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Introduction. The asymptotic periodicity of the iterates of Markov
operators has been studied in [3], [4] and [56]. It has been proved to hold
for

(i) strongly constrictive Markov operators

(ii) weakly constrictive Frobenius-Perron operators.

This paper is devoted to the proof of the conjecture formulated (in
the invited address at the International Congress of Mathematicians in
1983) by Lasota. We extend the results mentioned above to the case of
an arbitrary weakly constrictive Markov operator P.

1. Asymptotic properties of P. Let (X, 5, ¢) be a g-finite measure
space. We shall deal with the spaces L? = L*(X, 3, ¢t) and the norms
I, = ll*lze. By D we denote the set of densities on X, i.e., the set of
all normalized nonnegative elements of L!.

(1.1) D=A{fel:|fl.=1, f =0}
A linear operator P: L' — L' is called a Markov operator if
PD)cD.

DEFINITION 1.1. We say that P is strongly (resp. weakly) constrictive
if there exists a strongly (resp. weakly) compact set F'*C L' such that

(1.2) limd(P"f, F)=0, for feD,

n—roo

where d(g, F') is the infimum of ||g — f|, for f e F.

REMARK 1.1. It is obvious that for any g€ L' the set
F,={fel:0=f<|gl)
is weakly compact. For ge L' we define the support of g by
(1.3) supp (9) = {x e X: g(x) = 0} .

The following theorem is a generalization of the main results of [3] and

[4].



16 J. KOMORNIK

THEOREM 1.1. Let P be a weakly constrictive Markov operator. Then
there exists a sequence of demsities {g,} (t =1, -, r) with mutually dis-
joint supports and a sequence of linear fumctionals {\}C L™ such that

(1.4) lim ||P(f — Shifa)| =0 for feLt
and

(1.5) Pg) = oy SJor i=1,---,71,
where a 18 a permutation of the integers 1, ---, r.

From the above theorem it follows that the n-th power P" of P can
be written in the form

(L.6) P'f = SN Garo + Buf  for felt,

where a” denotes the n-th iterates of the permutation a and the remainder
R.(f) converges strongly to zero as w — o. Thus every sequence {P"f},cx
is asymptotically periodic with a period which does not exceed r!.

We shall prove Theorem 1.1 under the additional assumptions

a.mn HMX)<eo, Ply=1y,
which can be released (using ergodic theorem) in the same way as in [3]
and [4].

2. Comments and applications. Let P be a Markov operator. Below
we present a new criterion for the asymptotic stability of the sequence
{P™}>_, based on Theorem 1.1.

DEFINITION 2.1. The sequence {P"} is asymptotically stable if there
exists a density f, such that

@.1) lim | P*f — f,,=0 for every feD.

DEFINITION 2.2. A set A with positive measure is called a lower set
for P if

2.2) P f(x) >0 for every x€ A, feD, n=nf).

LEMMA 2.1 (See [5]). Suppose that P is strongly constrictive and has
a lower set. Then {P"}7_, is asymptotically stable.

EXAMPLE 2.1. Let X = [0, ) and g be the Lebesgue measure. Let

2.3) Pf = K@, p)fway

where K is a stochastic kernel. Suppose that K satisfied the conditions
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(2.4) S sup Kz, y)dz<oo  for all reR
0 0sy<oco

and

(2.5) S:wK(ac yde<v-y+05, for y=0

for some constants v and 4, v < 1.
We show that P is weakly constrictive.
Applying the same arguments as in [6] we obtain form (2.5) that

2.6) E,(f) = S:’x-P" HOLES S _t1=M
for sufficiently large n=mn,(f). Hence
2.7) @: P*f (@)= a)} < %’—-

for every @ > 0 and n = n,(f). It is obvious that the set
(2.8) F=N {g e L plw; g(x) > a} < M g(x) < sup K(z, y)}
a>0 a 0=y<o

is weakly compact and that
(2.9) lim d(P*f, F) =0 .

n—00
As an example we consider the kernel

0 if z=5y9/2

(210) K(CI), ?/) = 2 2
{(4x/c)-exp\:— 2790 + %] if x> y/2

where ¢ is a positive constant.

