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1. Introduction. Let G be an almost simple Chevalley-Demazure
group scheme with root system @ (see, for example [1], [2], [6], [7], [8],
[10], [17], [19], [20], [21], [24]). For any commutative ring R with 1, let
E(R) denote the subgroup of G(R) generated by all elementary unipotent
(root elements) x,(r) with @ in @ and r in R. Here is an example:
G =SL,, G(R)=SL,R, E(R)=E,R, d=A,_,.

As in [1], [2], we are interested in normal subgroups of G(R). More
precisely, we want to describe all subgroups of G(R) which are normalized
by E(R).

The case when the rank of G is 1, i.e. G is of type A,, ie. G is
isogenous to SL, = Sp,, is known to be exceptional (see, for example,
[9]). So for the rest of this paper we assume that the rank of G is at
least 2.

When R is a field, it is known [21] that every non-central subgroup
of G(R) normalized by E(R) contains E(R), unless G is of type C, or G,
and R consists of two elements. In particular, with these exceptions,
E(R) modulo its center is a simple (abstract) group.

When R is not a field, there are normal subgroups of G(R) involving
(proper) ideals J of R. For every ideal J of R we define G(R, J) to be
the inverse image of the center of G(R/J) under the canonical homo-
morphism G(R) — G(R/J). The kernel of this homomorphism, i.e. the
congruence subgroup of level J, is denoted by G(J). Let E(J) denote
the subgroup of E(R)NG(J) generated by all z,(u) with @ in ® and w in
J. Let E(R, J) be the normal subgroup of E(R) generated by E(J).

THEOREM 1. For any ideal J of R, the subgroup E(R, J) of G(R) is
normal, and it contains the mixed commutator subgroup [E(R), G(J)].

When G = SL,, Sp,,, or SO,,, this statement was proved: by Klin-
genberg [14, 15, 16] for local rings R; by Bass [4] and Bak [3] under
stable range or similar dimensional conditions on R, by Suslin [22],
Kopeiko [18], and Suslin-Kopeiko [23] for any commutative R.
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The approach of [22], [18], [23] is based on [27, proof of Lemma 6.1
and Remark after Lemma 9.6]. A different approach, namely, localization
and patching, was used in [27, Lemma 38.4] for a partial solution of Serre’s
problem on projective modules over polynomial rings and then by Suslin
and Quillen for a complete solution of the problem, then in [22], [18], [23]
for a similar stabilization problem at K, -level, then in [25] for a descrip-
tion of normal subgroups of GL,R, then by Taddei [24] to prove our
statement in the case J = R (i.e. that E(R) is normal in G(R)). We use
Taddei’s result to obtain Theorem 1 for any J (see Section 2 below).

THEOREM 2. For any ideal J of R, the group E(R, J) is generated by
elements of the form x,(r)x_,(w)e,(—r) with @ in @, r in R, and u in J.

THEOREM 3. When G s of type B, or G, we assume that R has mo
factor rings of two elements. Then

ER, J) = [E(R), E(J)] = [E(R), G(R, J)]

Jor any ideal J of R. In particular, every subgroup of G(R,J) con-
taining E(R, J) is normalized by E(R).

Note that when R has a factor ring of two elements and G is of
type B, = C, or G,, then E(R) + [E(R), E(R)] (see, for example, [7] or [21]).

Let now e(®) denote the ratio of the scalar squares of long and short
roots in @. So e¢(@) =1 when & = A, D,, or E; ¢(®@) =2 when @ = B,,
C,, or F,; e(@) =3 when @ = G,.

THEOREM 4. Under the condition of Theorem 3, assume additionally
that for every z im R there are r,s im R such that z = e(@)rz + sz*'?
(for example, e(@®)R = R). Then:

(a) for every z in R and @ in @, the normal subgroup of E(R)
generated by x,(z) coincides with E(R, Rz);

(b) for any subgroup H of G(R) which is normalized by E(R) there
18 an ideal J of R such that E(R, J)C HCG(R, J).

When G = SL,, Sp,,, or SO,,, this statement was proved: in [11], [12]
for fields R; in [14, 15, 16] for local rings R; in [4] and [3] under stable
range and similar conditions. The case G = SL, with any commutative
R was done by Golubchik (see [25] for reference and another proof).
Partial results for any Chevalley group G were obtained in [1], [2].

