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1. Introduction and statement of results. For a Riemann surface
j£*, the finitely augmented Teichmϋller space f(R*) of R* is the set of
all marked Riemann surfaces R with at most a finite number of nodes
such that there is a marking-preserving deformation of R* to R, and
t(R*) is equipped with the conformal topology. (For the details, see [7,
§1, 1°)].) Here we recall some of definitions.

For two given points Rt and R2 in T(R*), a marking-preserving
deformation (/; Rlf R2) of Rγ to R2 is a marking-preserving continuous
surjection / from Rt onto R2 such that f~x restricted to R2 — Ό is
quasiconformal for every neighborhood U of the set N(R2) on R2, and
that f~\p) is either a node of Rt or a simple closed curve on R1 — N{R^)
for every p in N(R2), where here and in the sequel, N(R) means the set
of all nodes of R. A one-parameter family {(/*; Rty i2o)}ίβ(ofi] °£ marking-
preserving deformations ft of Rt e f(R*) to RQ e f(R*) is called admissible
if

lim K(f;\ Ro - U) = 1

for every neighborhood U of N(R0), where here and in the sequel K(f, E)
is the maximal dilatation of a quasiconformal mapping / on a Borel set
E. Recall that Rt converges to Ro in f(R*) if and only if there is an
admissible family {(/t; Rt, Ro)}.

In [7, §3], certain continuity property of holomorphic and harmonic
differentials on T(R*) was investigated. In particular, we showed strongly
metrical continuity of period reproducers on Γ(JB*). Namely, let σ(c, 12)
be the period reproducer for a 1-cycle c on Re f(R*) in the space Γh(R)
of all square integrable (real) harmonic differentials on R — N(R) (cf. [7,
§1, 2°)]). Then we have the following:

THEOREM A ([7, Proposition 4]). Let an admissible family
{(ft; Ru 120)}ίe(o,i] of marking-preserving deformations and a 1-cycle d on
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Ro — N(RQ) be given arbitrarily. Set

0(t, d) = σ(fτ\d), Rt) + i / = ϊ *σ(fΛd), Rt)

for every t. Then θ(t, d) converges to 0(0, d) = σ(d9 Ro) + i / ^ T *σ(d, Ro)
strongly metrically with respect to {/<}, that is,

lim||0(ί,d)o/Γ^-0(0, ^ 1 ^ = 0
ί->0

for every neighborhood U of N(R0).

Here and in the sequel, f(d) is the 1-cycle corresponding to d under
the mapping /, 0o/ is the pull-back of a differential θ by /, and ||α>|U is
the Dirichlet norm of a differential ω on a Borel set E, namely, \\a)\\2

E =

REMARK 1. In the proof of [7, Proposition 4], we have actually shown
that θ{f~\d), Rn) converges to θ(d, Ro) for every admissible sequence
{(fn'y Rn> Ro)}n=i of marking-preserving deformations, which clearly implies
Theorem A. The proof is valid also for admissible families (with con-
tinuous parameters).

Now in this paper, continuing the above investigation, we show
strongly metrical continuity of Green's functions. Here we define a
f u n c t i o n g(p, q; R ) o n R - N(R) f o r e v e r y ReT(R*) a n d qeR - N(R)
as follows: On every component of R — N(R) not containing q, we set
g( , q; R) = 0, and on the component S containing q, we set g(-,q\ R) to
be usual Green's function on S with the pole q, or to be identically zero
on S, according as whether S admits Green's functions or not. If we set

φ(q; R) = V^Λ dg( , q; R) - *dg( , q; R) ,

then we can show the following:

THEOREM 1. Let an admissible family {(ft; Rtt i2o)}ίβ(o,i] of marking-
preserving deformations and a point q in Ro — N(R0) be given arbitrarily.
Suppose that g{p, q; RQ) ^ 0 and that

(*) there is a neighborhood V of q on Ro — N(R0) such that /r1 is
con formal on V for every t.

Then φ(fϊ\q)\ Rt) converges to φ(q; Ro) strongly metrically with respect
to {/J.

The proof will be given in the next section. Here we also state the
following corollary of Theorem 1. (The proof of Corollary 1 is exactly
the same as that of [7, Theorem 5], and hence omitted.)

COROLLARY 1. Under the same assumption as in Theorem 1,
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Q(fϊ\p),fϊ\q))Rt) converges to g(p, q; RQ) locally uniformly on components
of Ro — N(R0) — {q} admitting Green's functions.