The corresponding operator P is given by
2z
(2.11) Pf(x) = (4w/c)-exp{—2a°/c} So exp(y*/2¢)- f(y)dy .

This operator was used in [6] for modelling the cell division cycle in a
population of cells. Pf means the density of distribution of mitogen level
after one cell cycle if the initial density was f. It is easy to check that
the conditions (2.4) and (2.5) are satisfied. Hence P is weakly constrictive.
Moreover, P has a lower set A =Y — {@}. Therefore P is asymptotically
stable. The same result was obtained in [6] in a more complicated way.

3. Construction of a limiting set Q. In the sequel we suppose that
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P is a weakly constrictive Markov operator and that the conditions (1.7)
are satisfied.

DEFINITION 3.1. A set BeJ will be called a nice set if P*(1;) is a
characteristic function for each positive integer n. The characteristic
function of a nice set B is called a nice function. We denote by @ the
linear subspace of L' spanned by nice functions.

We shall utilize the following results obtained in [4].

LEMMA 3.1. (i) There exists a real number 6 > 0 such that u(B) > o
Jor every mice set B with pu(B) > 0.

(ii) The system C of mice sets is a finite algebra with atoms X,
coe, X,, where r <07

(iii) There exists a permutation « of the set {1, «--, r} such that

3.1) PY(X) = Xyng for iefl, ---,7r}.
(iv) There exists an integer m, < r! such that
(3.2) Po(fy=f for fe@Q.

(v) QcL~,dim(Q) = .
(vi) If f, and f, are nonnegative elements of L' with the same sup-
ports, then Pf, and Pf, have the same supports.

Utilizing the fact that a Markov operator is positive and applying
the Riesz convexity theorem we obtain the following.

LEMMA 3.2. (i) The operator P preserves mean values, i.e.,

3.3) EPf = Ef(:Sfdp) for feL'.
(ii) Let 1 £ p < . The subspace L* is P-invariant and
(8.4) I1Pfl, = fll,  for felLr.

This enables us to consider P as an operator on L? with the dual
U = P*,

THEOREM 3.1. There exists a symmetric operator A on L* such that
3.5) lim[Af = UPfll.=0 and (Af, f)=1lim| P"f|;
for every felL?.
Moreover, the following set equality holds:
(3.6) Q = Ker(I — A).
PrOOF. The existence of A and validity of (8.5) are direct conse-
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quences of the fact that P is a contraction on L* (cf. [9]). We have

3.7 IZUP=ZUMP*HP=A20 for neN.
We show that
3.8) Ker(I — A) = {f e L* (Af, f) = |If3}

={fel:¥neN [[Pfl, =1}

The last of these set equalities follows from (3.5). Now we prove the
first one. Let (Af, f)=|fl3%. Then ||(I— A)*f|Z=0, hence fe
Ker(I — A). The converse inclusion is obvious.

Now we prove the inclusion QCKer(I — A). It suffices to prove that

1;,eKer(I — A) for any nice set X,,ie{l, .-+, r}. From (3.1) we obtain
1 P™"1x = | Lxpny IE = N Lxgny = 11, = 115,012 -
Finally we prove that Ker(I — A)c@Q. We have
Pnlx = ].x

hence 1y € Ker(I — A) according to (3.8). Therefore f € Ker(I — A) implies
f —ceKer(I — A) for ce R. Consider feKer(I— A), f=ft—f-. We
have

IF1E = WPFIE = IPFIE + P2 — 2(Pf*, Pf7)
= IR+ LI — 2(PF, PA) = I FIE - ZSPf+-Pf’d#-

However Pf* = 0, Pf~ =2 0. Hence Pf*-Pf~ =0, and Pf* and Pf~ have
disjoint supports.

Using the same arguments we obtain that the functions P*(f — ¢)*
and P*(f — ¢)~ have disjoint supports for any ne N and ceR.

Suppose that ce€ R is such that p(f'(c)) = 0. Put

hl - 1f"1(_oo’c), h2 =1- h1 .
We have

supp(h,) = supp((f — ¢)7), supp(h,) = supp((f — ¢)*) .