Note that when the additional condition of Theorem 3 does not hold,
there are subgroups of G(R) which are normalized by E(R), but do not
satisfy the ladder condition E(R, J)CHCG(R, J) for any ideal J of R.
Still it is possible to obtain a description of those H’s using subgroups
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of G(R) involving “special submodules associated with (G, J)” in the sense
of [1]. This was done in [1], [2] under restrictions on R which, I believe,
can be removed.

Any information on normal subgroup structure of groups G(R) can
be useful to describe automorphisms and homomorphisms of these groups.
In this connection, we prove in Section 7 below the following theorem.

THEOREM 5. Under the conditions of Theorem 3, E(R) is a perfect
characteristic subgroup of any larger subgroup of G(R).

2. Proof of Theorem 1.

Case 1. J = R. Then our statement was proved by Taddei [24].

General case. Let h be in G(R) and ¢ in E(R,J). We consider the
ring R :={(r,s)e RXR:r —sed)}, its ideal J :=(J,0), h':=(h, h)e
G(RCG(R)xG(R), and ¢':= (g9, 1)e ERYNG") = ER', J"). The last
equality holds, because R’ is the semidirect product of its subring {(r, 7):
r € R} (which is isomorphic to R) and its ideal J’ (which is isomorphic to
J). Namely, let

g = [T a,,(t) e BRINGW)

with all ¢, in R'. We express t, = s, + u, with s, = (r,, r,) in R’ and u,
in J'. Set

h, = 1:1 20 (5) € E(R))

for 0 <k <n. Then h,=1 (by the definition), &, = 1 (because g € G(J")),
and

9 = Moy, 60, (w) = T hithap @) = T1 hanp (wOhi* € (R, J') .

By Case 1 (applied to R’ instead of R), h'¢’h'*e E(R’). On the other
hand, evidently, A'g’h'™ = (hgh™, 1)eG(J'). So Rg'h'eGJ)NER) =
E(R', J'), hence hgh™ e E(R, J).

Thus, E(R, J) is normal in G(R).

Take now any h in E(R) and g in G(J). Define, as before, h' =
(h, h)e E(R") and ¢’ = (g, 1) e G(J'). Then [r’, ¢'| € E(R"YNG(J') = E(R', J')
by Case 1, hence [k, g] € E(R, J).

Thus, E(R, J)D[E(R), G(J)].

3. Proof of Theorem 2. Let H be the subgroup of E(R,J) gener-
ated by all z,(r)x_,(u)x,(—7) with ¢ in @, r in R, and » in J. We want
to prove that H = E(R, J), i.e. that H is normalized by E(R), i.e. that
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9 = 2,(8)x(r)2_p(u)x,(— 1), (—8) € H

for all ,7 in @, and s in R, and % in J. The case when v = ¢ is
trivial, so we assume that v = @.

By [13], we can assume that ¥ = —@. Indeed, if ¥ # —@, then we
have the commutator formula

[0&,,(—7'), xT(S)] = H xi¢+i7(ci,ﬂ‘isj) ’

where the product is taken over all natural numbers 4, j =1 such that
1P + jYe€® and ¢, ; are integers (which depend on @, v and the order in
the product; and the signs of ¢, ; depend also on our choice of parametri-
zations x, of root subgroups). Since no convex combination of —o,
and the roots i@ + 57 is 0, we have

9" 1= Bo(— 1)@ ()2 (1) (U)X — 1)2:(—8)2s(7) € E(J) ,

hence g = x,(r)g'x,(—r) € H.
So let now ¥ = —¢, hence

g = 2_o(8)xe(r)a_o(W)ae(—1)T_o(—S) .
We pick a connected subsystem @' C@ of rank 2 containing o.
Case 1. @' = A,. Then « — pe @ for some + in @', hence x_,(u) =
[%_y(u), Ty_o(£1)] and

9 = Z_o(S)[Cp_p( Eru)r_p(u), p(Er)Ly_o(E1)]x_o(—8)
= [z_yp(E£rsu + w)w,_yp(Eru), 2yp_o(£1 = rs)xy(E£r)] e E(4, J)

(using, for example, the case ¥ = —¢ above).

