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1. Introduction. Concerning the problem of uniqueness for Walsh
series, we have already proved that a Dirichlet set is always a U-set in
the ordinary semse and that a subset of the dyadic group is a Dirichlet
set if and only if it is a subset of some closed subgroup with Haar
measure zero [6].

In this paper, we shall generalize the above results and prove some
uniqueness theorems for Dirichlet sets.

Fine [2] defined the dyadic field, &, which is the set of all 0 — 1
sequences (-, t_;, &, &, +++) with ¢, =0 or 1 and lim,. .t,=0. For
convenience, when ¢ = (---, ¢, ---) satisfies ¢, =0 for sufﬁcieantly large 4,

we shall identify z with (S2_.£,/29). For example, (-++,0,1,1,0, -++) =
1

3 and (---,0,0, i, 0, ---) =1/2. Define two operations: the addition
denoted by 4+ and the product denoted by .. Whenx = (-+-, ¢, --+) and
Yy = (-++,u; +++) are arbitrary elements of &, the addition is defined by
x""y: ("'1 Iti-utL "') .
The product is defined by 2.y = (---, v, -++) Where
v, = Zkttu,- (mod 2) .

ifi=

The distance between z and y is given by
k;_. [t — uel/2% .

Hence . becomes a metric space. Moreover it is easy to see that &
becomes a locally compact totally disconnected abelian group (see Rudin

[4D).
The dyadic group, &, is the subgroup of & in which each ele-
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ment has the form (---,0,¢,¢, --+). For convenience, we shall identify
(04,0, 8,8, +++) with (¢, ¢, +-+). ¥ is a compact totally disconnected
abelian group. For details of the dyadic group we shall refer the reader
to Fine [1].

We shall introduce the concept of dyadic intervals. I? denotes a
dyadic interval of rank m which is a set of all elements (+:+, ¢, ---)€
& such that

kgwtk/zk = p/2" ’

for n =0, +£1, 2, --- and p =0, 1, ---. I,(x) denotes the dyadic interval
of rank »n which contains . It is easy to see that I? coincides with the
dyadic group ¥ and any dyadic interval is closed and open in .&.

Let ' =1{0,1,2, ---} be a subgroup of &#. The character functions
of & are called Walsh functions, {w,(x)},.r, which are defined by the
equation

W,(%) = (—1)Firi=ttini

where = (t, ¢, ++)eZ and n=(-++,n_p,n_, 0, ---)el’. Then I is
the dual group of Z.

We shall introduce the dyadic measures (see [56]). A real valued set
function m on the dyadic intervals is said to be a dyadic measure if it
satisfies the following additivity

m(I7) = m(I%) + m(LEY)

for n=0,1,--- and p=0,1, ---,2*—1. When f(x) is an integrable
function, set

m) = | f@ds,

for each dyadic interval I2. Then m, becomes a dyadic measure. If m
is a Radon measure on &, then it is a dyadic measure which satisfies

sup (21%@(&)!) < oo

Conversely, if a dyadic measure m satisfies the above condition, then there
exists a Radon measure m* such that m*(I%) = m(I2) for each dyadic
interval I2. We shall identify m* with m.

Let

p= g Akywi (@) = 3, Aleywy(@)



WALSH SERIES 3
be an arbitrary Walsh series. The quantity

m(I2) = lim | 3% ptn@)ds = 5, 40| wiod
= /23, Aoy (p/2")
is determined for each dyadic interval I2. Moreover we have
mAL@) = (1/27)'S, pllkywyz) -
The set function m, becomes a dyadic measure and

(1.1) ) = 3, mAT2yw,(0f27) = | wi@ym,(da)

for 0k<2and n=0,1, ---, where S pm,,(dao) = mu(I2). We shall call
I'Il

(k) the k-th Walsh Fourier coefficient of p.
Conversely, for an arbitrary dyadic measure m, the quantity (1.1) is
determined for each £k =0, 1, --.. It is easy to see that m, coincides with

m.