Concerning the assumption (*) on {/J in Theorem 1, we know the
following:

PROPOSITION 1. If Rt converges to RQ in f(R*) as t tends to 0, then
we can find an admissible family {(/t; Rt, Ro)} satisfying the assumption
(*) in Theorem 1.

The proof will be given in Section 3 with more remarks on the
conformal topology on f(R*). (In particular, see Theorem 3.)

Next, as an application of Theorems A and 1, we will derive varia-
tional formulas of Schiffer-Spencer's type.

Let Ro be a Riemann surface with a single node p0 and suppose that
either

( i) Ro — {p0} is connected, or
(ii) Ro — {p0} consists of two components Sλ and S2 both of which

admit Green's functions.
And let p1 and p2 are punctures on R'o = Ro — {p0} corresponding to the

node p0. In the case (i), set R[ = R'0\J{p19 p2}, and

G(p; R[, p l f p2) = g(p, pγ\ R'Q) - g(p, p2; R'Q) o n R'Q

if R[ admits Green's functions. If not, then let G(p; R[, plt p2) be a harmonic
function on R'o defined in [6, p. 320] as g(p; pu p2). In the case (ii), we
assume that pά is a puncture of Sjf and set Sj = SyU{py} (j = 1, 2). Set

G(p; i C plf p2) = g{p, pλ; S,) on S, , and

G(p; Rl p19 p2) = -g{p, p2; S2) on S2 .

In the sequel of this section, fix such RQ, pι and p2 as above, and
denote G(p; RΌ, plf p2) simply by G{p). Then there is an MQ such that for
every M ̂  Mo, U^M) = {peR'o; G{p) > M) and U2(M) = {peR'o; G(p) <
— M) are deleted neighborhoods of p1 and p2, respectively, which are
conformally equivalent to {0 < \z\ < 1}. Fix a local parameter z5 = zό(p)
on Uά{M) = Uj(M)U{pj} U = 1, 2) such that

\Zl(p)\ = exp(-G(p)) and \z2(p)\ = exp(G(p)) .

Using this parameter, we write θ(d, Ro) = aQidtά(zά)dzά and φ(q; Ro) —
bo,q,j(Zj)dZj (j — 1, 2) on tJa{MQ) for every 1-cycle d and point q, respective-
ly, on R\. For every positive t with t < exp( — Mo), set R" = R[ —
Ux{Mt) U U2(Mj), where Mt = log(l/ί), and identify two borders Clft = dϋ^M,)
and C2>t = dU2(Mt) of R't' by the mapping (Z2)-\Ύ) -f/z^p)) with a fixed
constant η such that \η\ = 1. Then we have an ordinary Riemann surface
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Rt such that Ct = Rt — R't', with the orientation induced from that of
CM, is a simple closed curve corresponding to p0. With naturally induced
markings, Rt converges to Ro in the sense of the conformal topology (cf.
the proof of Lemma 5 in Section 4).

This family {Rt} gives variation by attaching a handle in the case (i),
and variation by cutting a hole or connecting surfaces in the case (ii),
according as whether one of Sί and S2 is conformally equivalent to
{0 < \z\ < 1} or not (cf. [3, Ch. 7]). And we can show in a unified manner
the following variational formulas of Schiffer-Spencer's type, whose proof
will be given in Section 4.

THEOREM 2. ( 1 ) Let d and df be 1-cycles on RΌ which can be also
considered ones on R't for every t. Then

\ σ(d, Rt) - \ σ(d, Ro) = (l/4π log(l/t)) ( *dG ( *dG
Jd' Jd' Jd Jd'

+ 2πf R e f t . (α O ) < M (O). αo,d,,2(O) + α M ( 2 ( 0 ) αo f d V (O))] + o(ί2)

as t tends to 0.
(2) Let q be a point on RΌ and d be a 1-cycle on R'Q — {q}. Suppose

that g(p, q; RQ) & 0. Then

\ *dg(-,q;Rt)-\ *dg(>, g; Ro) = (-1/2 . log(l/ί)) G(p) \ *dG
Jd Jd Jd

- 2πf Re[η . (α M > 1 (0) . 60ifff2(0) + αM, 2(0) 60fff|1(0))] + o(f)

as t tends to 0.
(3) Let q and q' be two distinct points on R[. Suppose that

9(P, q; Ro) * 0. Then

g(q, q'; Rt) - 9(Q, ?'; Ro) = (-1/2 log(l/ί)) G(q) G{q')

- f Re[^ (60iβi l(0) 60),',2(0) + 6o.g.2(O) 6 M M ( 0 ) ) ] + o(t*)

as tends to 0.