According to Lemma 3.1 (vi) the functions P"h, and P"h, have disjoint
supports for any fixed n € N. However P*h, + P"h, = 1. Therefore, P"h,
is a characteristic function and f7*(0,¢) is a nice set. Suppose that
#(f~(c)) > 0. There exists a sequence ¢; /¢ such that f(—oco,¢) =
Ui f7 (=0, ¢) and p(f*(c)) = 0.

Nice sets form a finite algebra which is a g-algebra as well. There-
fore f!(— oo, ¢) is a nice set for every c € R, which yields that feQ@.
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COROLLARY 3.1. Let m, be as in Lemma 3.1 (iv). Then
3.9) Unf=f for fe@.
PrROOF. From (3.6) and (3.7) we get
0 =< [[(I=TrPmy fls=(f,I=UmP)f) = (f,I—Af)=0.
Hence (I —U™P™)f =0 for fe@. Utilising (3.2) we get (3.9).

4. Asymptotic periodicity of P. Let X, ---, X, and n, have the
same meaning as in Lemma 3.1. Put

(4.1) R = P™
and
4.2) L,={f1g: feLl} for i=1,---,7r.

First we present the weak version of Theorem 1.1.

THEOREM 4.1. (i) The subspaces L, are R-invariant.
(ii) For feL, the sequence {R"f} converges weakly to the function
N+ 1y, where

(4.3) A = Sfdy/ﬂ(Xi) .
(iii) For any f € L' the sequence
(4.4) pf — iz;)"ilxa"(i)

converges weakly to 0.

ProoF. (i) The functions 1, are invariant under the Markov operator
R. Therefore Rf € L, for f e L,NnL>, which is dense in L,.

(ii) Let feL,NnL* The sequence {R"f} is weakly sequentially com-
pact (cf. [10]). There exists ge L,NL* and a subsequence {n,}CN such
that {R"*f} converges weakly to g. We have

lim(R"f, 9) = Il g
hence
(45) lim || Rf |l = lim [|B™f — g + gl
For any m € N and h e L* the sequence
(Rs*mf, h) = (R"f, R*"h)

converges to
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(9, R*™h) = (R™g, h) ,
hence {R™*™f} converges weakly to R™g and
lim || R f|[; = lim [ Br*=f — Brg |2 + || Bmg |2
= lim || B*f — g} + || B"g|l} = lim IR*f1lz — gl + | R™g |l .

Using (3.5), (4.1), (3.4) and (3.8) we get
IRg|*=llgl* for meN,
hence
geQNL;.

Therefore g is constant on X, g = \+1;, for some » € R. We have
ApX) = (g, 1x) = Lim(R"kf, 1) = lkim(f, R*™ly) = (f, 1) = SX Sfdp
— 00 —00 1

because of (8.9) and (4.1).

The part (iii) is a direct consequence of (ii). We omit the detailed proof
of it, because we do not need it in the proof of Theorem 1.1 which con-
tains a stronger result.

Finally we present the proof of Theorem 1.1.

It suffices to prove that

(4.6) lim || R*f — ALyl = 0
holds for every 2e€{l, ---, 7} and feL, It is easy to show that (4.6)
implies (1.4).

For feL' and ne N we can write n = k-n, + m, where 0=m<n,.
We have

HP"f - ;Xill’anm

1

r
=2,
=1

Let F' be the weakly compact subset of L' mentioned in Definition 1.1. If
is easy to check that for any 7€{l, ---, r} the sets

F,={f1z: fe F}

are weakly compact and the restriction of R on L, = LYX,) is weakly
constrictive.

For the sake of simplicity we shall omit the index 7. Hence we shall
restrict our attention to the case » = n, = 1. Moreover, we can suppose

R (f-1x) = ey,

1



22 J. KOMORNIK

that p(X) =1.

We obtain from Theorem 4.1 (ii) that for any feD the sequence
{R"f} converges weakly to 1,. Our aim is to prove that this convergence
is strong.

We shall utilize the following simple notions and results. For f e L',
such that f =0, || f|l, > 0 we put

4.7) v(f) = FIIfI. -

DEFINITION 4.1. Let 0 <peR, meN. Nonnegative L'-functions
Jfu+ -+, fn are p-orthogonal if there exist nonnegative L'-functions h,,- -, h,
with disjoint supports such that
(4.8) Ifi=hll.<po for i=1,---,m.