2. Strong U-sets. When & is a certain class of Walsh series, a
subset E of ¥ is said to be a U-set for o7 if pe o and

(2.1) limgki‘,lﬁ(k)wk(ac) =0 everywhere except on F,
n—o0 k=0

imply that fi(k) = 0 for all k. When E is not a U-set for .57 it is called
an M-set for 7.
A subset E of & is said to be a strong U-set, if the equality

2.2) sup | (k)| = lim inf | (k)|

holds for any Walsh series ¢ which satisfies (2.1) everywhere except on
E. 1t is easy to see that a strong U-set is a U-set for the class of Walsh
series p such that f(k) = o(1) as k — o. The concept of strong U-set was
introduced by Kahane [3] for trigonometric Fourier series of Radon
measures.

A subset E of & is called a Dirichlet set, if it satisfies the following
equation:

lim inf sup |1 — w,(x)| =0 .

n—+00 zeE

Kahane [3] proved that a Dirichlet set defined on the wunit circle is
a strong U-set. We shall prove the analogues of this result.
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When 4 is a subgroup of I', let H(4) be the annihilator of 4, that is,
H(4) = {x; w,(x) =1 for all ked}.
If ' = 4+ 4* (direct sum) where 4 and 4* are both infinite subgroups

of I', then H(4) and H(4*) are both closed subgroups of ¥ with Haar
measure zero and H(4) + H(4*) (direct sum) coincides with & (see Rudin

[4].

From the definition of Dirichlet sets, we can find a monotone incre-
asing sequence of integers (n,; k = 1,2, --+) such that w, («) =1 for all
x € E and all k. We shall generalize the definition of Dirichlet sets. When
O = (0,; ke 4) is a sequence of elements of &, set

K(©) = {x; wi(x) = wi(6,) ked}.

THEOREM 2.1. A Walsh series p satisfies (2.1) for x¢ K(O), if and
only if

(2.3) fn + k) = A(n)w,(6,)
Sor all nel’ and ke4d.

PROOF. We shall first consider the case K(@) + @. Since
w5 (u) = www,;(w) = w0)wi0;) = wi0:i5)
for u € K(0@), ¢ and je 4, the equation
(2.4) Wii(0:5) = wi(0)w;(6;)

holds for all 4 and je 4. On the other hand, we know already [6] that
there exist a monotone increasing sequence of integers (N;; j =1,2, «++)
and a sequence of integers (n;; 7 =1,2, ---) such that N, < N, < ---,

Vi<, <2V, F=1,2, -
and
25) d={en,+en,+---;6,=0 or 1 and ¢, =0
for sufficiently large’ n} .
From (2.4) and the above just cited, @ is generated by (6,;; 7 =1,2, +++),
where n(j) = n;,. Hence K(O) coincides with
@ W (@) = WapyOniy), £ =1,2, -+ -}

By the same argument as that used in the proof of Theorem 2 in [6],
we can find an element v,€ H(4*) such that

K(0) = v, + H(4) = {v, + u; u e H(4)} .
We write, as usual, ¥y 4+ £ = {y + x; x€ E}.
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To prove the necessity, we need the following:

LEMMA 2.2. If a Walsh series v satisfies
lim inf 2:5__‘.1 P(k)yw,(x)| =0 everywhere ,
n—00 =0
then (k) = 0 for all k.

Proor oF LEMMA 2.2. It is easy to see that the inequality
|m(I)| < |m,I)| + |m(I)]| < 2\m,I2%)],

holds, where |m,(I?")| = max{{m (I?)|; p =0,1}. In the same way we
have

[9(0)| = [m,(I)] = 2|m,([}V)] = 2°|m(I3?)]
= - =22¢m(M) = -,
where I2™ is a subset of I2" ™ which satisfies
|m,(I27) | = max{[m,(I2)|; p = 2D, 2D, + 1}

for all n. Since each I%™ is a closed set, we can set N3, I*™ = {2}. Then
we have I*™ = I (z) for all n. From the above inequality, we obtain

1900) [=[m ()| = -+ = 2" [m(I,(2))] .
By
an—1
2'm,(I(2)) = kga D(ke)w,(2)
and by assumption, we have

190)] = |m(I)| < -+ < lim inf |2°m,(T,(2))]

= lim inf

n—00

2:2;: pkyw,(2)| =0.