Let d be a 1-cycle on R[. Then it is well-known as Accola's theorem
that the extremal length λ(0, d) (resp. λ(ί, d) (t > 0)) of the homology
class of d on R[ (resp. Rt) is equal to \\σ(d, R0)\\2R> = \ σ(d9 Ro) (resp.

σ(d, Rt)). Hence Theorem 2, (1) gives the following:

COROLLARY 2.

λ(ί, d) - λ(0, d) = (l/4π ( / ) ) ((

θofdil(0) αo,,,2(O)] + o(ί8)
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as t tends to 0.

REMARK 2. We can consider more general kinds of variation by
pinching a loop, and can show certain variational formulas with the same
leading terms, some of which will appear in the forthcoming paper [9].

Finally, the author would like to express his hearty thanks to the
referee for valuable advice and various helpful suggestions.

2. Proof of Theorem 1. First set φ(t, q) = Φ(fϊ\q)\ Rt) for every
positive t and φ(0, q) = φ(q; Ro). We may assume without loss of generality
that V is relatively compact in RQ — N(R0). Also note that φ(t, q)°fϊι —
0(0, q) is holomorphic on V for every t, which can be seen from the
assumption (*). Let [/be a neighborhood of N(R0) in RQ such that UπV
is empty and each component of U — N(R0) is conformally equivalent to
{0 < \z\ < 1}. Let e(p) be a smooth function on Ro such that de has a
compact support in U — N(RQ), e(p) = 1 on Ro — U and e(p) = 0 in a
neighborhood of N(R0). Set gt(p) = g(p,fτ\q); Rt), ωt = 1m φ(t, q)°f71

/Γ1)) and

F(ωt) = e ωt + gt o/r1 de( = d(e gt o/r1))

on Ro — {q}\jN(R0). If we can show that
(1) limsupt-oH^ί, q)\\Rt-Vt is finite, and
(2 ) F(ωt) - Im 0(0, q) belongs to Γe0(R0) for every t,

where Vt = fτ\V) and Γe0(R0) is defined in [7, §1, 2°)], then we have
the assertion by the same argument as in the proof of [7, Theorem 3].

Here the claim (2) is clear, for F(ωt) — Im 0(0, q) is square integrable
on RQ — N(R0) and coincides with an element of Γe0(R0) outside V. To
show the claim (1), we need the following lemma, which may be of
independent interest.

LEMMA 1. Let R and R' be two Riemann surfaces, both of which
admit Green's functions. Fix a point q on R, and a real number M so
large that the domain DM = {pe R; g(p, q; R) > M) is simply connected
and relatively compact in R. Then there is an absolute constant Ao

(depending neither on R, R', q nor on M) such that for every K-quasi-
conformal mapping f from DM into R', we have

sup g(p, f(q); R') 5j 2π/\\σ(d, S')||!' ,
peR'-f(DM)

where S' = R' — f({p e R; g(p, q; R) ^ M + KA0}) and d is the dividing
cycle on S' corresponding to the relative boundary of S' on R\

PROOF. Consider the harmonic function
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= (l/2π) g(p,f(q);R')

on the ring domain W = S' Πf(DM) = f({p eR;M< ff(p, q; R)< M + KA0}).
Then u{p) satisfies the conditions for a height function stated in [8, §2],
and the modulus of W is not less than (KA0/2π)IK = A0/2π by [2, Theorem
1.7.1]. Hence we can conclude by [8, Proposition 2] that, setting Ao =
2πB + 1 with the absolute constant B in [8, Proposition 2], we have

m/2π = inf u(p) ^ sup u(p) .
peR'—S' peR'fi

On the other hand, since S'm = {peR'; g(p,f(q); Rf) < m) is contained
in S' and the moduli of S' and S'm are equal to l/\\σ(d, S')lll' by Accola's
theorem and ra/2π, respectively, we conclude that l/||σ(cZ, S')||l' ^ m/2τr,
which shows the assertion. q.e.d.

LEMMA 2. Zn α neighborhood oft = 0 in [0,1],
M(t) = sup gt{p)

peRt-Vt

is bounded. And the claim (1) holds.

PROOF. Fix M so large as in Lemma 1 with the given q on R = i?0.
Then we may assume without loss of generality that /r1 is ίί-quasicon-
formal on DM for every t with a suitable finite X". Let Ao be as in
Lemma 1, and apply Lemma 1 to R' = Rt and/ = /r1 for arbitrarily fixed
t. Then denoting by S't and σt the surface and the reproducer correspond-
ing to S' and σ(d, S') in Lemma 1, respectively, we have

M{t) ^ 2πl\\σt\\\ .

