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1. Introduction and statement of results. For a Riemann surface
R*, the finitely augmented Teichmiiller space T'(R*) of R* is the set of
all marked Riemann surfaces R with at most a finite number of nodes
such that there is a marking-preserving deformation of R* to R, and
T‘(R*) is equipped with the conformal topology. (For the details, see [7,
§1, 1°)].) Here we recall some of definitions.

For two given points R, and R, in T(R*), a marking-preserving
deformation (f: R, R,) of R, to R, is a marking-preserving continuous
surjection f from R, onto R, such that f~' restricted to R, — U is
quasiconformal for every neighborhood U of the set N(R,) on R,, and
that f~(p) is either a node of R, or a simple closed curve on R, — N(R))
for every p in N(R,), where here and in the sequel, N(R) means the set
of all nodes of R. A one-parameter family {(f;; R,, Ry)}ie0.n of marking-
preserving deformations f, of R, e T(R*) to R, e T(R*) is called admissible
if

lim K(f*, B, — U)=1
for every neighborhood U of N(R,), where here and in the sequel K(f, E)
is the maximal dilatation of a quasiconformal mapping f on a Borel set
E. Recall that R, converges to R, in T(R*) if and only if there is an
admissible family {(f;; R,, R,)}.

In [7, §3], certain continuity property of holomorphic and harmonic
differentials on T(R*) was investigated. In particular, we showed strongly
metrical continuity of period reproducers on T(R*). Namely, let o(c, R)
be the period reproducer for a 1-cycle ¢ on ReT(R*) in the space I'y(R)
of all square integrable (real) harmonic differentials on R — N(R) (cf. [7,
§1, 2°)]). Then we have the following:

THEOREM A ([7, Proposition 4]). Let an admissible family
{(fis Riy R)}icon of marking-preserving deformations and a l-cycle d on
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R, — N(R,) be given arbitrarily. Set
o(t, d) = o(f7*d), R) +V =1 *a(f7'(d), R,)

for every t. Then 6(t, d) converges to 6(0, d) = a(d, R) + V' —1-*a(d, R,)
strongly metrically with respect to {f}, that is,

lti—-ron ”ﬂ(tu d) oft—l - 0(07 d)”RO—E =0
for every meighborhood U of N(R,).

Here and in the sequel, f{d) is the 1-cycle corresponding to d under
the mapping f, fof is the pull-back of a differential # by f, and |w||; is
the Dirichlet norm of a differential w on a Borel set E, namely, ||} =

[ ons

REMARK 1. In the proof of [7, Proposition 4], we have actually shown
that 6(f,'(d), R,) converges to 6(d, R,) for every admissible sequence
{(£.; Ray Ro)}7-, of marking-preserving deformations, which clearly implies
Theorem A. The proof is valid also for admissible families (with con-
tinuous parameters).

Now in this paper, continuing the above investigation, we show
strongly metrical continuity of Green’s functions. Here we define a
function ¢g(p, ¢; R) on R — N(R) for every Re T(R*) and ¢ge R — N(R)
as follows: On every component of R — N(R) not containing ¢, we set
g(-,q; R) =0, and on the component S containing ¢, we set g(-, q; R) to
be usual Green’s function on S with the pole ¢, or to be identically zero
on S, according as whether S admits Green’s functions or not. If we set

#(q; R) =V —1-dg(-, ¢; R) — *dg(-, ¢; R) ,
then we can show the following:

THEOREM 1. Let an admissible family {(f;; R,y R)}con of marking-
preserving deformations and a point q in R, — N(R,) be given arbitrarily.
Suppose that g(p, q; R,) # 0 and that

(*) there is a meighborhood V of q on R, — N(R,) such that f;* is
conformal on V for every t.

Then ¢(f;(q); R,) converges to ¢(q; R,) strongly metrically with respect
to {f.}.

The proof will be given in the next section. Here we also state the
following corollary of Theorem 1. (The proof of Corollary 1 is exactly
the same as that of [7, Theorem 5], and hence omitted.)

COROLLARY 1. Under the same assumption as in Theorem 1,
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g(fi (), fr'(q); R,) converges to g(p, q; R,) locally uniformly on components
of R, — N(R,) — {q} admitting Green’'s functions.