Thus P(0) = 0. A similar argument shows d(k) = 0 for all k. The proof
is complete.

We shall prove the necessity. By Lemma 2.2, m.(I%) = 0 for each
dyadic interval I2 such that I2’NK(®) = @. Let {I§";¢1=1,2, ---, s} be
the family of the dyadic intervals of rank N such that I NK(®O) = @
and let x,, for each 17, be an element of I%* N K(©). When 0<% + k < 27,
ked and nel, the (n + k)-th Walsh Fourier coefficient fZ(n + k) of g
satisfies the following equation:

A + ) :zgm#ux)wn;k(p/zfv) = S mIw2Y)

»
IYNE©O) %0
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3 MLy @0 @I, = wil0s) 33 Ml L@ )w,(w)

= w0 3, muTEw,(p/2") = WiONAM) .

Next we shall prove the sufficiency. Set
4,=4n{0,1, ---,2* -1} and 4¥=4*n{0,1, .-, 2" — 1}

for all n. For each element x of &, there exists a unique pair (u, v)
such that u € H(4), ve H(4*) and « = w4v. Therefore, we have

T aowe) = 3546 + w4 ) = 33 0w, w)
{3 wowo} {3 e, w}

(n) . (n)* (my* .
= Blw+ o an{E1HE a6}

= (W 43{E ww, + 0 HE w0, + O} A )

= (U 43S wion + 0} {3 G}

where 3} and ™" denote summations over all 7€ 4, and j € 4%, respec-
tively, and #S is the cardinality of S. If x¢ K(@), then v # v,. For
sufficiently large n, the expression inside the first bracket is zero. Hence
(2.1) holds for all z¢ K(6).

When K(©) = @, by Lemma 2.2, we have f(n) = 0 for all n. Then
(2.8) holds.

We shall prove the converse. Since K(0) = &, there exist a pair of
integers ¢ and j of 4 which do not satisfy (2.4). On the other hand, for
each n,

A+ i+ ) = An)wi 0,45 = An 4 DYw;6;) = En)w0)w;0;) .
Hence we have fi(n) = 0 for all n. Therefore, if a Walsh series ¢ satisfies
(2.8), then (2.1) holds. Theorem 2.1 is proved.

COROLLARY 2.3. When 4 and 4* are infinite subgroups of I' and
4 4 4* =T (direct sum), a Walsh series pt satisfies (2.1) for x¢ H(4) if
and only if

(2.6) An + k) = fi(n)
Jor each ke d and nerl.
Corollary 2.8 is a generalization of Theorem 2.7.1 in [4] for the dyadic
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group.

COROLLARY 2.4, The set K(0) which 1s defined in Theorem 2.1 is a
strong U-set.

ProOF. It is obvious that
lim sup | (k)| < sup | 2(k)] .
On the other hand, since |w,(§)| = 1 for all e &,
sup | A(n)| = sup sup | A3 + )| = sup sup | A(w(6.)| = sup | 2(5)]|

= lim sup sup | 4(5)| = lim sup sup | (i + J)|
Ted ’ Ted !

< lim sup | &)

where sup, and sup; mean the upper limits in the regions 4 and 4%,
respectively. Therefore, the equality (2.2) holds.
The proof is complete.

3. Uniqueness theorems for some classes of Walsh series. It is
known [7] that any perfect set of Haar measure zero s an M-set for the
class of Walsh series p such that

A2) S | AW =5 mu B = o1) as n— oo .

Now we can prove the following:

THEOREM 3.1. If (e,;m=1,2, -++) is a sequence of positive numbers
such that ¢, 0 and 1/e, = o(n) as n — o, then there exists a Dirichlet
set which is am M-set for the class of Walsh series p such that

2n—1
1/2) 5 | p(R)[* = ole,) as m— oo .
To prove Theorem 3.1, we need the following:

LemMMA 3.2. When (v, = Y(n);n =0,1, --+) 18 @ monotone increasing
sequence of positive integers such that ¥, = Ypi1 OF Vpys = 2%, Yo = 1 and
7. = 0(2") as m — oo, there exists a Dirichlet set H which satisfies

3.1) t{p; 2ENH+-Q)="7, foral n.