For the remaining cases (namely, B, and G,) we give a general
argument (which works also for A,) due to the referee rather than the
original case by case computations which are almost as complicated for
@, as in the general case.

We want to prove that the element g above belongs to the subgroup
H of E(R, J) defined above.

Let B8 in @ be such that (@, 8) is a base (fundamental system) of
@'. Let @, be the set of positive roots of @ with respect to the base,
. =9, ¢ ={ip+ jBed\:j >0}, 0" = -0}, U/J) (resp. UZ(J)) the
subgroup of E(R) generated by z,(J) with @ in @7 (resp. in @”). Then
U!(J) and U”(J) are subgroups of H.

Every element h of U”(J) can be expressed uniquely as

b= a_o(w)0_o)(s) -+ B, (%)

with a; in @) and u; in J. By induction on m, we can see that [UZ(J),
Y(R)]e H. On the other hand, we have
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Z_o(U) = [X_psp (W), xs(=1)]R" with A" in U(J]),

91 = B_o(8)2p(1)Z_(p1p (W) —T)2_o(—8) € UZ(J) ,

92 1= @_o(8)x,(r)wp( £ L)a,(—1)z_o(—8) € U{(R),

95 : = Z_o(8)x(r)h' T, (—7r)2_o(—8) € UL(]) .
Therefore we conclude that g = [g,, 9.l9; € H.

4. Proof of Theorem 3. Let o€® and ueJ. We want to prove
that z,(u) e[E(R), E(J)] =: H. We include @ to a connected subsystem
@'C® of rank 2.

Case 1. @' = A,. Then we pick a root  in @ such that ¢ + 4@’
(i.e. @ and + make angle 120°; there are two such ). We have

T(£u) = [Xpsyp(1), x_y(w)] e H,

hence z,(u) € H.

Case 2. @' = B,= @ and @ is long. Let « be a short root which
makes angle 45° with @ (there are two of them). Then y(r, s) := [xy(r),
Lo_op(sU)] = Tp_y(Ersu)z,(+r’su) € H for all r,s in R, hence

y(r, )y, rs)™ = x,(=(r* — r)su)e H .
By the condition of Theorem 3 in the case @ = B,, 1 is the sum of
elements of the form (r* — r)s with »,s in R. So x,(u)€ H.

Case 3. @' = B, and HOxy(J) for some « in @'. If @ and « make
angle 45°, then we have

(L) (£ 10) = [y_o(1), 20y (u)] l.lf W is long ,
[®p_p(1), Toyp_o(w)] if «r is short,
hence z,(u) € H.
In general, the angle between @ and « is 46°m with m = 0,1, 2, 3,
or 4. The case m = 0 is trivial, and the case m = 1 has been dealt

with. When m = 2, 3, or 4, we find roots a(1), -+, a(m) in @ such that
al) = &, a(m) = @, and «(i), at + 1) make angle 456° fori =1, ..., m — 1.
Then, as above, #,,(J)CH for 1 =1, +--, m.

Case 4. @' = B,=@®. When @ is long, we are done by Case 2.
When ¢ is short we done by Cases 2 and 3.

Case 5. @ = B, # ®. Then there is a sequence «a(l), ---, a(m) of
roots in @ such that a(l) belong to a subsystem of type A, a(m)= o,
and «a(t), a(i + 1) belong to a subsystem of type 4, or B, for 1 =1, ---,
m — 1. By Case 1 and Case 3, z,,(J)CH for i =1, -+, m.

Case 6. @' = G, and o is long. Then ¢ belongs to a subsystem of
type A,, so we are done by Case 1.
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Case 7. @ = G, and @ is short. Pick a root + in @ which makes
angle 60° with @¢. Then
H>3 [€g_pp(su), p(1)] = Tp_p(£sUr)w (£ sUT?) Ty p( £ SUT)TLop_y (£ 8"U"r?)
hence (using Case 6) H2y(r, 8) := Lo_y(Esur)x,(Lsur?’). So
H»>y(, rs)7y(r, 8) = a(£us(r* — 7)) .
By the assumption of Theorem 3 in the case @ = G,, we conclude that
x(u) € H.
Thus, H = [E(R), E(J)]DE(R, J) in all cases.
Using Theorem 1, we conclude that
E(R, J) = [E(R), E(J)] = [E(R), G(J)] = [G(R), E(R, J)] = [G(R), E(J)] .
Therefore only the inclusion E(R, J)D[E(R), G(R, J)] is left to prove.
We fix an arbitrary ¢ in G(R, J). For each b in E(R) we set
F(h):= [h, g1E(R, J) e (E(R)NG(J))/E(R, J) .