Concerning the assumption (x) on {f;} in Theorem 1, we know the
following:

ProPOSITION 1. If R, converges to R, in T(R*) as t tends to 0, then
we can find an admissible family {(f;; R,, R,)} satisfying the assumption
(x) in Theorem 1.

The proof will be given in Section 3 with more remarks on the
conformal topology on T(R*). (In particular, see Theorem 3.)

Next, as an application of Theorems A and 1, we will derive varia-
tional formulas of Schiffer-Spencer’s type.

Let R, be a Riemann surface with a single node p, and suppose that
either

(i) R, — {p,} is connected, or

(ii) R, — {p,} consists of two components S, and S, both of which
admit Green’s functions.

And let p, and p, are punctures on R; = R, — {p,} corresponding to the
node p,. In the case (i), set R, = R,U{p, p.}, and

G(p; Ry, v,y 1) = 9(p, Dy; B5) — 9(p, py; RY) on R

if R;admits Green’s functions. If not, then let G(p; Ry, p., p,) be a harmonic
function on R, defined in [6, p. 320] as g(p; Dy p.). In the case (ii), we
assume that p; is a puncture of S;, and set S; = S;U{p,;} (j =1,2). Set
G(p; R, p,, p) = 9(p, p;S) on S,, and
G(p; R, D, 22) = —9(D, D3 S;) on S .

In the sequel of this section, fix such R,, p, and p, as above, and
denote G(p; R, p,, p,) simply by G(p). Then there is an M, such that for
every M = M, U(M)={peR;G(p)> M} and U(M) = {pe R;; G(p) <
— M} are deleted neighborhoods of p, and p,, respectively, which are

conformally equivalent to {0 < [z < 1}. Fix a local parameter z; = z,(p)
on U;M) = U;(M)U{p;} (4 =1,2) such that
l2:(p)| = exp(—G(p)) and |2,(p)| = exp(G(p)) .

Using this parameter, we write 6(d, R,) = a,,4,,(2;)dz; and ¢(q; R,) =
beq.;(2;)dz; (7 =1,2) on U;(M,) for every l-cycle d and point g, respective-
ly, on R;,. For every positive ¢ with ¢ < exp(—M,), set R =_R{, -
U(M,)U U(M,), where M, =log(1/t), and identify two borders C,, = oU,(M,)
and C,, = aU,(M,) of R; by the mapping (z,)7(n - t}/z,(p)) with a fixed
constant 7 such that |7| = 1. Then we have an ordinary Riemann surface
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R, such that C, = R, — R), with the orientation induced from that of
C.., is a simple closed curve corresponding to p,. With naturally induced
markings, R, converges to R, in the sense of the conformal topology (cf.
the proof of Lemma 5 in Section 4).

This family {R,} gives variation by attaching a handle in the case (i),
and variation by cutting a hole or connecting surfaces in the case (ii),
according as whether one of S, and S, is conformally equivalent to
{0 < |z| < 1} or not (cf. [3, Ch. 7]). And we can show in a unified manner
the following variational formulas of Schiffer-Spencer’s type, whose proof
will be given in Section 4.

THEOREM 2. (1) Let d and d’ be 1-cycles on R, which can be also
considered ones on R; for every t. Then

[, o, B~ | o(d, R) = sz -10gtje) - | *dG-| +dG

+ 27t* - Re[7) + (0,4,,(0) + @g,4,5(0) + @6,4,5(0) + @6,4-,(0))] + 0o(¢?)
as t tends to 0.
(2) Let qbe a point on R, and d be a 1l-cycle on Ry, — {q}. Suppose
that g(p, q; R,) = 0. Then
[, *doC, 0 ) — | *doC-, ¢ B) = (~1/2-1og(/t) - Gv) - | *dG
— 2rnt’ - Re[’? ¢ (ao,d,1<0) ¢ bo,q,z(o) + ao,d,2(0) ¢ bo,q,1(0))] + O(tz)

as t tends to O.
(8) Let q and ¢ be two distinct points on R, Suppose that
g(p, q; R) #0. Then

9(q,¢"; R) — 9(q, ¢'; Ry) = (—1/2-log(1/t)) - G(q) - G(q")
— - Re[77 ¢ (bo,q,1<0) ‘ bo,q’,z(o) + bo,q,z(O) ¢ bo,q’,l(o))] + o(tg)

as tends to 0.