PrROOF. Set B, =% =1). Set E,=1'if v, =1, while E, = JUI} =
E, if v, = 2. In general, when

E,=IUI8U -+ UL,
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we shall define E,,, as follows:
BLULLU- ULT™, i v, =7,,

E.. = .
TR, i Yea=27,.

It is obvious that E, is a subgroup of the dyadic group. Set H = N2, E..
Then H is a Dirichlet set which satisfies (8.1). The proof is complete.

ProOF OF THEOREM 3.1. Let (v,;»=0,1, ---) be a sequence of
positive integers satisfying the assumptions of Lemma 3.2 and 1/v(n) =
o(e,) as n — . When I, is a dyadic interval of rank =, let m, be the
positive Radon measure which is defined by the following equation:

1/v(n), if ILNH=+*Q,

I) =
mdl) =00 i InH=0.

Therefore, we have
A2 AW = 3 mdIr
= 2 mID)}=4%{p: 20 H *# Q}1/7(n)

nH+0
=1/v(n) =0(,) a8 m— oo .

It is obvious that f(0) =1 and g satisfies (2.1) except on H. Hence the

proof of Theorem 3.1 is complete.
We can easily modify the argument used to prove Theorem 3.1 and

obtain the following result as well.

COROLLARY 3.8. For each a > 0, any perfect set of Haar measure
zero 18 an M-set for the class of Walsh series p such that

2§lmp(Iz) [ = 0(1) as m — oo .
p=0

Moreover, if (e,;n=0,1,---) is a sequence of positive numbers intro-
duced in Theorem 3.1, then there exists a Dirichlet set which is an M-
set for the class of Walsh series p such that

on—1
pZ_aolmp(Iﬁ)l”" =o0(,) as m— oo .

THEOREM 3.4. Let + be a mon-negative function defined on [0, =)
and satisfying (0+) = 0. Any Dirichlet set is a U-set for the class of
Walsh series p such that

on+1_g

S, AU = 01) a5 n— oo
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PrOOF. Let E be a Dirichlet set. There exists a closed subgroup
H(4) of Haar measure zero such that H(4)DFE where 4 has the form
(2.5). Let a Walsh series g satisfy (2.1) everywhere except on E. By
Corollary 2.2 we obtain

oN(8)+1 oN(8) _ (N(8)) (N(8))*
S AR = % v A+ BD =3, 2 W A, + i+ )

= 3 VZODIEE P/ Ej‘. WG .

where N(s) = N,. By assumption we have

S AGD = 0t dy) = o)) a5 5o
It follows that

¥ A =0 for all jed*.

In particular, we have f(j) = 0 for all je€ 4*. Consequently, from (2.6)
we can prove that fi(k) = 0 for all k. The proof is complete.

An easy computation gives the following corollary.

COROLLARY 3.5. Any Dirichlet set is a U-set for the class of Walsh
series pt such that

on+1_7

2 AW =01) as m— oo

COROLLARY 3.6. Any Dirichlet set is a U-set for the class of Walsh
series ¢ such that

on+1_

2 /z(k)wk(x) 01) wuniformly in x as m— oo .

PROOF. An easy computation shows that

on+1l_3 on—1

Z |pk) F = 2" Z (/27 Z #(k)wk(p/z")
= 2" 2,00(1/4") =0(1) as n— o,

Hence the class of Walsh series mentioned in this corollary is included in
the class mentioned in Corollary 3.5. Then the conclusion follows from
Corollary 3.5.

THEOREM 3.7. When (9,;m=1,2, --+) is a monotone increasing
sequence of positive numbers tending to infinity, there exists a Dirichlet
set which is an M-set for the class of Walsh series p such that
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on+l_ .
kg‘,ﬂ lﬁ(k)w,,(ac) = o(n,) wuniformly in x as m— oo,

PrOOF. Let (¢,;k=1,2, -+-) be a monotone decreasing sequence of
positive numbers tending to zero such that 7,¢, T « as k — . Let (N(n);
n=1,2, ) be a monotone increasing sequence of positive integers
tending to infinity and satisfying

2N(n+1)—n < /8 and 2N(n+1)—-nT o as n — oo .
Let ¢, € Iy, for each n and set
H4) ={ag, + s+ -+-50,=0 or 1}.

