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1. Introduction. Let G be an almost simple Chevalley-Demazure
group scheme with root system Φ (see, for example [1], [2], [6], [7], [8],
[10], [17], [19], [20], [21], [24]). For any commutative ring R with 1, let
E{R) denote the subgroup of G{R) generated by all elementary unipotent
(root elements) xψ(r) with φ in Φ and r in R. Here is an example:
G = SLn, G(R) = SLnR, E(R) = EnR, Φ = An_,.

As in [1], [2], we are interested in normal subgroups of G{R). More
precisely, we want to describe all subgroups of G{R) which are normalized
by E(R).

The case when the rank of G is 1, i.e. G is of type Alf i.e. G is
isogenous to SL2 = Sp2, is known to be exceptional (see, for example,
[9]). So for the rest of this paper we assume that the rank of G is at
least 2.

When R is a field, it is known [21] that every non-central subgroup
of G(R) normalized by E{R) contains E{R), unless G is of type C2 or G2

and R consists of two elements. In particular, with these exceptions,
E(R) modulo its center is a simple (abstract) group.

When R is not a field, there are normal subgroups of G(R) involving
(proper) ideals J of R. For every ideal J of R we define G{R, J) to be
the inverse image of the center of G(R/J) under the canonical homo-
morphism G(R) —»G(R/J). The kernel of this homomorphism, i.e. the
congruence subgroup of level J, is denoted by G(J). Let E{J) denote
the subgroup of E{R) Π G{J) generated by all xφ(u) with φ in Φ and u in
J. Let E(R, J) be the normal subgroup of E{R) generated by E{J).

THEOREM 1. For any ideal J of R, the subgroup E(R, J) of G{R) is
normal, and it contains the mixed commutator subgroup \E(R), G(J)].

When G = SLn, Sp2n, or SO2n, this statement was proved: by Klin-
genberg [14, 15, 16] for local rings R; by Bass [4] and Bak [3] under
stable range or similar dimensional conditions on R, by Suslin [22],
Kopeiko [18], and Suslin-Kopeiko [23] for any commutative R.
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The approach of [22], [18], [23] is based on [27, proof of Lemma 6.1
and Remark after Lemma 9.6]. A different approach, namely, localization
and patching, was used in [27, Lemma 3.4] for a partial solution of Serre's
problem on protective modules over polynomial rings and then by Suslin
and Quillen for a complete solution of the problem, then in [22], [18], [23]
for a similar stabilization problem at i^-level, then in [25] for a descrip-
tion of normal subgroups of GLnR, then by Taddei [24] to prove our
statement in the case J — R (i.e. that E(R) is normal in G(R)). We use
Taddefs result to obtain Theorem 1 for any J (see Section 2 below).

THEOREM 2. For any ideal J of R, the group E(R, J) is generated by
elements of the form xφ(r)x_ψ(u)xφ(—r) with φ in Φ, r in R, and u in J.

THEOREM 3. When G is of type B2 or G2, we assume that R has no
factor rings of two elements. Then

E(R, J) = [E(R), E(J)] = [E(R), G(R, J)]

for any ideal J of R. In particular, every subgroup of G(Rf J) con-
taining E(R, J) is normalized by E(R).

Note that when R has a factor ring of two elements and G is of
type B2 = C2 or G2, then E(R) φ [E(R)y E(R)] (see, for example, [7] or [21]).

Let now e{Φ) denote the ratio of the scalar squares of long and short
roots in Φ. So e{Φ) = 1 when Φ = An, Dn, or En; e(Φ) = 2 when Φ = Bn9

Cn, or JF 4; e{Φ) = 3 when Φ = G2.

THEOREM 4. Under the condition of Theorem 3, assume additionally
that for every z in R there are r, s in R such that z = e{Φ)rz + szβ[φ)

{for example, e(Φ)R = R). Then:
(a) for every z in R and <p in Φ, the normal subgroup of E{R)

generated by xψ(z) coincides with E(R, Rz);
(b) for any subgroup H of G{R) which is normalized by E{R) there

is an ideal J of R such that E(R, J)(zHaG(R, J).

When G = SLn, Sp2n, or SO2n, this statement was proved: in [11], [12]
for fields R; in [14, 15, 16] for local rings R; in [4] and [3] under stable
range and similar conditions. The case G = SLn with any commutative
R was done by Golubchik (see [25] for reference and another proof).
Partial results for any Che valley group G were obtained in [1], [2].

