe2>n2

be two groups of nonnegative Z/-functions with disjoint supports corres-
ponding to the functions fjtif for j = 1, 2, i = 1, , % according to (4.8).

The mί-m2 functions

Λi.i! Λ h2ίi2: i, = 1, , rax; i2 = 1, , ra2

have disjoint supports. Utilizing the inequality

\x A z - y A z\ <; \x - y\

which holds for any real numbers x, y, z we get

ll/i.i! Λ f2th - λif<1 Λ Λ2,i2||i ^ | |/i f < 1 Λ /2f<2 - / M l Λ ^ l l x + ||/ l f<1

Λ Λ2 > i 2 - λ l f < 1 Λ K i 2 \ l ^ ||/lt<1 - ^ l l ! + | |/M l - h l t i χ ^ ρ , + ρ 2 .

PROPOSITION 4.2. Let F be a weakly compact subset of IΛ Let e β
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(0, 1) be a given real number and δ > 0 is such that

(4.9) ί gdμ <ε for geF and μ(B) < δ .
J B

Let p and K are positive real numbers such that

(4.10) ε + 2p + K ̂  1 .

Then the maximal number of p-orthogonal densities contained in the set

(4.11) OK(F) = {f:fe L\ d(g, F) < K}

is not greater than δ~\

PROOF. Let m > δ'1 and f19 , fm be ^-orthogonal densities contained
in OK(F). Let glf , gm be elements of F such that

(A ΛO\ 11 f _ a II < ιc for i" — 1 w>

Let hlf * ,hm be as in Definition 4.1. Let {i?J?li be disjoint supports of
{ΛJίU There exists i e { l , --^m} such that

(4.13) μ(Bj) ^ 1/m < 8 .

We have

M i " = \ M ^ ̂  \ Λ # - IIΛ - ^illi ^ i - ι °
B^ JX JX

a n d

I Ihj — #yId/i ^ | |hj — gjW^ /c + p .
JBj

Hence

( gjdμ ^ I M i " - \ \h - ^ l d i " ^ 1 - 2 / 0 - ic ̂  ε ,
JBj JBj JBj

which contradicts (4.9).

PROPOSITION 4.3. Let f e L1 and λ = 2£/. ΓΛe^ for any p > 0

Wp s^cfe ί feαί for m ^ NP and n^O the functions

(4.14) Rn([Rmf - λ]+) and i2n([i?m/ - λ]~)

are p-orthogonal.

PROOF. The sequence \\Rmf — λ||x is nonincreasing. Put

(4.15) Af1 = - ί

Let us denote
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(4.16) dUtl = (Rmf - λ)+ , duΛ = (Rmf - λ)"

We have

\\dmA\\1=\\dm,t\\ι = h\B'f-\\\ι
Δ

because of

E(Rmf - λ) = Edm>1 - EdmA = 0 .

Let p > 0 be given. We can choose Np so that for m ̂  Np

(4.17) J l i ̂  1 | | BTf - X|U = II d.,x IU =

For w ^ O we have

(J2m + n/ - λ) - Rn(Rmf - λ) ^

Hence

(4.18) ώm+re>1 £ ^ ( ^ , 0 .

Similarly

(4.19) dm+n,2 ^ Λ (dmtt) .

Therefore

\\Rn(dmΛ) - d^J, = E(Rndm>i - dm+nfi) = JS7dmt< - Edm+nΛ ^ p

for i e I% = {1, 2} .

Note that dm+π>1 and dm+ny2 have disjoint supports.

COROLLARY 4.1. Let p > 0 cmc? iV̂ , δe as w Proposition 4.2. For a
given m ̂  Np and isl2 put

(4.20) h< - dm>ί .

Lei s > 0, 0 <̂  nx < n2 < < n8. Then the 2β functions given by

(4.21) g(i) = Λ " ^ Λ Λ J8n'Λ<f /or i = (i l f , i.) e /J

are prorthogonal with p1 = s-p.

PROPOSITION 4.4. Let f19 •••,/, 6e nonnegative L°°-functions such that

(4.22) IIΛIU^Mo

/or some positive constant Mo.