We shall construct a positive dyadic measure m,. To begin with, set
mu(I}) = mu(Z€) = 1. Next, when 0 < N < N(Q) and I is a dyadic interval
of rank N, set

(L) 1, if IynHWY) # @,

m =

e 0, otherwise .
In general, set
INN), if Iy,NnHU4) + @,

I.,) =
L) {0, otherwise ,

where M(N) = # {p; I¥xN H(4) # @}. When N(n) £ N < N(n + 1), we have
_ NZN—-l N _ 1/2*, if xeH(),
ml@) = A2 S A = |57 2

It follows that

eN+1y

3, few,@) =0 for N=N({1),N@), -,
and for N(n) < N< Nn + 1)

oN+1_

kgzl;ﬁ(k)wk(x) _ {1/2"’ if zeHd),

0, otherwise .

Therefore for N(n) £ N < N(n + 1), m, satisfies
oN+1_1

ZN Akyw,(x) = 0@2Y/2") = 02V~ = O(n,¢,) = o(n,) as m — o .
k=2
The proof is complete.

4. Uniqueness problem for some special Walsh series. Throughout
this chapter, 4 and 4* denote infinite subgroups of I" such that 4 + 4* =
I’ (direct sum).
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THEOREM 4.1. If a Walsh series satisfies fi(k) = 0 for k¢ 4 and
lim inf 2;_]: pyw ()| =0 everywhere in  H(4*),

then f(k) = 0 for all k.

ProoF. For each element # of &, set * = u + v (uniquely) where
% € H(4) and v € H(4*). Then

2:2;: flkyw,@) = ‘g’; AGyw () = ‘yf’ AW + v) = ‘;" Ay ) ,

where 3™ is the summation over all 1€ 4,. By assumption, we obtain
that

lim inf 2I:‘z_‘,lﬁ(l‘s)w,,(ac) = (0 everywhere .
n—00 =0
By Lemma 2.2 we have f(k) = 0 for all k. The proof is complete.

THEOREM 4.2. A Walsh series p satisfies the assumption of Theorem
4.1 if and only if the dyadic measure m, satisfies

(1) may + 1) = muI)
for each dyadic interval I and y € H(J).
ProoF. It is already known that
mUL(w) = (1/2") 3, By ) .
Since y + I(x) = I,(y + ), we have
may + L@) = 1/2) 3% 2wy + ) = 129 3% iy @)

= U203 fliywe) = muL@) .

Next, we shall prove the converse. Since ¥ = H(d4) 4+ H(4*) (direct
sum), for each xe %, we can write x = u 4 v, u € H(4) and v e H(4*).
Then, we have

S Aw,a) = 33000 + i+ ) = 5386 + dwon,w)
= 2'muL @) = 2mlL W+ o) = 3 3 4+ o)

On the other hand, it is easy to see that {w;(u); j € 4*} forms the character
functions of H(d4*), which is a topological group. Let dy, denote the
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Haar measure on H(4). We have
Z Akyw,(x) = Z. E A6+ J)wi(v)w,(u)g i wj(y)dyd

Z AG + 0w (v)wy(u) = Z A@@)w(x) .

Thus, we have proved that fZ(k) = 0 for k¢ 4. The proof is complete.

Now, we shall consider a uniqueness problem on H(4*) for the class of
Walsh series g such that fi(k) = 0 for k¢ 4. A subset E of H(4*) is called
a U-set on H(4*), if the following two conditions, f(k) = o(1) as k — o
in 4 and

n)y . .
limzi“ U@ w,(x) =0 everywhere in H(4*) except on E,

imply that fZ(k) = 0 for all k.

THEOREM 4.3. When a subset E of H(4*) is closed, a set E -4 H(d4)
is a U-set in the ordinary semse if and only if E is a U-set on H(4*).

