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1. Introduction. Concerning the problem of uniqueness for Walsh
series, we have already proved that a Dirichlet set is always a U-set in
the ordinary sense and that a subset of the dyadic group is a Dirichlet
set if and only if it is a subset of some closed subgroup with Haar
measure zero [6].

In this paper, we shall generalize the above results and prove some
uniqueness theorems for Dirichlet sets.

Fine [2] defined the dyadic field, ^~, which is the set of all 0 — 1
sequences ( , t_lf ί0, tlf •) with tt = 0 or 1 and limn__eotw = 0. For
convenience, when x = ( , ti9 •) satisfies tt = 0 for sufficiently large i,

we shall identify x with (Σ?=-oo tk/2k). For example, ( , 0, 1,1, 0, •) =
1
u

3 and ( , 0, 0, 1, 0, •) = 1/2. Define two operations: the addition
denoted by + and the product denoted by . When & = (•••,«„•••) and
y = ( , uj9 ) are arbitrary elements of ^ 7 the addition is defined by

x + !/ = (•••, \tt - Ui\, •••)

T h e p r o d u c t i s d e f i n e d b y x y — ( , vk, •) w h e r e

Ui (mod 2) .

The distance between x and y is given by

t\tk~uk\/2k.

Hence _̂ ~ becomes a metric space. Moreover it is easy to see that
becomes a locally compact totally disconnected abelian group (see Rudin
[4]).

The dyadic group, ^ , is the subgroup of J?" in which each ele-
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ment has the form ( , 0, tlf t29 •)• For convenience, we shall identify
(•••» 0, tlf t2, •••) with (tίft29 •••)• ^ is a compact totally disconnected
abelian group. For details of the dyadic group we shall refer the reader
to Fine [1].

We shall introduce the concept of dyadic intervals. Iξ denotes a
dyadic interval of rank n which is a set of all elements ( , tk, ) €
&~ such that

Σ tJ2k = p/2» ,
k=—oo

for n = 0, ±1, ±2, and p = 0,1, . In(x) denotes the dyadic interval
of rank n which contains x. It is easy to see that fo° coincides with the
dyadic group & and any dyadic interval is closed and open in ^ 7

Let Γ — {0, 1, 2, •} be a subgroup of ^ 7 The character functions
of & are called ΨαϊsΛ functions, {wn(x)}neΓ, which are defined by the
equation

Wn(x) = ( — l)Zi+i=i*i»i ,

where α = (ίlf ί2, •) e ^ and n = ( , n^2f n_u 0, •) eΓ. Then Γ is
the dual group of ^ .

We shall introduce the dyadic measures (see [5]). A real valued set
function m on the dyadic intervals is said to be a dyadic measure if it
satisfies the following additivity

for n = 0, 1, and p = 0, 1, , 2π — 1. When /(a?) is an integrable
function, set

for each dyadic interval Iζ. Then m/ becomes a dyadic measure. If m
is a Radon measure on ^ , then it is a dyadic measure which satisfies

sup( 2 Σ|m(J£) | )< - .

Conversely, if a dyadic measure m satisfies the above condition, then there
exists a Radon measure m* such that m*(Iζ) = m(/ξ) for each dyadic
interval /£. We shall identify m* with m.

Let

μ = Σ β(k)wk(x) = Σ μ(k)wh(x)
fc=0 fceΓ
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be an arbitrary Walsh series. The quantity

Σ β(k)wk(x)dx = Σ / W l wk(x)dx

lζk=O fc=O J/J

is determined for each dyadic interval /*. Moreover we have

m,(In(α0) = (l/2T O)2Si"(^)^(^) .
Aί=0

The set function mμ becomes a dyadic measure and

(1.1) μ(k) =2S
p=0

for 0 ^ fc < 2n and n = 0, 1, , where ί pmμ(dx) = mμ{Pn). We shall call

μ(k) the k-th Walsh Fourier coefficient of μ.
Conversely, for an arbitrary dyadic measure m, the quantity (1.1) is

determined for each k = 0, 1, . It is easy to see that mμ coincides with
m.