Let d be a 1-cycle on R;. Then it is well-known as Accola’s theorem
that the extremal length \(0, d) (resp. \(t, d) (¢ > 0)) of the homology

class of d on R; (resp. R,) is equal to [lo(d, R))|%; = S o(d, R,) <resp.
d
llo(d, R)l%, = S o(d, R,)). Hence Theorem 2, (1) gives the following:
d

COROLLARY 2.
Mty d) — MO, d) = (17 - log(1/£)) - (Sd *dG)2
+ 47t* - Re[n) - ay,4,,(0) - @4,4,:(0)] + o(¢?)
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as t tends to 0.

REMARK 2. We can consider more general kinds of variation by
pinching a loop, and can show certain variational formulas with the same
leading terms, some of which will appear in the forthcoming paper [9].

Finally, the author would like to express his hearty thanks to the
referee for valuable advice and various helpful suggestions.

2. Proof of Theorem 1. First set (¢, q) = ¢(fr'(q); R, for every
positive ¢ and ¢(0, @) = ¢(q; R,). We may assume without loss of generality
that V is relatively compact in R, — N(R,). Also note that (¢, q)ofi* —
#(0, @) is holomorphic on V for every ¢, which can be seen from the
assumption (x). Let U be a neighborhood of N(R,) in R, such that UNnV
is empty and each component of U — N(R,) is conformally equivalent to
{0 < |2| < 1}. Let e(p) be a smooth function on R, such that de has a
compact support in U — N(R,), e(p)=1 on R,— U and e(p) =0 in a
neighborhood of N(R,). Set g,(p) = g(p, f7(Q); R), @, = Img(t, q)of
(=d(g.°f7") and

Flw,) = e @, + g,of;" - de(=d(e-g;°ft"))

on R, — {q}UN(R,). If we can show that
(1) limsup,.||¢(t, @)|lz,—v, is finite, and
(2) F(w, — Im¢(0, q) belongs to I',,(R,) for every ¢,
where V, = fi%(V) and I',(R,) is defined in [7, §1, 2°)], then we have
the assertion by the same argument as in the proof of [7, Theorem 3].
Here the claim (2) is clear, for F(w, — Im ¢(0, ¢) is square integrable
on R, — N(R, and coincides with an element of I',(R,) outside V. To

show the claim (1), we need the following lemma, which may be of
independent interest.

LEMMA 1. Let R and R’ be two Riemann surfaces, both of which
admit Green’'s functions. Fix a point q on R, and a real number M so
large that the domain Dy = {pe R; g(p, ¢; R) > M} is simply connected
and relatively compact in R. Then there is an absolute constant A,
(depending neither on R, R', q nor on M) such that for every K-quasi-
conformal mapping f from D, into R', we have

sup  g(p, f@); R = 27/|led, SH|3 ,

PEeR'—f(Dy

where S'=R' — f{peR;9(p,q; R) = M + KA,)}) and d is the dividing
cycle on S’ corresponding to the relative boundary of S’ on R'.

Proor. Consider the harmonic function
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u(p) = (1/27) - 9(p, f(g); R')

on the ring domain W = S'Nf(D,) = f({peR; M < g(p, q¢; R) < M + KA,}).
Then u(p) satisfies the conditions for a height function stated in [8, §2],
and the modulus of W is not less than (KA4,/27)/K = A,/2r by [2, Theorem
1.7.1]. Hence we can conclude by [8, Proposition 2] that, setting A, =
2rB + 1 with the absolute constant B in [8, Proposition 2], we have

m/2r = inf wu(p)= sup up).
peR'—S’ PeR'—f(Dyy)

On the other hand, since S, = {pe R’; g(p, f(¢); R") < m} is contained
in S’ and the moduli of S’ and S;, are equal to 1/||a(d, S")||3 by Accola’s
theorem and m/2x, respectively, we conclude that 1/|lo(d, S")|j3 = m/2x,
which shows the assertion. g.e.d.

LEMMA 2. In a meighborhood of t = 0 in [0, 1],
M) = ,Sup 9:(p)

By—Vy
18 bounded. And the claim (1) holds.