Note that when the additional condition of Theorem 3 does not hold,
there are subgroups of G(R) which are normalized by E{R), but do not
satisfy the ladder condition E(R, J)(zH(zG(R, J) for any ideal J of R.
Still it is possible to obtain a description of those H's using subgroups
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of G(R) involving "special submodules associated with (G, J ) " in the sense
of [1]. This was done in [1], [2] under restrictions on R which, I believe,
can be removed.

Any information on normal subgroup structure of groups G(R) can
be useful to describe automorphisms and homomorphisms of these groups.
In this connection, we prove in Section 7 below the following theorem.

THEOREM 5. Under the conditions of Theorem 3, E(R) is a perfect
characteristic subgroup of any larger subgroup of G(R).

2. Proof of Theorem 1.

Case 1. J — R. Then our statement was proved by Taddei [24].
General case. Let h be in G(R) and g in E(R, J). We consider the

ring R': = {(r, s)eRxR:r - se/)}, its ideal J': = (J, 0), h': = (h, h) e
G(R')aG(R) x G(R), and g': = (g, 1) e E(RΪ) Π G(J') - E(R\ J'). The last
equality holds, because R' is the semidirect product of its subring {(r, r):
r e R) (which is isomorphic to R) and its ideal Jf (which is isomorphic to
J). Namely, let

0 Π ^ ) ( O n G ( )

with all tt in R'. We express tt = 8t + ut with st = (r,, rt) in R' and ut

in J'. Set

hk = Jlx^St) e E(R')

for 0 ^ k ^ n. Then Λo = 1 (by the definition), hn = 1 (because # e G(J')),
and

n n n

0 = Π XψiisJxφ^Ui) = UhTlJitXφfai) = U.hixφi(ui)hr1eE(R'f J') .

By Case 1 (applied to R' instead of R), h'g'h'-1 eE(R'). On the other
hand, evidently, h'g'h''1 = (λflrfc-1, 1) e G(J') So h'g'h'-ιeG(J')C\E{Rf) =
E(R', Jf), hence hgh-'eE^R, J).

Thus, #(#, J) is normal in G(i2).
Take now any h in ^(JB) and g in G(J). Define, as before, K —

(Λ, λ) e JS?(Λ') and g' = {g, 1) 6 G(J'). Then [h', gf] e E(R') n G(J') = ^(Λ'f J')
by Case 1, hence [h, g] eE(R, J).

Thus, E(R, J)z>[E{R), G(J)].

3. Proof of Theorem 2. Let if be the subgroup of E(R, J) gener-
ated by all xΨ{r)x_φ{u)xψ{ — r) with φ in Φ, r in Λ, and ^ in J. We want
to prove that H = E(R, J), i.e. that H is normalized by E(R), i.e. that
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g = Xr(8)Xφ(r)x_φ(u)Xφ(—r)xr(—8) e H

for all <p, 7 in Φ, r and s in R, and u in J". The case when 7 = φ is
trivial, so we assume that 7 Φ φ.

By [13], we can assume that 7 = — φ. Indeed, if 7 Φ — φ, then we
have the commutator formula

[xφ(-r), xr(β)] = Π »i9+ir(Cifί rV) ,

where the product is taken over all natural numbers i, j ^ 1 such that
iφ + jy eφ and c<fi are integers (which depend on φ, 7 and the order in
the product; and the signs of cίtj depend also on our choice of parametri-
zations xa of root subgroups). Since no convex combination of — φ,Ί
and the roots iφ + jΎ is 0, we have

g' := Xφ(—r)xr(s)xφ(r)x_φ(u)xφ(—r)xr(—s)xφ(r) eE{J) ,

hence g = xφ(r)g'xφ(—r) 6 H.
So let now 7 = — φ, hence

g = x_Ψ(s)xψ(r)x_φ(u)xΨ(—r)x_φ(—s) .

We pick a connected subsystem ΦfaΦ of rank 2 containing φ.