2. Strong ί7-sets. When s/ is a certain class of Walsh series, a
subset E of & is said to be a U-set for Jtf, if μ e J ^ and

2 1 yv

(2.1) lim Σ μ(k)wk(x) = 0 everywhere except on

imply that /i(fc) = 0 for all k. When E is not a [/-set for sf, it is called
an M-set for Jtf.

A subset E of ^ is said to be a strong U-set, if the equality

(2.2) sup I μ(k) | = lim inf | μ{k) \

holds for any Walsh series μ which satisfies (2.1) everywhere except on
E. It is easy to see that a strong U-set is a U-set for the class of Walsh
series μ such that μ(k) — o(l) as k —> °o. The concept of strong [/-set was
introduced by Kahane [3] for trigonometric Fourier series of Radon
measures.

A subset E of & is called a Dirichlet set, if it satisfies the following
equation:

lim inf sup 11 — wn(x) | = 0 .
n—*oo x e 1

Kahane [3] proved that a Dirichlet set defined on the unit circle is
a strong U-set. We shall prove the analogues of this result.
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When Δ is a subgroup of Γ, let H(Δ) be the annihilator of Δ, that is,

BΓ(J) = {x; wk(x) = 1 for all k e Δ) .

If Γ = J + Δ* (direct sum) where Δ and J* are both infinite subgroups
of Γ, then H(Δ) and i/(J*) are both closed subgroups of if with Haar
measure zero and H(Δ) + H(Δ*) (direct sum) coincides with if (see Rudin
[4]).

From the definition of Dirichlet sets, we can find a monotone incre-
asing sequence of integers (nk;k = l,2, •) such that wn]c(x) = 1 for all
x e E and all fe. We shall generalize the definition of Dirichlet sets. When
Θ = (θk; k e Δ) is a sequence of elements of ^ , set

X(θ) = {χ; Wk(x) = Wk(θk) k G Δ) .

THEOREM 2.1. A TΓαZsft series ^ satisfies (2.1) /or x$K(Θ), if and
only if

(2.3) /£(Λ + k) = β(n)wk(βk)

for all neΓ and keΔ.

PROOF. We shall first consider the case K(Θ) Φ 0 . Since

for u e K(θ), i and j e Δ, the equation

(2.4) ϋWito+y) = WtMwtfs)

holds for all i and J G J . On the other hand, we know already [6] that
there exist a monotone increasing sequence of integers (iV/, jΓ = 1, 2, •)
and a sequence of integers (ns; j = 1, 2, •) such that Nt < N2 < ,

2 ^ ^ % < 2 ^ + 1 , j = 1, 2, •

and

(2.5) Δ = fo^i + ε2w2 + e< = 0 or 1 and εn = 0

for sufficiently large n) .

From (2.4) and the above just cited, θ is generated by (θn{j); j = 1, 2, •)>

where w(i) = w, . Hence ίΓ(θ) coincides with

{x; wn{k)(x) = wn{k)(θMk)), k = 1, 2, •} .

By the same argument as that used in the proof of Theorem 2 in [6],
we can find an element vQeH(Δ*) such that

K(θ) = vo + H(Δ) Ξ= {vQ + u;ue H(Δ)} .

We write, as usual, y + E = {y + x; x e E}.
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To prove the necessity, we need the following:

LEMMA 2.2. If a Walsh series v satisfies

lim inf
k=Q

= 0 everywhere ,

then v(k) = 0 /or αϊί fc.

PROOF OF LEMMA 2.2. It is easy to see that the inequality

\mXΓ
0
)\ ̂  \mXH)\ + \mXH)\ ̂  2|

holds, where |mp(/f(1))l = max{|my(/f)|; p = 0,1}. In the same way we
have

^ 2 |m v ( i? ω ) | £ 22 |

^ ••• ̂ 2n\mXPn

{n))\ ^ . . . ,

where Iζ{n) is a subset of Pn

{-Γι) which satisfies

|mv(/J(n))l - max{|m v(I»|; p - 2P..,, 2?)^ + 1}

for all n. Since each Iζ{n) is a closed set, we can set n«=i I%{n) = {̂ } Then
we have Iζ{n) = In(z) for all n. From the above inequality, we obtain

By

and by assumption, we have

ϋ(0)\ =

= lim inf

g ••• ^liminf|2"m,(J,M)|

= 0 .

Thus 55(0) = 0. A similar argument shows v(jk) = 0 for all fc. The proof
is complete.