Proor. Fix M so large as in Lemma 1 with the given ¢ on R = R,.
Then we may assume without loss of generality that f;' is K-quasicon-
formal on D, for every t with a suitable finite K. Let A, be as in
Lemma 1, and apply Lemma 1 to R’ = R, and f = f;* for arbitrarily fixed
t. Then denoting by S; and ¢, the surface and the reproducer correspond-
ing to S’ and o(d, S’) in Lemma 1, respectively, we have

M) < 2x/|lo|5; -

On the other hand, we can regard {(fils;; S, So)lico,u @s an admissible
family of marking-preserving deformations of S; to S, (=£.(Sy)) = R, —
{peR, — NR,; 9(», q; R) = M + KA} with naturally induced markings.
Hence by Theorem A, o, converges to g, strongly metrically. In parti-
cular, for every compact set E in S; — N(S;), we have

lloollz = lj_{?”"t ofi'lle = lirtrloinf K(f', E) - ||0't||3‘t_1(E) = lintl %nf”at“%‘; .

Since E is arbitrary, we conclude that
lim sup 1/, 3; < 1, = Vllod, S,

which shows the first assertion.
The second assertion follows from the inequality

o, Dllz—v, = 2+ 1dg.ll%,—v, = 47 - M(t) .
q.e.d.
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3. The conformal topology. Let an admissible family {(f;; R:, Ro)}ie 0.
be given arbitrarily. Then for every t and every part S of R, i.e., a
component of B, — N(R,), we can construct a Riemann surface, say S,,
from the subsurface f;(S) of R, by attaching a once punctured dise to
each border that corresponds to a node of R,. Such a surface S, is not
determined uniquely, but for any choice of S,, we have the following:

PROPOSITION 2. Fiz a part S, of R, and a surface S, as above for
every t. Let P be a finite set of punctures of S, containing all those
corresponding to the nodes of R,, and let a neighborhood U of P in S,UP
be given. Then there is a family {9.}icon of quasiconformal mappings
g, from S, onto S, such that

(i) fit=g9, on S, — U for every t,

(ii) lim,, K(g,, S,) = 1, and

(iii) there is a positive t, and a meighborhood V of P in S,UP such
that g, is conformal on V for every t < t,.

In particular, with naturally induced markings, S, converges to S,
in the sense of the Teichmiiller topology.

PrROOF. Take another neighborhood U’ of P in S,U P such that U'c U,
that the relative boundary of U’ in S,U P consists of simple closed curves,
and that each component of U’ — P is a once punctured disc. By the
same argument as in the proof of [6, Lemma 1], we can find a (P-)weakly
admissible family {h};c0 1 of K-quasiconformal mappings from S, onto
S, with a suitable finite K and positive T < 1 such that &, = f;' on
S, — U’. By the same argument as in the proof of [6, Theorem 1 and
Lemma 4], we can construct a desired family. q.e.d.

PROOF OF PROPOSITION 1. Regard {(fi|z,— /7t w1 B — {71}, By — {ah)}
as an admissible family. Let S, be the part of R, — {g¢} containing q.
Let P consist of ¢ and all punctures of S, corresponding to nodes of R,
and U’ be a neighborhood of P as in the proof of Proposition 2. Then
by Proposition 2, there is a family {g,} satisfying the conditions (i), (ii)
and (iii) in Proposition 2 with U = U’. Replacing f;* by g, only on the
component of U’ containing ¢ for every ¢, we have a desired family.
q.e.d.

Now, in connection with Proposition 2, we can show certain necessary
and sufficient condition for a family or sequence of points on T(R*) be
convergent. Here for the sake of simplicity, we restrict ourselves to
the case as stated in Theorem 8 below. (The general case will be
treated in [9].)
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First, arbitrarily fix a simple closed curve ¢ on R* such that
o(c, R*) #£ 0. Recall then that o(c, R) 0 for every R in T(R*). Let
W(R) be the characteristic ring domain of 6(c, R) for ¢ on R (see, for
example, [6, §2]), and m(R) be the modulus of W(R) for every R in
T(R*). Here we set m(R) =0, when W(R) is empty. Then we know
following:

LEMMA 8. The modulus m(R) is continuous on T(R*).