Then h+— F(h) is a homomorphism from the perfect group E(R) to a
commutative group. So F'is trivial, i.e. [k, g] € E(R, J) for all h in E(R).
Thus, E(R, J)D[E(R), GR, J)].

5. Proof of Theorem 4(a). Let H be the normal subgroup of E(R)
generated by x,(z). We have to prove that HDOx,(Rz) for every + in @.
We include @ and + to a connected subsystem @'c@® of rank 2.

Case 1. @' = A, and the angle between @ and + is 60°. Then
H> [2,(2), Zp_o(r)] = 2y(£2r) for all » in R, so HDxy(Rz).

Case 2. @' = A,. We find a sequence a(1), ---, a(m) in @' such that
2=<mZ£6, all) =, a(m) =+, and a(i), a(t + 1) make angle 60° for
41=1, -+, m — 1. Then, by Case 1, x,,(Rz)CH for 1 =2, +--, m.

Case 3. @' = ® = B,, ¢ is short, and + makes 45° angle with o.
Then H 3 [04(2), Ty_s(r)] = wyp(+27r2) for all » in R, hence HDxu(2Rz).
Moreover,

H 3 [24(2), Ty_2p(8)] = Hyp_o(£28)xy(£27) =: Y(s)
and .
H >3 [y(s), Top_yp(r)] = xo(E28r)0y(F2%sr) = Y'(r, 8)

for all », s in R.
Therefore

H>y'(r, 8)y'(sr, 1)™" = wy(£2’s(r* — 1)) .
Using the condition of Theorem 3, we conclude that H>Dwzy(Rz?).
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Thus, HDOxzw(2Rz + Rz*). By the condition of Theorem 4 (with e(®) =
2), HDxy(Rz).

Case 4. @ = @® = B,, ¢ is long, and + makes angle 45° with o.
Then

H3y(r) : = [24(2), Typ_o(1)] = Hp( £27)Toyp_o( = 72)
and
Ho y(r, 8) := [Y(), o_yp(8)] = wyp(£r82)2,(F8r"2 + 27sz)
for all r, s in R, hence
Hay'(r, 8)y'(A, r8)™ = wy(£(r* — 7)s2) .
It follows from the condition of Theorem 3 that HDuxy(Rz).

Case 5. @' = @ = B,. We find a sequence a(l), -+, a(m) in @ such
that a(l) = @, a(m) = +, and a(z), a( + 1) make angle 45° for 1 =1, - - -,
m — 1. Then, by Cases 3 and 4, HDw,,(Rz) for ¢ =2, -+, m.

Case 6. o is long and @ is of type B,, n = 3, or F,. Then the long
roots in @ form a connected subsystem, so HDux,(Rz) for every long root

v by Case 1. If « is short, it makes angle 45° with a long v in @,
hence
Lyp(w) = [2:(u), Ty_r(E1D)y_(xu) e H
for all % in Rz.
Case 7. ¢ is short and @ is of type C,, n =3, or F,. Then, by

Case 1, HDOx,(Rz) for every short root v in @. If «+ is long, it makes
angle 45° with a short root 7 in @', hence

wy(u) = [2(w), Ty_(E1)]ey(£u”) € H

for all 4 in Rz.

Case 8. @ is long and @ = C, with n = 3. Let ae€® make angle
45° with @ and Be€® make angle 120° with a. Then H>g := [z.(2),
Ta—p(1)] = @a(E2)T0_o(£7%2) and

H>3 g, 25(1)] = @ays(2) -

By Case 1, HDx,(Rz) for all short roots v in @. If + is long, we con-
clude that HDOxy(Rz) as in Case 7.