We shall prove the necessity. By Lemma 2.2, mμ(Iζ) — 0 for each
dyadic interval Pn such that I*ΓiK(θ) = 0 . Let {/£(i); i = 1, 2, , s} be
the family of the dyadic intervals of rank N such that Uw Π K(θ) Φ 0
and let xif for each i, be an element of FN

{i)Γ)K(θ). When 0<:w + & < 2*,
&eΔ and n e Γ , the (n + fc)-th Walsh Fourier coefficient μ(n + k) oί μ
satisfies the following equation:

μ(n + k) = Σ!mμ(PN)wn^k(p/2N) = Σ mμ(PN)wn
P = 0 IP

Nΐ\K{θ)Φ<Z>
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t) = wk{θk)

£μ()n(pβn) = wk(θk)μ(n) .
p=0

Next we shall prove the sufficiency. Set

Jn = z/n{0, 1, . . . , 2 " - l } and zί* = J*n{0, 1, • , 2n - 1}

for all n. For each element x of gf, there exists a unique pair (u, v)
such that ueH(Δ), veH(Δ*) and a? = w+i;. Therefore, we have

Σ Σ / ϊ ( i + J>i+i(w + v) = Σ Σ
i j i 3

+ V)}{1/# J } J Σ l} J Σ μU)w£u)}

where Σίπ ) a n ( i Σίn)* denote summations over all ieJn and j e J * , respec-
tively, and # S is the cardinality of S. If $ g if(Θ), then v Φ v0. For
sufficiently large n, the expression inside the first bracket is zero. Hence
(2.1) holds for all x ί K(β).

When K(θ) = 0 , by Lemma 2.2, we have β(n) = 0 for all n. Then
(2.3) holds.

We shall prove the converse. Since K(β) = 0 , there exist a pair of
integers i and j of Δ which do not satisfy (2.4). On the other hand, for
each n,

β(n + ί + j) = /*(n)w,+/(0<+i) = β(n + ΐjw/ff,) = μbtiwlθάwβi) .

Hence we have /2(n) = 0 for all n. Therefore, if a Walsh series μ satisfies
(2.3), then (2.1) holds. Theorem 2.1 is proved.

COROLLARY 2.3. When Δ and Δ* are infinite subgroups of Γ and
Δ + Δ* = Γ (direct sum), a Walsh series μ satisfies (2.1) for x $ H(Δ) if
and only if

(2.6) μ(n + *) = μ(n)

for each keΔ and neΓ.

Corollary 2.3 is a generalization of Theorem 2.7.1 in [4] for the dyadic
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group.

COROLLARY 2.4. The set K(Θ) which is defined in Theorem 2.1 is a
strong U-set.

PROOF. It is obvious that

lim sup I μ(k) | ^ sup | μ(k) | .

On the other hand, since | wk(θ) | = 1 f or all θ e %?,

sup I β(n) | = sup sup | μ(i + j) I = sup sup | μ(j)wiθ%) \ = sup | μ(j) \
n i 3 i 3 3

= lim sup sup | μ(J) | = lim sup sup | β(i + j) \
i->oo j i-»oo j
ieά ieJ

^ lim sup I μ(k) \ ,

where sup^ and supy mean the upper limits in the regions Δ and Δ*9

respectively. Therefore, the equality (2.2) holds.
The proof is complete.

3. Uniqueness theorems for some classes of Walsh series. It is
known [7] that any perfect set of Haar measure zero is an M-set for the
class of Walsh series μ such that

(l/2 ) Σ Ί β(Je) |2 = 2 Σ I mμ(I>) |2 = o(l) as n - ~ .
Λ=0 D=0

Now we can prove the following:

THEOREM 3.1. If (en; n = 1, 2, •) is a sequence of positive numbers
such that en | 0 and l/en = o(tι) as n —> oo, ίfee^ ίΛere ea isίs a Dirichlet
set which is an M-set for the class of Walsh series μ such that

= 0(0 as n->oo .

To prove Theorem 3.1, we need the following:

LEMMA 3.2. When (7W = 7(n); w = 0,1, •) is a monotone increasing
sequence of positive integers such that Ύn = 7n + 1 or 7n + 1 = 27n, 70 = 1 and
yn = o(2n) as n —> ©©, ί/tere eajΐsίs a Dirichlet set H which satisfies

(3.1) # {p; / n H Φ 0 } = 7n /or all n .