Case 1. φf = A2. Then ψ — φ eΦ' for some ψ in Φ', hence scβ?,(w) =

[x-+(u), xψ-Ψ(±l)] and

fif = x_-φ(s)[xφ_φ(±ru)x_ir(u), Xψ(±r)xψ_φ(±l)]x__φ(—s)

= [x__ψ{±rsu + u)xψ_ψ(±ru), xψ_φ(±l ± r s ) ^ ( ± r ) ] e£OA, J)

(using, for example, the case 7 Φ — φ above).
For the remaining cases (namely, B2 and G2) we give a general

argument (which works also for Az) due to the referee rather than the
original case by case computations which are almost as complicated for
G2 as in the general case.

We want to prove that the element g above belongs to the subgroup
H of E(R, J) defined above.

Let β in Φ' be such that (φf β) is a base (fundamental system) of
Φ\ Let Φ+ be the set of positive roots of Φ' with respect to the base,
ΦL - Φ'+, Φ'l = {iφ + jβ e Φ'+: j > 0}, ΦΊ = -Φ'l, U?(J) (resp. U1!(J)) the
subgroup of E(R) generated by xψ(J) with φ in Φ" (resp. in Φ"). Then
ϋ"{J) and U"(J) are subgroups of H.

Every element h of 171'(J) can be expressed uniquely as

h = X-aiM
χ-*2(uJ * *' x-an(un)

with at in Φ" and ^ in J". By induction on n, we can see that [ί71'(J),
U+(R)] e H. On the other hand, we have
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x-φ(u) = [x-{φ+β)(u)9 xβ(±ΐ)]h' with K in U"(J) ,

gx : = x-φ(s)xφ(r)x_{φ+β)(u)xφ(-r)x_φ(-s) e 17" (J) ,

g2 : = a;_ ί 0(s)^(r)^(±l)^(-r)^_ ί 0(-s) e Ef+CR) ,

#3 : = ί»-?>(β)a??»(r)fc'ί»9(—r)α?_9(—s) 6 Ϊ7_(J) .

Therefore we conclude that g = [glf g2]g3 e H.

4. Proof of Theorem 3. Let φeΦ and ueJ. We want to prove
that xψ(u) 6 [E(R), E(J)] = : if. We include φ to a connected subsystem
Φ'cΦ of rank 2.

Case 1. Φf = A2. Then we pick a root ψ in Φ' such that φ + ψeΦ'
(i.e. <p and ^ make angle 120°; there are two such ψ). We have

hence xψ(u) 6 ϋ".
Case 2. φ' = B2 = Φ and £> is long. Let f be a short root which

makes angle 45° with φ (there are two of them). Then y(χ, s) := \xφ{r),
Xφ-2ψ(su)] — Xψ-ψ(±τsu)xψ{±r2su) eH for all r, s in R, hence

y(r, s)y(l, rs)'1 = ^ ( ± ( r 2 - r)s%) 6 H .

By the condition of Theorem 3 in the case Φ = B2, 1 is the sum of
elements of the form (r2 — r)s with r, s in 2?. So xψ(u) 6 iϊ.

Case 3. Φf — B2 and Hz)x^(J) for some ψ in Φ\ If φ and ψ make
angle 45°, then we have

{[xψ_Ψ(l), x2Ψ_ψ(u)] if ψ is long ,
xφ(±u)xψ(±u) = .

( [ ^ ( 1 ) a 5 ( ^ ) ] χf Ψ is short ,

hence ^(^) e H.
In general, the angle between ψ and α̂  is 45°m with m = 0, 1, 2, 3,

or 4. The case m = 0 is trivial, and the case m = 1 has been dealt
with. When m = 2, 3, or 4, we find roots α(l), , a(m) in Φf such that
α(l) = ψ, a(m) = 9?, and α(i), α(i + 1) make angle 45° for i = 1, , m — 1.
Then, as above, xa{i)(J)aH for i = 1, , m.

Case 4. Φ' = B2 = Φ. When φ is long, we are done by Case 2.
When φ is short we done by Cases 2 and 3.

Case 5. Φr — B2Φ Φ. Then there is a sequence α(l), , α(m) of
roots in Φ such that α(l) belong to a subsystem of type A2, a(m) = 9?,
and α(ΐ), α(i + 1) belong to a subsystem of type A2 or i?2 for i = 1, ,
m — 1. By Case 1 and Case 3, xa(i)(J)aH for i = 1, , m.

Case 6. Φ' = G2 and 9? is long. Then ψ belongs to a subsystem of
type A2, so we are done by Case 1.
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Case 7. Φ' = G2 and φ is short. Pick a root ψ in Φr which makes
angle 60° with <p. Then

hence (using Case 6) HBy(χ, s) := xφ_φ(±sur)xφ(±sur2). So

HB 2/(1, rs^yir, s) = x(±us(r2 — r)) .