Case 9. @ is short and @ = B, with n = 8. Let a € ® make angle
45° with @ and @€ ® make angle 120° with @. Then

H 5 [24(2), 24—o(1)] = 0(£272)
and
H>3y(s) 1= [4(2), Baso(8)] = Fa_o(L28)T(£2%) ,
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hence
H> [y(s), 25(1)] = ®ayp(£2%)
for all », s in R.

By Case 1, HDOx,(2Rz + Rz*) for all long roots v in @¢. By the con-
dition of Theorem 4 (with e(®) = 2), HDxz.(Rz) for all long v. If + is
short, we find a long v in @ which makes angle 45° with + and obtain,
as in Case 6, that HDuxy(R?).

Case 10. @' = G, and @ is long. By Case 1, HDx,(Rz) for all long
roots o in @' = @. If « is short, let @ make angle 150° with . Then
H 3 [@oiop(1), T_sa_s9(82)] = @_ayp(£782)2y( £ 1782) T 0oy ( L 1°82)2_o( L 7°5°27)

for all », s in R, hence

Hsy(r, s) 1= x_,_p(Ersz)ey(r’sz) .
Therefore H > y(r, s)y(1, rs)™ = xy(+(r* — r)sz). By the condition of Theo-
rem 3, it follows that HDuxu(Rz).

Case 11. @' = G, and @ is short. Let a make angle 30° with o.
Then

H 3 [2,(2), Ta—p(r)] = ,(L£327)

for all r in R, hence xz,(8Rz)C H. By Case 10, it follows that z,BRz)C H
for all roots v in @ = @.
Using this with ¥ = @ and v = 2a — 3¢, it follows from

H3[24(2), Tgsp(r)] = Xoo( 202)2,( £ 82%1)2s0 _ap( £ 87%2)

that Hax,_o(+2r2) for all » in R. So H>x,_ ,(2Rz). Rotating this by
30°, we obtain that Hozx, ,,(4Rz).
Using these inclusions and that

H 3 [14(2), Xaso(47)] = Cp_sp(F472)20_o( 47202, (= 472%)Xgn_s0) (= 16772%)
we conclude that
Hs 2, (+4r2°)@y0_so(£161%2%) =: g
for all » in R. Therefore
H3[g, € sp(1)] = @oe_sp(477") ,

hence HDOx,,_3,(4K2°). By Case 10, HDx,(4Rz2®*) for all roots v in @.
Thus, HDOx,(83Rz + 4Rz®?) for all v. By the condition of Theorem 4
(with e(®@) = 3), 3Rz + 4Rz* = 3Rz + Rz® = Rxz.

6. Proof of Theorem 4(b).

LeEMMA 6. Under the condition of Theorem 3, assume that H is a
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non-central subgroup of G(R) nmormalized by E(R). Then H >3 x,2) for
some @ in @ and a non-zero z in R.

PrROOF. We pick a non-central element 2 in H. There is a finitely
generated subring R’ of R such that 1e R’ and he G(R'). Let p, -+, pn
be the minimal prime ideals of R’ (where m = 1). Consider the images
H;, in G(R'[p;) of HNG(R'). The subgroup H, of G(R'/p;) is normalized
by E(R'/p). By [26, Theorem 10.1 with A = B = R'[/p,], either H, is
central or HDE(J,) for a non-zero ideal J, of R'/p,.

Suppose first that H, is not central for some 1, say, for 2 = 1. Then
we pick: a subsystem @' of @ of type A, or B,; a long root ¢ in @’; a
root 4 in @ which makes angle 60° or 45° with ¢; a non-zero u, in J;;
some % in R’ with u, =% + p;; g in HNG(R') with image x,(u,) in H;;
an element ¢ in R’ outside p, which belongs to all p, with 1 =2, .-, m;
an ordering on @ such that ¢ and, when @ = B,, 24 — @ are positive.
Then gx,(—u) € G(p,).

We have

ryp(tut)g, when @ = A4,,
Ly £ UL)Lyy_o(+ut?)g, when @' =B,,

with g, € G(R'ut) cG(rad(R’)) cG(rad(R)), where rad means the Jacobson
radical. By [1], [2], G(rad(R)) = U(rad(R)) T(rad(R)) V(rad(R)), where U is
the subgroup of G generated by positive roots, V is the subgroup of G
generated by negative roots, and T is the torus.