Proor. Let R, converge to R, on T(R*) as t tends to 0. If
m(R,) > 0, then m(R,) converges to m(R,) by [6, Theorem 5]. If m(R,) = 0,
then again by [6, Theorem 5] we see that a(R,)*-m(R,) converges to 0,
where a(R,) = S a(c, R,). Since a(R,) converges to a(R,) = ||a(c, Ry)|l%, > 0
by [6, Propositic;n 4 and Corollary 3], we conclude the assertion. q.e.d.

Next set
S, = {Re T(R*); W(R) + @, i.e., m(R) >0}, and
9, T(R*) = {R e T(R*); N(R) consists of a single
node p(R) corresponding to ¢} .

Then for every ReS,, we can construct one (or a pair of) Riemann sur-
face(s) R* with two distinguished punctures p,(R) and p,(R), uniquely
determined from R, as follows:

For every ReS,, let H, be a conformal mapping from W(R) onto
{r(R) < |z| < 1/r(R)} with r(R) = exp(—x - m(R)), and C(R) be the simple
closed curve Hz'({|z| = 1}) on R with the same orientation as that of ec.
Using this Hy, attach domains {0 < |2] < 1} and {1 < |2| < 4o} to the
border of R — C(R) corresponding to C(R). Then we have one (or a pair
of) surface(s) R* with two distinguished punctures p,(R) and p,(R), where
we denote by p,(R) the puncture corresponding to the border of R — C(R)
having the same orientation as that of ec.

Here note that, with naturally induced markings, the above R! can
be regarded as a point in T(R.), where R, is any point in 9, T(R*) and
R, = R, — N(R,) with naturally induced marking. Note also that the
differential (R) = —2x-6(c, R)/|lo(c, R)||% restricted to R — C(R) can be
extended to a holomorphic differential ¢(R*), which should be equal to

V' =1-dG(-; R, p,(R), po(R)) — *dG(-; B, p:(R), pu(R)) .

(If ¢ is a dividing curve, then each component of R* admits Green’s
functions, which can be seen by the assumption that o(c, R) # 0.)
Now we can show the following:
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THEOREM 3. In T(R*), R,eT(R*), converges to R,cd,T(R*) as t
tends to 0, if and only +f

(i) lim,_, m(R,) = + o, and

(i) (R,)* converges to Ry, = R, — N(R,) in T(R.) as t tends to 0.

Here note that, if the condition (i) in Theorem 3 holds, then W(R,)
should not be empty and (R,)* can be defined for every ¢ sufficiently small.
To prove Theorem 3, we first recall the following facts.

ProPOSITION B ([8, Theorem]). There is an absolute constant A such
that for every R e T(R*), we have

m(R) = 1/MR) = m(R) + A,
where MR) is the extremal length of the free homotopy class of ¢ on R.

ProproOSITION C ([6, Propositions 5 and 6]). Suppose that a given
Jamily {R)}icon in T(R*) and point R,€o,T(R*) satisfy the conditions
(1) and (ii) @n Theorem 3. Then ¢((R,)*) converges to

¢(R6) = l/ji * dG(‘; R('n D10 p2,o) - *dG('; Rt’)» P10 pz,o)

metrically (cf. [6, Definition 2]), where p,, and p,, are two punctures of
R, corresponding to N(R,) with a suitable order.

ProoOr OF THEOREM 3. First suppose that the given {R,};.( 1 satisfies
the conditions (i) and (ii). Then by (ii), there is a family {g,};c(q of
marking-preserving quasiconformal mappings g, of R, to (R,*! such that
lim, , K(g,; R}) = 1. And by Proposition C, ¢((R,)* converges to #(R:)
metrically. Hence by (i) and [6, Lemma 7], we see that for every neigh-
borhood U of p(R,) on R, there is a positive ¢, (<1) such that

g (R — (R, — C))CU, i.e.
gt—l(Rt - t)DRo - U

for every t <t,, Hence we can easily construct an admissible family
{(fis R,y Ry)}ieon by deforming {g,}. (See also [4, Lemma 3]).

Next suppose that R,e T(R*) converges to R,cd,T(R*) in T(R*).
Then it is well-known that the extremal length \(R,) of the free homotopy
class of ¢ on R, converges to 0 as ¢t tends to 0. Hence we conclude (i)
by Proposition B.