PROOF. Set Eo = ^ = Jo°. Set ^ = /; if 7X = 1, while J5Ί = III)II =
^ if 7X = 2. In general, when
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we shall define En+1 as follows:

It is obvious that En is a subgroup of the dyadic group. Set H = f)n=oEn.
Then H is a Dirichlet set which satisfies (3.1). The proof is complete.

PROOF OF THEOREM 3.1. Let (yn;n = 0,l, •••) be a sequence of
positive integers satisfying the assumptions of Lemma 3.2 and 1/Ύ(n) =
o(en) as n-^ oo. When In is a dyadic interval of rank n, let mμ be the
positive Radon measure which is defined by the following equation:

ίl/7(n), if
m μ n (0 , if j

Therefore, we have

= Σ
= l/l(n) = o(en) as w -> oo .

It is obvious that μ(0) = 1 and μ satisfies (2.1) except on H. Hence the
proof of Theorem 3.1 is complete.

We can easily modify the argument used to prove Theorem 3.1 and
obtain the following result as well.

COROLLARY 3.3. For each a > 0, any perfect set of Haar measure
zero is an M-set for the class of Walsh series μ such that

as n->oo .

Moreover, if (εn; n — 0,1, •••) is a sequence of positive numbers intro-
duced in Theorem 3.1, then there exists a Dirichlet set which is an M-
set for the class of Walsh series μ such that

Σ
p=0

= o(en) as

THEOREM 3.4. Let ψ be a non-negative function defined on [0, oo)
and satisfying α̂ (0 + ) = 0. Any Dirichlet set is a U-set for the class of
Walsh series μ such that

as
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PROOF. Let £ be a Dirichlet set. There exists a closed subgroup
H(Δ) of Haar measure zero such that H(Δ)i)E where Δ has the form
(2.5). Let a Walsh series μ satisfy (2.1) everywhere except on E. By
Corollary 2.2 we obtain

Σ Ή\ μ(k) I) = Σ Ή\ μ(n. + fc) I) = Σ Σ <f(l μ{n. + i + j) |)
iV() fc0 i j

Σ
fc=0

(2V(β))*

Σ
= Σ

i

2V(β)) ( ( ) )

Σ Ή\βU)\) = *4r<., Σ Ψ(\βU)\),Σ Σ
i 3

where N(s) = N8. By assumption we have
(.ZV(«))*

Σ Ή\μU)\) = O(i/# Λ(,,) = o(i) as s -> co.

It follows that

^(l£(i)l) = 0 for all j e J * .

In particular, we have μ(j) = 0 for all jed*. Consequently, from (2.6)
we can prove that μ(k) = 0 for all k. The proof is complete.

An easy computation gives the following corollary.

COROLLARY 3.5. Any Dirichlet set is a U-set for the class of Walsh
series μ such that

2lΣ~ί β(Jc) Γ = 0(1) as n->oo .

COROLLARY 3.6. Any Dirichlet set is a U-set for the class of Walsh
series μ such that

Σ β(k)wk(x) = 0(1) uniformly in x as n—>oo.
k=2n

PROOF. An easy computation shows that

Σ
k=2

= 2n2ΣΪ0(lβn) = 0(1) as n -> oo .

Hence the class of Walsh series mentioned in this corollary is included in
the class mentioned in Corollary 3.5. Then the conclusion follows from
Corollary 3.5.

THEOREM 3.7. When (ηn;n = l,2, •••) is a monotone increasing
sequence of positive numbers tending to infinity, there exists a Dirichlet
set which is an M-set for the class of Walsh series μ such that
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2«+l_i ^

Σ β(k)wk(x) = o(wn) uniformly in x as n —> °° .
k=2n

PROOF. Let (εk; k = 1, 2, •) be a monotone decreasing sequence of
positive numbers tending to zero such that ηkεk | °o as k —> ©o. Let (N(n);
n — ly 2, •••) be a monotone increasing sequence of positive integers
tending to infinity and satisfying

2N{n+1)~n < ηnεn a n d 2N{n+1)~n | oo a s w - * oo .