( i) ΓΛe following inequality holds:

(4.23) W Λ Λ Λ Λ /.) ̂  ^(Λ Λ , fs)IMr .
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(ii) The sequence {EiR71^ A Rnf2 Λ Λ -Kn/8)}n=i is nondecreasing
in n.

PROOF, (i) We have

0^fJM0^lz for i = l, . . . , s .

Hence

(fJM0)-(f2/M0) . (fJM0) ^ (fJM,) A (Λ/ΛΓo) Λ Λ (/./Λf0)

= (/iΛ ••• Λ/.)/Λf0.

(ii) We have

2n/x Λ Λ i2n/β) ^ ien + m/, for i = 1, , s, m ^ 1 .

Hence Rm{RnA A Λ i2w/8) ^ Λm+n/χ Λ Λ i2n+m/8. The rest of the
proof follows from the fact that R preserves mean values.

PROPOSITION 4.5. Let f^AeL1 and IIΛ-/.Hi < H/JL. Then the
inequality

(4.24) || v{fx) - v(f2) |L <S 2 H/, - /2 \\J\\f, ||, ,

PROOF. ||/2 ||X ^ ||/x ||, - ||/x - /2 |U > 0, and \\fj\\fi ||x - /2/||/2 ||x ||x ^
ll/i - /.IMIΛIIi + ll/.lli KII/illΓ1 - ll/.llr1)! ^ 2 . ||/x - MJWM, Now we
are able to finish the proof of Theorem 1.1 by proving (4.6). It is
obvious that we can restrict our considerations to the space L°°, which is
dense in ZΛ Let /eL°° and Mo = \\f\\00 > 0. Let M, be given by (4.15).
It is evident that (4.6) is equivalent to Mx = 0. Let M1 > 0. Let F be
the weakly compact set mentioned in Definition 1.1. Let ε = 1/4 and δ
be determined by (4.9). Take s so that

(4.25) 28 > δ-1

and

(4.26) p = l/(4βe.)

where

(4.27) e8 =

Let Np be as in Proposition 4.3 and m ^ Np. Let hit i = 1, 2, by given
by (4.18) and (4.20). We show that there exist natural numbers k2 <
fc3 < < k8 such that for any n ^ 0 and i 612 the nonnegative function

(4.28) gn{ϊ) = Rnhh A Rn+k%2 A Λ Λ"+* Λ<f
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satisfies the inequality

(4.29) Egn{i) ^ e8 .

According to Proposition 4.4 it suffices to prove that there exist k2 <
h < < k8 such that

(4.30) E(hh-Rkίhh Rk'hia) ^ Ml/28 for any i e I2

8 .

But this is a direct consequence of Theorem 4.1 (ii) which yields that

(under the assumption μ(X) = 1)

(4.31) lim E(A Rkf2) = Efx Ef2 for flf f2 e U .

According to Proposition 4.5 the 28 sequences {Egn(ϊ)} are nondecreasing
in n. Moreover, all of them are bounded from above by Mo. Hence they
converge in n uniformly with respect to i 61 2. Let ic^ = e8/10. There
exists n0 such for every n ^ n0 and i e Ii the inequality

(4.32) Egn{i) - Egφ) < κx

holds. In the same way as in the proof of Proposition 4.5 we obtain that

(4.33) || gn{i) - Rn-n»9nSΪ)\l = EUϊ) - Egφ)

Finally, using Proposition 4.5 we get

(4.34) || vgn{i) - »[Rn-no9nQ(ϋ] Ik = II vfoi) - Λ - M W ) ] Ik ^ **Je.
= 1/50 .

But for every ίeli the sequence Rn~n\v[gno(ϊj\) converges to F because
R is weakly constrictive. The number of considered sequences is finite,
hence the above convergence is uniform with respect to i. Let κ2 — 1/20.
There exists nx such that

(4.35) Rnί-no(»[9n0(ί)])eOK2(F) for ίeli.

Combining (4.34) and (4.35) we obtain that for K = 1/4 the neighbourhood

OK(F)

contains 28 function {gnι(i): i 6/2

β}. Moreover, these functions are pr

orthogonal with px = 1/4 according to (4.28), Proposition 4.3 and Corollary
4.1. But this contradicts Proposition 4.2. Hence we conclude

Mί = 0 for every / e L°° ,

which implies (4.1) and proves Theorem 1.1.
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