Thus, H contains a non-central element (namely, [g, zy_o(¢)]) of
UR)T(R)V(rad(R)), assuming that H, is not central for some . If H,
is central for all 4, then g € G(rad(R")) cG(rad(R)) is a non-central element
of U(R)T(R)V(rad(R)). Now the conclusion of Lemma 6 follows from [2].

Now we can conclude our proof of Theorem 4(b). By Theorem 4(a),
there is an ideal J of R such that HNz,(R) = x,(J) for every root a in
®. Applying Lemma 6 to the ring R/J and the image H' of H in G(R/J),
we conclude that either H’ is central (i.e. HCG(R, J) and we are done)
or H'sz,(2') for some non-zero z' in R/J.

In the latter case we are going to obtain a contradiction with our
choice of J. Applying Theorem 4(a), we have H’> x,(z") for all ¢ in @.
We pick z in R such that z + J = 2'.

If @ contains a subsystem @' of type A,, we pick roots @, 4 in @’ such
that @ — € @', and we pick g in H such that gx,(—z)€G(J). Then
H> g, 2yp_,1)] = zy(+2)g, With g,€ E(R, J)C H, using Theorem 1. There-
fore x,(z) € H which contradicts our choice of J.

If @ does not contain a subsystem of type A,, then ® = B,. We pick

H>s [g’ x‘#—?(t)] =
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a long root @ and a short root 4 such that ¢ — re®. For every r» in R
we pick g(r) in H such that g(»)x,(—z2r) € G(J). Then, for every s in R,

H>3[g(r), Zy_o(8)] = wp(Eurs)oy_o(Furs?g,
with g,e E(R, J)C H, hence

Hoy(r, 8) := tp(£urs)uy_ (L urs?) .

Therefore H > y(r, s)y(rs, 1)™ = xpy_o(ur(s® — s)) for all »,sin R. In view
of the condition of Theorem 3, this contradicts our choice of J.

7. Proof of Theorem 5. The group E(R) is perfect by Theorem 3
with J = R.

Let H be a subgroup G(R) containing E(R) and f: H— H an auto-
morphism. By Theorem 1, E(R) is normal in H, so f(F(R)) is normal in
Sf(H) = H. By Theorem 4(b), E(R, J)Cf(E(R)CG(R,J) for an ideal J
of R.

The main step in our proof is to show that J = R. We assume that
J # R and will obtain a contradiction.

When G is not of type B, or G,, let R’ denote the subring of R
generated by 1. When G is of type B, or G,, we use the condition of
Theorem 3 to write 1 = > s,(r; — r,), and we denote by R’ the subring
of R generated by these s, and r,. Then R’ is a finitely generated ring
with 1. By Theorem 3, E(R’) is perfect; from the proof of the theorem
it is easy to see that the group E(R') is finitely generated.

Therefore there is a finitely generated ideal J’ of R’ such that
SIER)YCGJT"), J'cd, and J'J' = J', where J'J’ is the additive subgroup
of J' generated by all »s with »,s in J'. By the Nakayama lemma,
sJ’ = 0 for some se R'\J'.

Therefore E(sR) commutes with f(E(R')), so the centralizer of f(E(R"))
in H is not commutative. On the other hand, the centralizer of E(R')
in G(R) is commutative. This contradiction proves that J = R.

Thus, f(E(R))DE(R). Since f™ is also an automorphism of H, we
have f'(E(R))DE(R). So f(E(R)) = E(R). That is, E(R) is a character-
istic subgroup of H.

ACKNOWLEDGEMENT. I thank the referee who corrected misprints.
Also, the referee made the proof of Theorem 3 shorter and observed that
the proofs of Theorems 3 and 4(a) could be simplified under the following
assumption on the ring R in the case when G is of type B, or G,: there
is a unit w of R such that v —1 is a unit too. This assumption is strictly
stronger than the assumption of Theorem 3 that R has no factor rings
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of two elements in the case when G is of type B, or G, (which in fact
is a necessary and sufficient condition for the conclusions of Theorems 3
and 4 to be true). For the types other than B, and G, no assumptions
on R are needed, and proofs can be simplified.
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