Let ξ Λ e J^(n) for each n and set

# U ) = fe1 + α 2 f 2 + . . . ; α 4 = 0 or 1 } .

We shall construct a positive dyadic measure mμ. To begin with, set
mμ(Io) ΞΞ m^C^7) = 1. Next, when 0 < N < N(l) and IN is a dyadic interval
of rank JV, set

ίl, if INΠH{Δ)Φ 0 ,
mμ(IN) =

(0, otherwise .

In general, set

= jl/λ(iSΓ), if

JO, otherwise ,

where λ(iNΓ) = # {p; JSr Π H(Δ) Φ 0 } . When iVζw) ^ iNΓ < JV(w + 1), we have

L/2n, if a5 <

), otherwise .
It follows that

1

Σ β(k)wk(x) = 0 for N = N(l), N(2), ,
k-2N

and for N(n) < N < N(n + 1)

Σ μ(k)wk(x) =
Λ=2^ (0, otherwise .

Therefore for N(ri) £ N < N(n + 1), mμ satisfies

2N^lμ{k)wk{x) = 0(2^/2^) = O(2^(Λ+1)"Λ) = O(^nεJ = o(ηn) as n - - .

The proof is complete.

4. Uniqueness problem for some special Walsh series. Throughout
this chapter, A and J* denote infinite subgroups of Γ such that Δ + Δ* =
Γ (direct sum).
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THEOREM 4.1. If a Walsh series satisfies β{k) = 0 for k$Δ and

= 0 everywhere in H(Δ*) ,
= 0

then β(k) = 0 for all k.

P R O O F . F o r each e lement x of &, set x = u + v (uniquely) w h e r e
u e H(Δ) and v e H(Δ*). Then

271-1 ^ (π) ^ (n) ^ . (n) ^
fc=0 t i ί

where Σ*n> is the summation over all i e Δn. By assumption, we obtain
that

lim inf Σ β(k)wk(x) = 0 everywhere .

By Lemma 2.2 we have β{k) = 0 for all k. The proof is complete.

THEOREM 4.2. A Walsh series μ satisfies the assumption of Theorem
A.I if and only if the dyadic measure mμ satisfies

(4.1) mμ(y + ID = mμ{ID

for each dyadic interval I* and yeH(Δ).

PROOF. It is already known that

mμ(In(x)) = (1/2*) Σ β(i)wlx) .
i

Since y + In(x) = In(y + %)> we have

mμ(y + In(x)) = (l/2n) Σ β(i)wt(y + x) = (1/271) Σ β{i)wlx)wly)
i i

(n) ^

= (1/271) Σ μ(i)Wi(%) = mμ(In(x)) .
i

Next, we shall prove the converse. Since <& = H(Δ) + H(Δ*) (direct
sum), for each x e ^ , we can write x = u + v, u e H(Δ) and v e H(Δ*).
Then, we have
2*-l ^ (n) (π)* ^ 00 (n)*

Σ β(k)wk(x) = Σ Σ β(i + J)Wi+j(u + v) =

= 2wm,(In(aj)) = 2nmμ(In(y + x)) =

On the other hand, it is easy to see that {w^u); j e J*} forms the character
functions of H(Δ*), which is a topological group. Let dyΔ denote the
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Haar measure on H(Δ). We have

() Σ Σ β wά(y)dyΔ

Σ= Σ*β(i + θ)wi(v)wo(u) = Σ
i i

Thus, we have proved that μ(fc) = 0 for k g J. The proof is complete.

Now, we shall consider a uniqueness problem on H(Δ*) for the class of
Walsh series μ such that β(k) = 0 for k & Δ. A subset E of H(Δ*) is called
a U-set on H(Δ*)9 if the following two conditions, β(k) = o(l) as k —• °°
in J and

(n) ^

lim Σ β(i)Wi(%) = 0 everywhere in iϊ(z/*) except on £7,
n—>oo i

imply that /β(fc) = 0 for all k.

THEOREM 4.3. When a subset E of H(Δ*) is closed, a set E + H{Δ)
is a U-set in the ordinary sense if and only if E is a U-set on H(Δ*).