Now take any admissible family {(f,; R,, R))}iec0.1» Which exists by
assumption. Let M, be as in Section 1 with G(p) = G(p; Rq, D1, Pe0). Fix
M, > M, arbitrarily, and set W = {p € R;; M,<|G(p)|<M,+4xB-+1} with the
absolute constant B in [8, Proposition 2]. Then we may assume without
loss of generality that f;* is 2-quasiconformal on W, and hence the modulus
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of each component of f;'(W) is greater than B for every ¢t. Fix ¢ arbitrarily.
Then since we can take u(p) = —|lo(C, R,)|z:- SP *a(C,, R,) as a height

function on each component of f;(W), we see by [8, Proposition 2] that each
component of f;'({p € R;; |G(p)| = M, + 4nB + 1}) is contained in W(R,).
In particular, f;i'(p(R,)) is contained in W(R,).

On the other hand, from the construction, we can regard W(R) as
a neighborhood of C;, in (R,)* (7 = 1, 2), hence f;* can be regarded as a
homeomorphism from R, into (R,)* such that each component of (R,)*—
YR is conformally equivalent to a punctured disc. Thus we can apply
Proposition 2, and conclude that (R,)* converges to R; in the sense of the
Teichmiiller topology, that is, (ii) holds. q.e.d.

REMARK 3. In [4, Introduction], the author asked whether the fine
topology and the conformal one on T, are coincident. Theorem 3 gives
the affirmative answer to this question.

PROPOSITION 3. Let {(f:; R, R)heown be an admissible family of
marking-preserving deformations f, of R,e T(R*) to R,€0,T(R*). Then
O(R,) converges to ¢(R;) strongly metrically with respect to {f.}.

ProOOF. Fix a neighborhood U of N(R, arbitrarily. Then in the
proof of Theorem 3, we have actually shown (by Proposition 2) that
there is a family {g,} of quasiconformal mapping g, from R, onto (R,
which satisfies three conditions in Proposition 2 with S, = R;, S, = (R,)*
and P = {p,,, D0} Then as in the proof of [6, Proposition 5], we can
show that

lti_l:? llp(R)H o g, — ¢(R('))“R0—U =0.

Since g;7'(R, — C(R,)) contains R, — U for every t sufficiently small as is
shown in the proof of Theorem 3, and since 6(R,) = ¢((R,)*) on R, — C(R,),
we conclude that

lim [[9(R,) /i — $(B2) gy = 0 -
Since U is arbitrary, we have the assertion. q.e.d.

4. Proof of Theorem 2. First we recall the following:

LEMMA 4. Let D be a subsurface of a Riemann surface with compact
smooth relative boundary oD, and h be a real smooth Dirichlet function
in a meighborhood of D = DUJD (cf. [1, Abs. T]) which coincides, outside
a compact neighborhood of oD in D, with a Dirichlet potential on D.

Then for every real smooth closed differential w im a meighborhood
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of D which is square integrable on D, it holds that
S hew= —(dh, *o), = “ dhA® .
aD D

PrOOF. By assumption, we can find a smooth Dirichlet potential P
on D such that P = 0 in a neighborhood of 0D and P = h outside a com-
pact bordered subsurface D, of D which is a neighborhood of 4D in D.
Since dPel, (D) and —*we*I',(D), it holds that (dP, —*w), = 0, hence

@dh, —*w), = (d(h — P), —*w),. By Green-Stokes’ theorem, we conclude
that

(dh, —*@)p = SSDId(h— P)Aw = Sam(h P w= S hew.

aD

q.e.d.

From Theorems A and 1 we have the following:

LEMMA 5. Fix a point q and a l-cycle d on R,. Write 6(t,d) =
a,4,;(2;)d2; and ¢, q) = b, , (2;)dz; on U;(M,) — U,(M,) with the local para-
meter z; for every t (>0) (j =1,2), where ¢, q) are as in Section 2.
Then a,,;(z;) and b,,;(z;) converges to a,; ;(z;) and by, (2;), respectively,
locally uniformly on U;(M,) as t tends to 0 (j =1, 2).

ProoOF. It is easy to construct a deformation f, of R, to R, such
that f;' is the identical mapping on, say, R; regarded as a subsurface
of both R; and R, for every ¢. Then with naturally induced markings,
{(fi; Riy Ro)}lic o, exp (—uyon 18 an admissible family of marking-preserving
deformations, which also satisfies the assumption in Theorem 1.