On the other hand, we can regard {(/t|s>; S't, So)}ίe(o,i] as an admissible
family of marking-preserving deformations of S't to S'o (~ft(St)) = RQ —
{peR0 — N(R0); g{p, q; Ro) ^> M + KA0} with naturally induced markings.
Hence by Theorem A, σt converges to σ0 strongly metrically. In parti-
cular, for every compact set E in So — N(S'0)9 we have

Utfolli = \im\\σtofΓψE ^ lim inf K(fτ\ E) \\at\\^m ^ lim inf H^H2^ .

Since E is arbitrary, we conclude that

/ H . l l i j / | | | | ^ / | | ( 0)\\l,, S'0)\\l,

which shows the first assertion.
The second assertion follows from the inequality

\\φ(t, q)\\\-vt = 2 \\dgt\\\_¥t ^ 4π M(f) .

q.e.d.
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3. The conformal topology. Let an admissible family {(/t; Rt, i?o)}te(o,i]
be given arbitrarily. Then for every t and every part S of Ro, i.e., a
component of Ro — N(R0), we can construct a Riemann surface, say St,
from the subsurface fr\S) of Rt by attaching a once punctured disc to
each border that corresponds to a node of Ro. Such a surface St is not
determined uniquely, but for any choice of St, we have the following:

PROPOSITION 2. Fix a part So of Ro and a surface St as above for
every t. Let P be a finite set of punctures of So containing all those
corresponding to the nodes of RQ, and let a neighborhood U of P in SoliP
be given. Then there is a family {#ί}ίe(0,i] of quasiconformal mappings
gt from SQ onto St such that

( i ) fr1 = gt on So — U for every t,
(ii) lim^o K(gt, So) = 1, and
(iii) there is a positive t0 and a neighborhood V of P in SO{JP such

that gt is conformal on V for every t < t0.
In particular, with naturally induced markings, St converges to So

in the sense of the Teichmuller topology.

PROOF. Take another neighborhood U' of P in So U P such that U'cz U,
that the relative boundary of U' in So (J P consists of simple closed curves,
and that each component of Uf — P is a once punctured disc. By the
same argument as in the proof of [6, Lemma 1], we can find a (P-)weakly
admissible family {ht}te(0>τi of If-quasiconformal mappings from So onto
St with a suitable finite K and positive T < 1 such that ht = /r1 on
So — Uf. By the same argument as in the proof of [6, Theorem 1 and
Lemma 4], we can construct a desired family. q.e.d.

PROOF OF PROPOSITION 1. Regard {(ft\Rt-{fT\q))\ Rt - {fτ\q)}, Ro -
as an admissible family. Let So be the part of Ro — {q} containing q.
Let P consist of q and all punctures of So corresponding to nodes of RQf

and U' be a neighborhood of P as in the proof of Proposition 2. Then
by Proposition 2, there is a family {gt} satisfying the conditions (i), (ii)
and (iii) in Proposition 2 with U = U'. Replacing /r1 by gt only on the
component of Uf containing q for every t, we have a desired family.

q.e.d.

Now, in connection with Proposition 2, we can show certain necessary
and sufficient condition for a family or sequence of points on T(R*) be
convergent. Here for the sake of simplicity, we restrict ourselves to
the case as stated in Theorem 3 below. (The general case will be
treated in [9].)
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First, arbitrarily fix a simple closed curve c on R* such that
σ(c, R*) Φ 0. Recall then that σ(c, R) Ξ£ 0 for every R in T(R*). Let
W(R) be the characteristic ring domain of θ(c9 R) for c on ί (see, for
example, [6, §2]), and m(R) be the modulus of W{R) for every R in
T(R*). Here we set m(R) = 0, when ΐΓ(i2) is empty. Then we know
following:

LEMMA 3. The modulus m(R) is continuous on T(R*).

PROOF. Let Rt converge to RQ on T(R*) as t tends to 0. If
m(R0) > 0, then m(Rt) converges to m(R0) by [6, Theorem 5]. If m(R0) = 0,
then again by [6, Theorem 5] we see that a{Rtf m{Rt) converges to 0,

where a(Rt) = I σ(c, Rt). Since a(Rt) converges to a(R0) = \\σ(c, R0)\\2R0 > 0

by [6, Proposition 4 and Corollary 3], we conclude the assertion, q.e.d.