PROOF. Assume that E is a U-set on H(Δ*). Then
2 n - l ^ (n) (n)* ^ in) (n)*

where x — u + v, u e H(Δ) and v e H(Δ*). Since E is a closed set, Ec +
H(Δ) is an open set where Ec - H(Δ*)\E. Set

EC + H(Δ)= Ul j^, ,

where N(ΐ) < N(2) < . Let PN be one of the above dyadic intervals.
By assumption, mμ(Γ) — 0 for each dyadic interval ΓaIp

N. Thus we deduce
that

2 » - l ^

lim Σ fi(k)wk(x) = 0 uniformly in PN .
n-»oo fc=O

Set J = ItrΓlH(Δ*). Then /J = J + H(Δ*). Let d ^ be the Haar measure
on H(Δ). For each veJ, we can prove that

2 7 1 - 1 /s

lim Σ β(k)wk(x) = 0 uniformly in v + H(4) >

since v + H(Δ)aJ + £Γ(J) = I&. In particular,

Σ β(k)wk(u + v)duA

H(A) fc=O

(n) (n) ^ Γ (n)

= lim Σ Σ i"(i + i K W l Wj(u)duj = lim Σ β(i)wt(v) - 0 >Σ
τι->oo ί
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We have proved that
in) ^

lim Σ β($)Wi(v) = 0 everywhere in H(Δ*) except on £7.
7»-»0O ί

Since J57 is a t/-set on iϊ(J*), it follows that β(k) = 0 for all feeJ. Simi-
larly, if we consider for each s e J * the Walsh series

s)wk(x) ,

then we can prove that β(k + s) = 0 for all fe e Δ. Since s 6 J*, we obtain
β(k) = 0 for all k.

Conversely, assume that E is an ikf-set on H(Δ*). There exists a
Walsh series μ such that β(k) = 0 for all k & Δ,

(71) ^

lim Σ β(i)wAv) = 0 everywhere in H(d*) except on E ,

β(k) = o(l) for fc 6 Δ as fc -• oo and β(0) ^=0. It is obvious that wk(u + v) =
wk(v) for each u 6 ϋΓ(z/) and keΔ. When & = % + v for ^ 6 H(Δ) and v 6

), then

Έ

Hence we conclude that
(n) ^

lim Σ β(i)Wi(x) — 0 everywhere except on E +

It follows that E + fί(4) is an ikf-set in the ordinary sense. The proof
is complete.

5. An extension of Dirichlet sets. It is already known that when
Δ + Δ* = Γ (direct sum) for infinite subgroups Δ and Δ* of Γ, the dyadic
group ^ coincides with H(Δ) + H(Δ*) (direct sum), where H(Δ) and H(Δ*)
are both Dirichlet sets. When T(u) is a function which is defined on
H(Δ) and takes values in H(Δ*), set

Sτ = {u+ T(u);ueH(Δ)} .

THEOREM 5.1. If a continuous function T satisfies

T{u + u') = T(u) + Γ(tO

for u, u' 6 H(Δ), then Sτ is a Dirichlet set.

PROOF. For x and y e STf there exist u and w e H(Δ) such that x =
u + T(u) and y = w + T(w). Since
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X + y = (U + W) + (T(U) + T(W)) = (U + W) + T(U + W) ,

we have x + y e Sτ. That is, Sτ is a subgroup of the dyadic group. Let
(xn; n — 1, 2, •) be a sequence of elements of Sτ such that lim^*, xn =
# = u + v with n e fl"(J) and v e H(J*). We shall prove that x e SΓ. Set
%n = un+ T(un), where un e H(Λ*). It suffices to show that limn_>oottn = u.

By assumption, the sequence (un; n = 1, 2, •) is bounded. Hence
there exist a subsequence (un(Λ); fc = 1, 2, •••) of this sequence and uoe
H(Δ) such that lim^̂ oo un{k) = tt0. Then we have

lim {un{k) + T(uMk))} = uo+ T(u0) = u + v.

Hence u0 + u = T(u0) + v. It is obvious that H(J)nH(4*) = {0}. Since
ίίo + weH{Δ) and Γ(w0) + v 6H(4*)f we see that u0 + u = T(u0) + v = 0,
that is, w0 = % and v = T(u0) = Γ(w). We proved that ueH(A) and a? =
w + T(w). The proof is complete.
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