By the assumption of Theorem 3 in the case Φ = G2, we conclude that
xψ{u) e H.

Thus, H= [E(R), E(J)]z>E(R, J) in all cases.
Using Theorem 1, we conclude that

E(R, J) = [E(R\ E(J)] = [E(R), G(J)] = [G(R), E(R, J)] = [G(R), E(J)] .

Therefore only the inclusion E{R, J)^)[E(R), G(R, J)] is left to prove.
We fix an arbitrary g in G(R> J). For each h in E(R) we set

F(h): = [h, g]E(R, J) e (E(R) n G(J))/E(R, J) .

Then h M> F(h) is a homomorphism from the perfect group E(R) to a
commutative group. So i^is trivial, i.e. [h, g] eE(R, J) for all h in E(R).
Thus, E(R, J)Z)[E(R), G(R, J)].

5. Proof of Theorem 4(a). Let H be the normal subgroup of E{R)
generated by xψ{z). We have to prove that Hz)xψ(Rz) for every <f in Φ.
We include φ and ψ to a connected subsystem Φ'cΦ of rank 2.

Case 1. Φf — A2 and the angle between φ and <f is 60°. Then
HB [XΨ(Z), xψ_φ{rj\ = xψ{±zr) for all r in R, so H~Dxψ(Rz).

Case 2. Φ' = ^42. We find a sequence α(l), , a{m) in Φ' such that
2 ^ m ^ 6, α(l) = φ, α(m) = φ, and α(ΐ), α(ΐ + 1) make angle 60° for
i = 1, , m — 1. Then, by Case 1, xa{ί)(Rz)czH for ί = 2, , m.

Case 3. Φ' = Φ = B2, φ is short, and ^ makes 45° angle with <p.
Then H3[xφ(z), xψ-2Ψ(r)\ = xψ(±2rz) for all r in i2, hence HIDX+(2RZ).

Moreover,

,,(«), ^_29(s)] = xφ_φ(±zs)xψ(±z2s) =: y(s)

and

[y(s)f x2φ_+(r)] = ^(±2;sr)^(±ίc2s2r) = i/'(r, s)

for all r, s in JS.
Therefore

Hsy'(r, s)y'(sr, I)" 1 = ^(±^ 2 s(r 2 - r)) .

Using the condition of Theorem 3, we conclude that Hz>xψ(Rz2).
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Thus, Hz>x+(2Rz + Rz2). By the condition of Theorem 4 (with e(Φ) =

2),
Case 4. Φ' = Φ = i?2, <£> is long, and ψ makes angle 45° with <p.

Then

Hsy(r) : = [xΨ(z), xψ_φ(r)] = xψ(±zr)x2ψ_Ψ(±r2z)

and

HB y\r, s) := [f/(r), &,>-*(«)] = α^(±r2sz)av(±sVz ± 2rsz)

for all r, s in R, hence

It follows from the condition of Theorem 3 that
Case 5. Φ' = Φ = B2 We find a sequence α(l), , a{m) in Φ' such

that α(l) = φ, a(m) = ψ, and a(i)9 a(i + 1) make angle 45° for i = 1, ,
m — 1. Then, by Cases 3 and 4, Hz)xa{i)(Rz) for ΐ = 2, , m.

Case 6. <£> is long and Φ is of type l?n, w ^ 3, or i*V Then the long
roots in Φ form a connected subsystem, so Hzixr(Rz) for every long root
7 by Case 1. If ψ is short, it makes angle 45° with a long 7 in Φ',
hence

for all u m Rz.
Case 7. <p is short and Φ is of type Cn, n^3, or JP4. Then, by

Case 1, Hz)xr(Rz) for every short root 7 in Φ. If ψ* is long, it makes
angle 45° with a short root 7 in Φ', hence

aty(w) = [xr(u), Xψ-r(±V)]xψ+r(±U2) 6 if

for all u in Rz.
Case 8. <ρ is long and Φ = Cn with % ̂  3. Let a e Φ' make angle

45° with 9 and βeΦ make angle 120° with a. Then i ϊ 9 0 : = [av(s),
Xa-φ(X)] = Xa(±Z)%2a-φ(±r2Z) 2LΪid

Hs[g,xβ(l)] = xa+β(z) .