Next set

Sc = {R e T(R*); W(R) Φ 0 , i.e., m{R) > 0} , and

dΰT(R*) = {Ref(R*); N(R) consists of a single

node p(R) corresponding to c} .

Then for every ReSc, we can construct one (or a pair of) Riemann sur-
face^) iϋ# with two distinguished punctures px(R) and p2(R), uniquely
determined from R, as follows:

For every ReSc, let HB be a conformal mapping from W(R) onto
{r(R) < \z\ < l/r(R)} with r(R) = exp(-π m(JB)), and C(R) be the simple
closed curve HR\{\Z\ = 1}) on R with the same orientation as that of c.
Using this HB, attach domains {0 < \z\ < 1} and {1 < \z\ < +<~} to the
border of R — C(R) corresponding to C(R). Then we have one (or a pair
of) surface(s) iϋ* with two distinguished punctures pt{R) and p2(R), where
we denote by pt(R) the puncture corresponding to the border of R — C(R)
having the same orientation as that of c.

Here note that, with naturally induced markings, the above i2* can
be regarded as a point in T(R'e)9 where Rc is any point in dcT(R*) and
R'o = Re — N(Re) with naturally induced marking. Note also that the
differential Θ{R) = -2π θ(c, R)/\\σ(c, R)\\% restricted to R - C{R) can be
extended to a holomorphic differential φ{R*), which should be equal to

V~=Λ dG( ; i?, Pl(Λ), p2(R)) - *dG( ; R\ p^R), P.(Λ)) .

(If c is a dividing curve, then each component of iϋ* admits Green's
functions, which can be seen by the assumption that σ(c9 R) =£ 0.)

Now we can show the following:



FINITELY AUGMENTED TEICHMULLER SPACES 289

THEOREM 3. In f(R*)f RteT{R*), converges to RQedcT{R*) as t
tends to 0, if and only if

(i) lim^o m(Rt) = + °°, and
(ii) (Rt)* converges to R'Q = Ro — JV(ί20) in T(R'e) as t tends to 0.

Here note that, if the condition (i) in Theorem 3 holds, then W(Rt)
should not be empty and (Rt)* can be defined for every t sufficiently small.

To prove Theorem 3, we first recall the following facts.

PROPOSITION B ([8, Theorem]). There is an absolute constant A such
that for every R e T(R*), we have

m{R) ^ 1/λCR) ̂  m{R) + A ,

where X(R) is the extremal length of the free homotopy class of c on R.

PROPOSITION C ([6, Propositions 5 and 6]). Suppose that a given
family {-Bt}tβ(0,i] in T(R*) and point RoedcT(R*) satisfy the conditions
(i) and (ii) in Theorem 3. Then φ((Rt)*) converges to

φ{R[) = i / = ϊ dG( RΌ, p l f 0, p8fo) - *dG( K Pif0, P.i0)

metrically (cf. [6, Definition 2]), where p1)0 and p2}0 are two punctures of
R[ corresponding to N(R0) with a suitable order.

PROOF OF THEOREM 3. First suppose that the given {.#*}* e[o,i] satisfies
the conditions (i) and (ii). Then by (ii), there is a family {gt}teιo,ύ °f
marking-preserving quasiconformal mappings gt of R[ to (22t)* such that
\\mt^K(gt\ RΌ) = 1. And by Proposition C, φ((RtY) converges to φ{R[)
metrically. Hence by (i) and [6, Lemma 7], we see that for every neigh-
borhood U of p(R0) on Ro there is a positive t0 (<1) such that

gΛ(Rt)*-(Rt-Ct))<zU, i.e.

- U

for every t < t0. Hence we can easily construct an admissible family
{(/*; Rty iϋo)}ίe(o,i] by deforming {gt}. (See also [4, Lemma 3]).

Next suppose that RteT(R*) converges to RoedeT(R*) in t(R*).
Then it is well-known that the extremal length X(Rt) of the free homotopy
class of c on Rt converges to 0 as t tends to 0. Hence we conclude (i)
by Proposition B.

Now take any admissible family {(ft; Rty i20)}te(0)1], which exists by
assumption. Let Mo be as in Section 1 with G{p) = G(p; R[, plι0, p2>0). Fix
Mx > Mo arbitrarily, and set W={pe R[\ M,< \G(p)\ <Λf1 + 4πB+l} with the
absolute constant B in [8, Proposition 2]. Then we may assume without
loss of generality that /r1 is 2-quasiconformal on W, and hence the modulus
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of each component of fτ\ W) is greater than B for every t. Fix t arbitrarily.