PRrOPOSITION 4.1. (i) Let f,, «--, f be p-orthogonal and || f;|l, = ¢, > 0
Jor i=1,---,n. Then

v(fD), +++y v(fw)
are p-orthogonal with o, = o/e,.

(ii) Let f,,, ++*, fim, e pi-orthogonal and f,,, -+, [, be O-orthogonal.
Then m,-m, functions f; A f,., where i,€(1, -+, m}, i,€(1, -+, my}, are
0, + p.-orthogonal.

ProOF. (i) Let h, ---, h, be as in Definition 4.1. The functions
hi = hJ||f:l, for ¢ =1, ---, m have disjoint supports. We have

1v(f) — Rills = IIfi — R/ 2l < ofes -
(ii)) Let
hl,l; tt h1.n1 and hz,u "t hz,nz

be two groups of nonnegative L'-functions with disjoint supports corres-
ponding to the functions f;,, for j =1,2,7 =1, ..., n; according to (4.8).
The m,-m, functions

iy Aoty =1, cc,my;t,=1, ¢, m,
have disjoint supports. Utilizing the inequality
e ANz—y ANzl S |e—y|
which holds for any real numbers z, ¥, z we get

||f1,¢1 A f;,‘ig - h’l,il A hz,iznl _S_ ”fl,tl A fz,iz - fl,tl A hz,t,;”l + ”fl,dl
A h2,{2 - hl,il A hz,tznl = “f‘Z,tz - hz,lell + “fl,tl - hl,illll = 0. + O .
PrOPOSITION 4.2. Let F be a weakly compact subset of L'. Let ¢€
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0, 1) be a given real number and 6 > 0 is such that

(4.9) SBgd/J <e for geF and pB)<id.
Let p and k£ are positive real mumbers such that
(4.10) e+20+c6=1.
Then the maximal number of p-orthogonal densities contained im the set
(4.11) O.(F)={f:fel',d(g, F) < &}
18 not greater than 6.
PrOOF. Let m > é~'and f, ---, f, be p-orthogonal densities contained
in O(F). Let g, -+, g, be elements of F such that
(4.12) Wi—gl=k for i=1 .+, m.
Let h,, +--, h, be as in Definition 4.1. Let {B,}™, be disjoint supports of
{h)r,. There exists je{l, ---, m} such that
(4.13) #B) = 1m <5
We have

[, bt =\ hdpz | fdp— 16— hilz1- 0
Bj x X
and

|, 1hs— gsldu < by = gl sk + 0.

Hence

| gdnz | map—| b —glipz1-20-k 25,
Bj Bj Bj
which contradicts (4.9).
PROPOSITION 4.3. Let feL' and » = Ef. Then for any p > 0 there
exists N, such that for m = N, and n = 0 the functions
(4.14) RY[R™f — \]") and R*([R™f —A]")
are p-orthogonal.
ProOF. The sequence |R™f — \|, is nonincreasing. Put
1
2

(4.15) M, = —-lim [[R™f — A, .

Let us denote
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(4.16) Ap: = (B"f =N, dn,=(R"f —N\)
We have

il = sl = —;—HR’"f —

because of
ER™f —\) = Ed,,, — Ed,,,=0.
Let 0 > 0 be given. We can choose N, so that for m = N,

(4.17) M, < %HR’”f Ml =l dall = lldpall < M, + 0.

For n = 0 we have
(B™*"f —N\) = RMR™f —\) = R([R"f — \]Y) .

Hence

(4.18) Qpiny = RY(d, 1) -
Similarly

(4.19) Qpinz = B (dy 2)
Therefore

”Rn(dm,i) - dm+n,i”1 = E(Rndm,t - d'm+n,i) = Edm,i - E’dm-i-’n,i é lo
for 1el,=1{1,2}.
Note that d,,.,, and d,.,. have disjoint supports.