Now as for {a,,;}, we have by Theorem A that

lim (¢, @) o£5* = 00, D)l = lim || 10,0,12) — @y - dzsAd7] = 0

for every compact set £ in U;(M,), which implies the assertion, since
@, 4.; is holomorphic on U;(M,) — U;(M,) for every ¢t and each j.

Similarly we have the assertion for {b, ,;} by using Theorem 1 instead
of Theorem A. q.e.d.

PrOOF Or THEOREM 2, (1). From additivity with respect to d and d’
of each terms in the formula, it suffices to consider only the case where
d and d’ are smooth simple closed curves.

First we also assume that none of d and d’ is degenerate, where we
say that a simple closed curve d” on R; is degenerate if ¢(d”, R,) = 0.
Then since *a(d’, R,) (0 on R,) is exact on every component of R;—d’, there
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is a harmonic function h(p,d’) on R; — d' uniquely determined by the
following conditions: h(p, d’) coincides with a Dirichlet potential on S — d’
outside a compact neighborhood of d' in S, di(.,d’) = *o(d’, R,) on R,,
and h(p,d)=0 on R; — S (which may be empty), where S is the part of
R, on which d’ lies. Here we may further assume without loss of gene-
rality that d and d’ are contained in Ry — U,(M,)U U,(M,). Let A(p,d")
be a holomorphic function on U,(M,)U U,(M,) such that Im A(p, d)=h(p, d’).
Then we can show that

(1) —(o@, R), *0d, R)wy = —| o@ Ry +| 1, )00 R),

where oR; = C,, + C,,.

Indeed, set D= R; — d’, and regard D as the interior of at most
three bordered Riemann surfaces D with compact total border oD =
oR) + d) + d;, where d' is regarded as two different components d; and d;
of 0D, and d; has the same orientation as that of d’. Apply Lemma 4 to
h(p, d’) and o(d, R,) on each component of D. Then we have the equation
(1) by noting that A(pi, d') — k(p;, d') = —1 for every pied; and p,ed,
corresponding to the same point of d’.

Using the same argument as above, we can show that

(2) (0 R), "o, R)wy = | hip,d)-o(d, R) = | o(@ Ry,

where h,(p, d) is the harmonic function associated with *¢(d, R, on R,
defined similarly to h(p,d’) with R,, Ry, S and ¢(d’, R,) in the definition
of h(p,d’) replaced by R,, R,, R, and o(d, R,), respectively. Noting

that S o(d', R) = S o(d, R) and S h(-,d)-od, R) = S h(-, d)x
d a’ Ry ary
dRe A, d) = —| ReA(, d)-dh(,d) = —| ReA(-,d)-*o(d, R), we
t Ry’
conclude from (1) and (2) the relation t

(3) |, 0@ By~ | o@ RY=1m{ —aC,a)-00a).

Next considering h(p, d) and *dG instead of o(d, R, on R, — d’, we
can show similarly to (1) that

(4) 22 (lpy &) — hpy d)) — | *dG = (o(d, R), dG)yy

On the other hand, applying Lemma 4 to G(p) and —¢(d', R,) on R:, we
have

(5) G, *o, By = |, G+(=0d, R) =0,
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for G(p) = M, and = — M, on C,, and C,,, respectively. Hence we conclude
from (4) and (5) that
(6) W, &) = hp, &) = (1f27) - | *dG .

Now let 332, ¢,27 be the Taylor expansion of A(p, d') in U,(M,). Then
since @, 4.(2,)d2, = @,,4,(2,)dz, on C,, we have

|, Ayt d=-Fe- b auead,

, n=0

=o- | @R+ Se§  auerinrde.
1,1 n=1

{1zgl=¢}

Fix a positive ¢, (<exp(—M,). Then for every ¢ < {, sufficiently small,
we have by Cauchy’s theorem and Lemma 5 that

Z Cn* &(I = at,d,z(zz)(nt /zz)ndzz = "Z:{ (9 §{I22I=to) at,d,z(zz)(vt /zz)ndzz

Il

22l =tq}

2 &H Bo,0,:(22) (E°[2,)"d2, + 0(F")
V-1

Z Covlny (O™ + 0(t?) = 2wV —1 - ¢, - €, Nt* + o(t?) ,

where = e,z; is the Taylor expansion of a,.,(2,) in U,(M,). Here ¢, =
@ ,42(0), Im ¢, = h(p,, d') and ¢, = @, :(0) by definition. Since

~(1/2M,) - dG IR;' = *a¢(C,, Rt)lze;' ’
it holds that
[, o@r)={ ac, R)=rem)-| *ac.