*σ(Ct, Rt) as a height

function on each component of fτ\W), we see by [8, Proposition 2] that each
component of fτ\{p e RΌ) \G(p)\ = M1 + iπB + 1}) is contained in W(Rt).
In particular, ffKpiRo)) is contained in W(Rt).

On the other hand, from the construction, we can regard W(R) as
a neighborhood of Cjtt in (i?t)* (j = 1, 2), hence /r1 can be regarded as a
homeomorphism from R[ into (RtY such that each component of (Rtf —
f7ι(R'<) is conformally equivalent to a punctured disc. Thus we can apply
Proposition 2, and conclude that (jβt)* converges to R[ in the sense of the
Teichmϋller topology, that is, (ii) holds. q.e.d.

REMARK 3. In [4, Introduction], the author asked whether the fine
topology and the conformal one on cfg are coincident. Theorem 3 gives
the affirmative answer to this question.

PROPOSITION 3. Let {(/,; Rt, Ro)}te(o,ύ be an admissible family of
marking-preserving deformations ft of RteT(R*) to RoedeT(R*). Then
θ(Rt) converges to φ(RΌ) strongly metrically with respect to {ft}.

PROOF. Fix a neighborhood U of N(R0) arbitrarily. Then in the
proof of Theorem 3, we have actually shown (by Proposition 2) that
there is a family {gt} of quasiconformal mapping gt from R[ onto (Rtf
which satisfies three conditions in Proposition 2 with So = R'o, St = (Rty
and P — {p10, p2)o} Then as in the proof of [6, Proposition 5], we can
show that

Since g7ι(Rt — C(Rt)) contains Ro — U for every t sufficiently small as is
shown in the proof of Theorem 3, and since θ(Rt) = φ((RtY) on Rt — C(Rt),
we conclude that

lim\\θ(Rt)ofr -φ(R'ϋ)\\Ro-v = O.
t-*0

Since U is arbitrary, we have the assertion. q.e.d.

4. Proof of Theorem 2. First we recall the following:

LEMMA 4. Let D be a subsurface of a Riemann surface with compact
smooth relative boundary 3D, and h be a real smooth Dirichlet function
in a neighborhood of D = D\JdD (cf. [1, Abs. 7]) which coincides, outside
a compact neighborhood of 3D in D, with a Dirichlet potential on D.

Then for every real smooth closed differential a) in a neighborhood
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of D which is square integrable on D, it holds that

S h ω — — {dh, *ω)D = \\ dhΛω .
3D JJD

PROOF. By assumption, we can find a smooth Dirichlet potential P
on D such that P = 0 in a neighborhood of 3D and P = h outside a com-
pact bordered subsurface Dt of D which is a neighborhood of 3D in D.
Since dPeΓe0(D) and -*α)6*Γ c (D), it holds that {dP, -*ω)D = 0, hence
{dh, —*(ϋ)n — {d{h — P), —*ώ)D. By Green-Stokes' theorem, we conclude
that

(dh,-*ω)D=\[ d{h- P)Λω=\ {h - P). α> =

q.e.d.

From Theorems A and 1 we have the following:

LEMMA 5. Fix a point q and a 1-cycle d on R'o. Write θit, d) =

φ(t, q) — bt,qAzi)^zi o n US(MJ) — Uά(Mt) with the local para-
meter Zj for every t (>0) (j = 1, 2), where φ(t, q) are as in Section 2.
Then atjdyj(z3) and btiqii{z5) converges to aOidt5{z5) and bOtqti(zj), respectively,
locally uniformly on US(MQ) as t tends to 0 (j = 1,2).

PROOF. It is easy to construct a deformation ft of Rt to Ro such
that /r 1 is the identical mapping on, say, R'u regarded as a subsurface
of both R't and Ro for every t. Then with naturally induced markings,
{{ft) Rt, iJo)}ίβ(ofβχp(-jfO/2)) is an admissible family of marking-preserving
deformations, which also satisfies the assumption in Theorem 1.

Now as for {at)d}j}, we have by Theorem A that

lim||0(t, d)ofr1 - 0(0, d)\\% - lim (( |αM i i(« y) - αO)d)i(^)l2 \dzjAdzjl = 0

for every compact set E in Uj{MQ), which implies the assertion, since

at>dJ is holomorphic on Uό{MQ) — Uό{Mt) for every t and each j .
Similarly we have the assertion for {bt>qJ} by using Theorem 1 instead

of Theorem A. q.e.d.