COROLLARY 4.1. Let p >0 and N, be as in Proposition 4.2. For a
given m = N, and ©1€ I, put

(4.20) hi=4d,,.
Let s>0,05m, <m, < -+ <m, Then the 2° functions given by
(4.21) g(@) = R™hy, N\ +++ A R™h, for i= (i, -+, 9)€L;
are p;-orthogonal with o, = s-p.
PROPOSITION 4.4. Let f,, - -+, f, be nonnegative L*-functions such that
(4.22) 1fille = M,
for some positive constant M,.
(i) The following inequality holds:
(4.23) Efi NFiN oo+ NF) Z E(fido -+, LM .
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(ii) The sequence {E(R"f, A\ R"f, A\ -+ A R*f)}7-; is mondecreasing
m n.

Proor. (i) We have
0<f/M, <1y for i=1,--+,8.
Hence
(LIMy)-(F/ M) « +« (fu/My) < (F/My) N (Lof/My) A -+« A (fo/My)
=i\ NFIIM, .
(ii) We have
R™RYf, A -+ ARf)SR™"f, for i=1+,8m=1.

Hence R™R"fy\ :-- AN R™f,) < R™™"f, A --- A R**"f,. The rest of the
proof follows from the fact that R preserves mean values.

PROPOSITION 4.5. Let f,, foeL* and ||fi — fill. < fill.. Then the
inequality

(4.24) lv(fo) — »(f) . = 2 — LI/
holds.

ProoF. | filli = Al — IIfi = £ll. >0, and [A/IIfill, — LSS
L= LA + L TAANT = LI = 2- 1 f — fll/ILfi)l.. Now we
are able to finish the proof of Theorem 1.1 by proving (4.6). It is
obvious that we can restrict our considerations to the space L=, which is
dense in L*. Let feL~ and M,=||f||*>0. Let M, be given by (4.15).
It is evident that (4.6) is equivalent to M, =0. Let M, > 0. Let F be
the weakly compact set mentioned in Definition 1.1. Let ¢ =1/4 and ¢
be determined by (4.9). Take s so that

(4.25) 28>0

and

(4.26) 0 = 1/(4se,)
where

(4.27) e, = M;/(2M,)* .

Let N, be as in Proposition 4.3 and m = N,. Let h,7=1,2, by given
by (4.18) and (4.20). We show that there exist natural numbers k&, <
k, < «-+- <k, such that for any » = 0 and 7 € I the nonnegative function

(4.28) g.(t) = R*h, A\ R"**h, A\ -++ N\ R"**h,
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satisfies the inequality

(4.29) Eg,(1) = e, .

According to Proposition 4.4 it suffices to prove that there exist k, <
k, < --- <k, such that

(4.30) E(h,-R*h,, -+ -R*h,) = M;/2* for any iel;.

But this is a direct consequence of Theorem 4.1 (ii) which yields that
(under the assumption p(X) = 1)

(4.31) }‘Lm E(f,- R*f,) = Ef,-Ef, for f, f,eL’.

According to Proposition 4.5 the 2* sequences {Eg,(i)} are nondecreasing
in n. Moreover, all of them are bounded from above by M,. Hence they
converge in n uniformly with respect to 2€I. Let k, = ¢,/10. There
exists n, such for every n = n, and ¢ € I} the inequality

(4.32) Eg.(i) — Eg, (i) < &,
holds. In the same way as in the proof of Proposition 4.5 we obtain that
(4.33) [19.(%) — R*™g, (D), = EF.(?) — Eg,) .

Finally, using Proposition 4.5 we get

(4.34)  [[vg.(2) — Y[R ™G, (D], = |vF.(5) — B[, (D]l < 2k//e,
=1/50.

But for every i ¢ Iy the sequence R""(y[g,(?)]) converges to F' because

R is weakly constrictive. The number of considered sequences is finite,

hence the above convergence is uniform with respect to ¢. Let &, = 1/20.
There exists », such that

(4.35) Rm(y[g,,(1)]) € O (F) for iely.
Combining (4.34) and (4.35) we obtain that for £ = 1/4 the neighbourhood
O.(F)

contains 2* function {g,(¢): i€I;}. Moreover, these functions are p,-
orthogonal with p, = 1/4 according to (4.28), Proposition 4.3 and Corollary
4.1. But this contradicts Proposition 4.2. Hence we conclude

M =0 for every felL”,

which implies (4.1) and proves Theorem 1.1.
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