Hence we have

Im| AC,d)-06 &) = ko, &)- @21 - | *dG

O,t

+ 27t* - Re[7) * @0,0:,1(0) * @,4,,(0)] + 0(t) .

Similarly we can show that

Im S A, @) -0, d) = h(py, ') - (1/2M) - (— Sd *dG)

CZ’t

+ 27t* - Re[7) * @,47,5(0) * @0,0,1(0)] + o(t?) .

Adding these two equations up and using the relation (6), we have the
desired formula in the case where none of d and d’ is degenerate.
Finally, suppose that one of d and d’ is degenerate. We consider
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only the case that d is degenerate, since the other case can be treated
similarly. Then by [7, Lemma 4] we see that o(d, R, = ¢-0(C,, R, for
every t with a suitable ¢ in {1,0, —1}. Since a,,,=0 (=1,2) and
since

|, o€ )=, 0@, B)) = | ety a6 = apgzby- | vac-| e,

1, d’
we have the desired formula also in this case without the term o(#?).
q.e.d.

PrROOF OF THEOREM 2, (2). Again it suffices to consider only the
case where d is a smooth simple closed curve. First we assume that d
is non-degenerate, and let h(p, d) and A(p, d) be associated with *o(d, R,)
instead of *¢(d’, R,) as in the proof of Theorem 2, (1).

Fix ¢t > 0 so small that R; contains d and ¢, and fix N so large that
E,={pecR;g,p) = N} and E, = {peR,; 9.(p) = N} are simply connected
and contained in R — d, where g,(p) = g(p, q; R,) for every ¢ (=0).

Apply Lemma 4 to the cases: (7) h(p, d) and *dg, on R, — dUE,, (8)
g.p) and —o(d, R,) on D, = R, — E,, (9) h(p, d) and *dg, on R — dUFE,,
and (10) g,(p) and —o(d, R)) on D, = R — E,, and we can show as before
the following relations:

(7) (*o(d, R), g, = —|_*dg, + 27 - I(g, d)
(8) (dgo *(dy B)p, = 0

(9) (ol R)dg)s, =\ b d)-*dg, — | *dg, + 221, @
JOER

10 g, *od, R, = = 9.0, R)=| ReA(,d-dg,.
IRy’ 3Rt’
Hence we conclude that

(11) |,7d0. | *ag.= —m| ac, -6 0.

On the other hand, we can show similarly as in the proof of Theorem
2, (1) that

a2 -Im| 4G, @96 0 = (o, D — e, D)- | *da,

1Lt

— 2nt’- Re[7] * (@0,4,,(0) + bo,q,z(o) + @,4,2(0) - bo,q,1(0)>] + o(t?) .

Hence we have the desired formula by (6) and the following equality:

) | rdg= (an)-6@ = (-12my- () *d6)-6@,

1
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which we can show by applying Lemma 4 to G(p) and *dg, on D, and
then to g¢,(p) and *dG on D,.

Finally, the case where d is degenerate can be treated, again as in
the proof of Theorem 2, (1), by the relation (13). q.e.d.

PrROOF OF THEOREM 2, (3). Set g,(p)=g9(p, ¢'; R,). Fix ¢ >0 so small
that R contains ¢ and ¢’, and N so large that E| = {p € R;; 9,(p) = N}
and E, are mutually disjoint, simply connected and contained in R}.
Apply Lemma 4 to g,(p) and *dg,, and then to g¢,(p) and *dg,, on

i — E,UE, we can show that

LR” go * *dg, + 2mgs(q) = S 9. "dgy + 2mg,(q") .
t

ary

Since g(e) = gu(@) and | g.-*dg, = | ReAC,q)-dg, where A, q)
t

AR
is a holomorphic functiont is a neighborhood of U,(M, U U,(M,) such that
Im A(p, q') = g,(p), we have

(14) 0.0) = @) = (—120)Im | A, @) 90t 0) -

Hence, using (13) and the same argument as before, we can show the

desired formula. q.e.d.
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