PROOF. Assume that E is a U-set on H(4*). Then

(n) (

S At = S5 26 1w = S8 06 + dw ),

where © = u 4+ v, w € H(4) and v e H(4*). Since E is a closed set, E°
H(4) is an open set where E° = H(4*)\E. Set

E°+ H4) = L]JIz"vﬁ’;-’) ,

where N(1) < N(2) < ---. Let I% be one of the above dyadic intervals.
By assumption, m,.(I") = 0 for each dyadic interval I'cI%. Thus we deduce
that

11m§_] Hg(k)w,(x) = 0 uniformly in I%.
Set J = I$ N H(4*). Then I% = J + H(4*). Let du, be the Haar measure
on H(4). For each veJ, we can prove that

1im2k§ Alkyw,(@) = 0 uniformly in v 4+ H(J),
n—oo k=0
since v 4+ H(U)CJ + H(4) = I%. In particular,

lim SW S Ay, + v)du,

n—0o0

(n) (n)*

= lim 313G + )| wwdu, = lim 32 fiyw) = 0.

n—oo ¢
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We have proved that
lim(ﬁ)‘, A@)w,(v) = 0 everywhere in H(4*) except on E .
n—o0 1

Since E is a U-set on H(4*), it follows that f(k) = 0 for all ke 4. Simi-
larly, if we consider for each se 4* the Walsh series

S, Ay @y, = 3, Ak + wia)

then we can prove that Z(k 4+ s) = 0 for all ke 4. Since s € 4*, we obtain
Z(k) = 0 for all k.

Conversely, assume that E is an M-set on H(4*). There exists a
Walsh series z such that fi(k) = 0 for all k¢ 4,

lim(ﬁ‘, Z@w,(v) =0 everywhere in H(4*) except on E,

n— i

H(k) = o(1) for ke 4 as k — o and f(0) # 0. It is obvious that w,(u + v) =
w,(v) for each we H(4) and k4. When ¢ = u + v for ue H(4) and v e
H(4*), then

) .. .
2 p@w,(@) = 3 H(Hw(v) -

Hence we conclude that

lim ﬁ H(@)w,(x) =0 everywhere except on E 4 H(4) .
i

n—00

It follows that E 4 H(4) is an M-set in the ordinary sense. The proof
is complete.

5. An extension of Dirichlet sets. It is already known that when
4 4+ 4% = I' (direct sum) for infinite subgroups 4 and 4* of I', the dyadic
group ¥ coincides with H(4) 4+ H(4*) (direct sum), where H(4) and H(4*)
are both Dirichlet sets. When T(u) is a function which is defined on
H(4) and takes values in H(4*), set

Sy = {u + T(w); we H4)} .
THEOREM 5.1. If a continuous function T satisfies
T(uw + w') = T(w) + T(w)
Jor w, w' € H(4), then S; is a Dirichlet set.

ProoF. For z and y € S;, there exist v and w e H(4) such that « =
# 4 T(w) and ¥y = w 4+ T(w). Since
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z+y=w+ w4+ (Twu) + Tw) = (u + w) + T(u + w),

we have x 4 yeS;. That is, S; is a subgroup of the dyadic group. Let
(x,;m=1,2, --+) be a sequence of elements of S, such that lim,..z, =
2 =u 4 v with u € H(4) and ve H(4*). We shall prove that x€S,;. Set
x, = %, + T(u,), where u, € H(4*). It suffices to show that lim, _.u, = u.

By assumption, the sequence (u,;n =1,2, -.-) is bounded. Hence
there exist a subsequence (u,4;k=1,2, --:) of this sequence and u,€
H(4) such that lim,_. %, = %, Then we have

lllgl {u’n(k) + T(un(k))} =+ Tw) =u+v.

Hence wu, + u = T(u,) 4+ v. It is obvious that H(4)N H(4*) = {0}. Since
u, + w e H(4) and T(u,) + v e H(4*), we see that u, + u = T(u,) + v =0,
that is, 4, = v and v = T(u,) = T(u). We proved that u € H(4) and = =
# 4+ T(u). The proof is complete.
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