By Case 1, Hz>xr(Rz) for all short roots 7 in Φ. If ψ is long, we con-
clude that HiDxψ(Rz) as in Case 7.

Case 9. 9 is short and Φ — Bn with w ^ 3. Let aeΦr make angle
45° with φ and /3eΦ make angle 120° with a. Then

HB [xφ(z), za_Ψ(r)] = xa(±2rz)

and

Hey(s) := [0 (̂3), ffα_29(s)] = ^α
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hence

for all r, s in R.
By Case 1, Hz)xr(2Rz + Rz2) for all long roots 7 in Φ. By the con-

dition of Theorem 4 (with e(Φ) = 2), Hz)xr(Rz) for all long 7. If <f is
short, we find a long 7 in Φ' which makes angle 45° with ψ and obtain,
as in Case 6, that Hi)x^(Rz).

Case 10. Φ' = G2 and φ is long. By Case 1, Hz)xa(Rz) for all long
roots a in Φ' = Φ. If ψ is short, let a make angle 150° with ψ. Then

HB[xa+2ir(r), a_2α_8*(sz

for all r, s in iϋ, hence

HB y(r, s) := ίc_α_^(±

Therefore i ί θ y(r, s)y(l, rs)"1 = α;^(±(r2 — r)sz). By the condition of Theo-
rem 3, it follows that Hz)xψ(Rz).

Case 11. Φr = G2 and φ is short. Let a make angle 30° with φ.
Then

i ϊ a [xφ(z), x*-Ψ(r)] = xa(±Szr)

for all r in i2, hence xa(3Rz)aH. By Case 10, it follows that xr(βRz)c:H
for all roots 7 in Φ' = Φ.

Using this with 7 = a and 7 = 2a — 3<p, it follows from

[xΨ{z)f xa-2

that i?9ίcα_ί,(±2r2;) for all r in i2. So HiDxa_φ(2Rz). Rotating this by
30°, we obtain that Hz)xa_2ψ(4:Rz).

Using these inclusions and that

HB[XΨ(Z), x«-v

we conclude that

H B xa( ± 4rz3)x2a_5φ( ± 16rV) - : g

for all r in R. Therefore

HB [g, xa_w(ΐ)] = x2a_ZΨ(±±rzz) ,

hence Hz)χ2a^φ(4tRzs). By Case 10, HiDxr(ARz3) for all roots 7 in Φ.
Thus, Hi)xr(3Rz + 4#z3) for all 7. By the condition of Theorem 4

(with e{Φ) = 3), 3Rz + 4i2z3 = 3i2z + Rzz = Rz.

6. Proof of Theorem 4(b).

LEMMA 6. Under the condition of Theorem 3, assume that H is a
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non-central subgroup of G(R) normalized by E(R). Then Hexφ(z) for
some φ in Φ and a non-zero z in R.

PROOF. We pick a non-central element h in H. There is a finitely
generated subring R' of R such that 1 e R' and h e G(R'). Let p19 , pm

be the minimal prime ideals of R' (where m ^ 1). Consider the images
Ht in GiR'/Pt) of Hf)G(R'). The subgroup Ht of G(R'lp%) is normalized
by E{R'IPi). By [26, Theorem 10.1 with A = B = R'/Pi], either H, is
central or Hz)E(Ji) for a non-zero ideal /* of R'/Pt.

Suppose first that Ht is not central for some i, say, for i = 1. Then
we pick: a subsystem Φ' of Φ of type A2 or i?2; a long root ^ in Φ;; a
root ^ in Φ' which makes angle 60° or 45° with φ; a non-zero uγ in Jt;
some w in Rf with ^ = u + 2V, 0 in HΓ\G(R') with image α̂ Ĉ i) i*1 Hx\
an element £ in Rr outside p1 which belongs to all pt with i = 2, , m;
an ordering on Φ such that 9? and, when Φ' = 2?2, 2ψ — φ are positive.
Then gxΨ(—u) e G(px).

We have

when Φ' = A2 ,

when Φ' = B2I^(±^)ίc(±^ί 2)^ when Φ' =

with 5r0GG(i2'^ί)c:G(rad(i2'))c:G(rad(JR)), where rad means the Jacobson
radical. By [1], [2], G(rad(J?)) = ?7(rad(β))T(rad(i2))F(rad(i2)), where U is
the subgroup of G generated by positive roots, V is the subgroup of G
generated by negative roots, and T is the torus.