PROOF OF THEOREM 2, (1). From additivity with respect to d and d'
of each terms in the formula, it suffices to consider only the case where
d and d' are smooth simple closed curves.

First we also assume that none of d and df is degenerate, where we
say that a simple closed curve d" on R'Q is degenerate if σ(d", Ro) = 0.
Then since *σ{d', Ro) (^0 on R'o) is exact on every component of R[—d', there
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is a harmonic function h(p, dr) on R[ — df uniquely determined by the
following conditions: h(p, d') coincides with a Dirichlet potential on S — d'
outside a compact neighborhood of d' in S, dh(-,d') = *σ(d', RQ) on R[,
and h(p, df) = 0 on R[ — S (which may be empty), where S is the part of
Ro on which d' lies. Here we may further assume without loss of gene-
rality that d and dr are contained in_R'o — U^M^U U2(M0). Let A(p, d')
be a holomorphic function on ϋ^M^Ό U2(M0) such that Im A(p, dr) = h{p} d')
Then we can show that

( \ )*σ(d, Rt))R>> = - ( σ{d, Rt) + \ h( ., d'

where 3i?ί' = CM + C2,t.
Indeed, set D = R't

f — d', and regard Z) as the interior of at most
three bordered Riemann surfaces D with compact total border 3D =
dR't + d[ + d'2, where df is regarded as two different components d[ and d'2
of 3-D, and d[ has the same orientation as that of cZ'. Apply Lemma 4 to
h(p, df) and σ(d, Rt) on each component of D. Then we have the equation
(1) by noting that h(p[, d') — h(p2, d') = — 1 for every p[ed[ and p2ed2

corresponding to the same point of d\
Using the same argument as above, we can show that

, Rt), *σ(d', Ro))^ - \ Up, d) σ{d', Ro) - \ σ{d>, Ro) ,

where ht(p, d) is the harmonic function associated with *σ(d, Rt) on Rt

defined similarly to h(p, d') with Ro, R'o, S and σ(d', Ro) in the definition
of h(p, df) replaced by Rt, Rt, Rt and σ(d, Rt), respectively. Noting

that \ σ(d\ Ro) = ( σ(d, Ro) and ( Λt( , d) σ(d', Ro) = ( Λt( , d) x
Jd p Jd' Ja.β£' r Jai?^

d(ReA( ,d)) = - \ Re A( , d)-dλ^ , d) = - I Re A( , d) *σ(d, JB4), we
J3R't' )dR't'

conclude from (1) and (2) the relation

(3 ) ί σ(d, Rt) - \ σ(d, Ro) = Im ί A( , d') ί(ί, d) .
Jd' Jd' Jδiϋ^

Next considering h(pt df) and *dG instead of α (d, i2t) on R" — d', we
can show similarly to (1) that

( 4 ) 2π (h(plf d') — h(pif d')) — 1 *dG = (*σ(d', i20), dG)Λj/ .

On the other hand, applying Lemma 4 to G(p) and ~-σ{df, Ro) on iZ", we
have

(5 ) (dG, *σ(d', R0))Ry = \ G (~σ(d\ Ro)) = 0 ,
1 JdR't'
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for G(p) s Mt and = — Mt on Cht and C2)t, respectively. Hence we conclude
from (4) and (5) that

(6) h(pl9 d') - h(pt, d') = (l/2τr) Λ *dG .
Jd'

Now let Σn=o cnz? be the Taylor expansion of A(p, d') in U^MQ). Then
since at>di2(z2)dz2 = atydtl{z^)dz1 on C t, we have

\ A( ,d') θ(jb, d) = - Σ c» 4 a^Mzldz,
JClit n=0 J { | Z l | = ί}

= c0 ( σ(d, Rt) + Σ ^n 4 at>dί2{z2){Ύ]tlz2)
ndz2 .

JCut n=l J {|22! = ί)

Fix a positive ίo(<exp(—Jkf0)). Then for every t <t0 sufficiently small,
we have by Cauchy's theorem and Lemma 5 that

Σ cn 4 at)d>2(z2)(ηt2/z2)
ndz2 = Σ ^ 4 a,ttd>2(z2)(ηf/z2)

ndz2

= Σ c. 4 aw(,z2)(yf/z2ydz2 + o(ί2)
n=l J {|«2l=ί()}

/ : i ΐ Σ « . en_x (57ί2)re + o(ί2) = 2ffi/=Ί βx e0 r ί2 + o(ί2) ,
1

where ^n=0enz2 is the Taylor expansion of αM)2(22) in U2(MQ). Here e0 =
flo.d^O), I m co = λ(Pu d') and cx = αo,d',i(O) by definition. Since

it holds that

\ σ(d, Rt) = \ σ(Ct, Rt) = (l/2Mt) Λ *dG .
J(7 l f t J<Z Jd

Hence we have

Im \ A(., d') 0(ί, d) = Λ(plf d') (l/2Mt) \ *d
J σ 1 > t Jd

+ 2ττί2 Reft αofd,fl(O) αOidil(O)] + o(f) .

Similarly we can show that

Im \ A( , d') 0(t, d) - Λ(p2, d') (l/2Λft) ( - [ *

+ 2πt2 Re[rj αM, ) 2(0). αo,d>1(

Adding these two equations up and using the relation (6), we have the
desired formula in the case where none of d and df is degenerate.

Finally, suppose that one of d and d' is degenerate. We consider
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only the case that d is degenerate, since the other case can be treated
similarly. Then by [7, Lemma 4] we see that σ(d, Rt) = ε σ(Ct, Rt) for
every t with a suitable ε in {1, 0, —1}. Since aOfd)j = 0 (j = 1, 2) and
since

\ σ{Ct, Bt)(=\ σ(d', Rt)) = ( (l/2Mt) *dG = (lβπMt) A *dG ( *dG ,
Jd' \ JCt / Jd' JCut Jd'

we have the desired formula also in this case without the term o(f).
q.e.d.

PROOF OF THEOREM 2, (2). Again it suffices to consider only the
case where d is a smooth simple closed curve. First we assume that d
is non-degenerate, and let h(p, d) and A(p, d) be associated with *σ(d, Ro)
instead of *σ(d', Ro) as in the proof of Theorem 2, (1).

Fix t > 0 so small that R" contains d and q, and fix N so large that
Eo = {peRΌ; go(p) ^ N} and Et = {peRt; gt{p) ^ N) are simply connected
and contained in R't

r — d, where gt(p) = g(p, q; Rt) for every t (^0).
Apply Lemma 4 to the cases: (7) h(p, d) and *dg0 on R[ — d U EQf (8)

go(p) and -σ(d, Ro) on Do = R'o - Eo, (9) λ(p, d) and *dgt on Λί' - d U ^ ,
and (10) gt(p) and — σ(cί, Ro) on A = JSί' — Et, and we can show as before
the following relations:

( 7 )

( 8 ) (dgo,*(d,Ro))Do = O

( 9 ) (*(7(d, Λo), dft)^ = ί Λ( , d) *dflrt - ( *d^ + 2ττ h(q, d)
jdR't' Jd

(10) (dgt, *σ(d, B0))Bt = - \ gt σ(d, Ro) = \ Re A( , d) dgt .
JdR't' JdR't

f

Hence we conclude that

(11) ( *dgt - \ *dg0 = - I m ( A( f d) 0(t, g) .
Jd Jd JdR"

On the other hand, we can show similarly as in the proof of Theorem
2, (1) that

(12) - I m ( A( , d) 0(ί, ? ) = (A(plf d) - h(p2, d)) ί * d Λ

- 2τrt2 Refo (aOfdil(O) δOiffi2(O) + aM>2(0) 60pff.i(0))] + o(f) .

Hence we have the desired formula by (6) and the following equality:

(13) \ *dgt = (-π/Mt) G(q) = (-l/2Mt) (( *dG)
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which we can show by applying Lemma 4 to G(p) and *dgt on Dt and
then to gt(p) and *dG on Dt.

Finally, the case where d is degenerate can be treated, again as in
the proof of Theorem 2, (1), by the relation (13). q.e.d.

PROOF OF THEOREM 2, (3). Set go,(p) = g(p, q'; Ro). Fix t > 0 so small
that R't contains q and q\ and N so large that E[ = {p e R'Q; go>(p) ̂  N}
and Et are mutually disjoint, simply connected and contained in R".
Apply Lemma 4 to go>(p) and *dgt, and then to gt(p) and *dgor, on
R't - E'o U #*, we can show that

\ Qo>' *dgt + 2πgo>(q) = \ gt- *dg0, + 2πgt(q') .

Since go,(q) = go(q') and I gt *d^0, = I Re A( , ?') ' d^rf, where

is a holomorphic function is a neighborhood of U^Mt) U U2(Mt) such that
Im A(p, g') = go>(p), we have

(14) Λ(g') - tfo(g') = (-1/27Γ) Im ί A( , g') ^(ί, g) .

Hence, using (13) and the same argument as before, we can show the
desired formula. q.e.d.
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