Thus, H contains a non-central element (namely, [g, xψ_ψ(t)]) of
!7(i2)Γ(i2)F(radCR)), assuming that iϊ* is not central for some i. If i?4

is central for all i, then g eG(rad(i?'))c:G(rad(i2)) is a non-central element
of U(R)T(R)V(τad(R)). Now the conclusion of Lemma 6 follows from [2].

Now we can conclude our proof of Theorem 4(b). By Theorem 4(a),
there is an ideal J of R such that HΓ\xa(R) = xa(J) for every root a in
Φ. Applying Lemma 6 to the ring R/J and the image Hf of H in G(R/J),
we conclude that either JET is central (i.e. H(zG(R, J) and we are done)
or H' B xψ{zr) for some non-zero zf in R/J.

In the latter case we are going to obtain a contradiction with our
choice of J. Applying Theorem 4(a), we have H'3xψ(z') for all φ in Φ.
We pick z in R such that z + J = z'.

If Φ contains a subsystem Φ' of type A2, we pick roots φ, ψ in Φ' such
that φ — ψeΦf, and we pick g in H such that gxφ(-~z)eG(J). Then
if 9 [0, aty-^l)] = flty.(±z)ffo with g0 e E(R, J)(zH, using Theorem 1. There-
fore xφ(z) e i ί which contradicts our choice of J.

If Φ does not contain a subsystem of type A2, then Φ = Z?2. We pick
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a long root φ and a short root ψ such that φ — ψ e Φ. For every r in ϋί
we pick g(r) in i ϊ such that g(r)xφ(—zr) eG(J). Then, for every s in JS,

with goeE(R, J)czH, hence

Hsy(r, s) :=

Therefore i ϊ a #(r, s)#(rs, I)"1 = ^../wCs 2 — s)) for all r, s in R. In view
of the condition of Theorem 3, this contradicts our choice of J.

7. Proof of Theorem 5. The group E(R) is perfect by Theorem 3
with J = R.

Let H be a subgroup G(R) containing E(R) and f: H—> H an auto-
morphism. By Theorem 1, E{R) is normal in H, so f(E(R)) is normal in
f(H) = H. By Theorem 4(b), E(R, J)czf(E(R))czG(R, J) for an ideal J
of R.

The main step in our proof is to show that J = R. We assume that
J ΦR and will obtain a contradiction.

When G is not of type B2 or G2, let i2' denote the subring of R
generated by 1. When G is of type B2 or G2, we use the condition of
Theorem 3 to write 1 = Σs*(?1 — τt)f and we denote by R' the subring
of R generated by these s* and rt. Then Rr is a finitely generated ring
with 1. By Theorem 3, E(R!) is perfect; from the proof of the theorem
it is easy to see that the group E(R') is finitely generated.

Therefore there is a finitely generated ideal / ' of Rr such that
f(E(R'))(zG(J')y J'cJ, and JV' = J', where J'J' is the additive subgroup
of J ' generated by all rs with r, s in J'. By the Nakayama lemma,
sJ' = 0 for some s e i2 '\/ ' .

Therefore ^(si?) commutes with f(E(R% so the centralizer of f(E(R'))
in i ϊ is not commutative. On the other hand, the centralizer of E(Rr)
in G(i2) is commutative. This contradiction proves that J = R.

Thus, f(E(R))Z)E(R). Since f~x is also an automorphism of H, we
have f-\E{R))-DE(R). So /(#(#)) = #(Λ). That is, E(R) is a character-
istic subgroup of H.

ACKNOWLEDGEMENT. I thank the referee who corrected misprints.
Also, the referee made the proof of Theorem 3 shorter and observed that
the proofs of Theorems 3 and 4(a) could be simplified under the following
assumption on the ring R in the case when G is of type B2 or G2: there
is a unit u of R such that u — 1 is a unit too. This assumption is strictly
stronger than the assumption of Theorem 3 that R has no factor rings
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of two elements in the case when G is of type B2 or G2 (which in fact
is a necessary and sufficient condition for the conclusions of Theorems 3
and 4 to be true). For the types other than B2 and G2 no assumptions
on R are needed, and proofs can be simplified.
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