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Introduction. Let ~(C%*) and Exp(C%'') be the spaces of entire
functions on C%" and entire functions of exponential type, respectively.
2'(C*") and Exp’(C%*') are the spaces dual to £(C*") and Exp(C*"),
respectively. For T e Exp'(C%*) the Fourier-Borel transformation P, is
defined by

P,T(2) := (T, exp(irné-2z)y for zeC¢,

where neC, A#0, is a fixed constant (Hashizume, Kowata, Minemura
and Okamoto [2]). Martineau [4] determined the images of Exp/'(C*'!)
and some functional spaces on C%** by the Fourier-Borel transformation P,.

Let S =S¢ be the unit sphere in R and S denote the complex
sphere in C**'. We put S(») = {ze §; L(z) < r} and S[r] = {ze §; L(z) < 7},
where L(z) is the Lie norm on C*. 2(S), &#(S(r)) and ~(S[r]) denote
the spaces of holomorphic functions on S, S(r), and S[r], respectively.
Exp(S) denotes the restriction of Exp(C?*) to S. Exp'(S), 2'(S), #'(S(r))
and #'(§[r]) are the spaces dual to Exp(S), 2(S), #(8(r)) and 2~ J[r]),
respectively. Exp/(S) can be regarded as a subspace of Exp/(C*™).

Morimoto [7] determined the images of Exp’(S) and #'(S) by the
Fourier-Borel transformation P, (Theorem 1.2). In this paper we will
determine the images of <'(8(r)) and <'(S[r]) by the Fourier-Borel
transformation P,. The images are characterized explicitly in terms of
the dual Lie norm (Theorem 3.1).

Consider a complex cone M = {z€C**; 341 2% = 0, z # 0}, which can
be identified with the cotangent bundle of S minus its zero section. We
define for f’eExp’(g)

Ff'(z) = {fi, exp(é-2)y (z€M).

Ff' is the restriction of P_,f’ to M. Ii [3] determined the images of
H,, by F, where H,, is the space of spherical harmonics of degree » in
dimension d + 1. Moreover if d is even, Ii [3] characterized the image
of L*S) under this mapping F. In this paper we determine the image
of L*S) for odd d (Theorem 2.4). We also determine the images of
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Exp'(S), 2'(S), 2'&), '@, oE8@), <&r]) and o8)
(Theorem 2.1).

To prove our main theorems, we need, among others, Lemmas 1.3
and 1.4. Although Lemma 1.4 was proved in Ii [3], we give here a new
proof to it.

The outline of this paper was announced in [11]. The author would
like to thank Professor M. Morimoto for his helpful suggestions.

1. Preliminaries. Let d be a positive integer and d = 2. S=S¢=
{x € R*"'; ||lz]| = 1} denotes the unit sphere in R?*, where ||z|]> = a? + a2 +
«++ + 2%,,. ds denotes the unique O(d + 1) invariant measure on S with

Ss 1ds = 1, where O(k) is the orthogonal group of degree k. | ||, is the

L’-norm on S. H,, is the space of spherical harmonics of degree » in
dimension d + 1. For spherical harmonics, see Miiller [8],

The Lie norm L(z) and the dual Lie norm L*(z) on C*" are defined
as follows:

L(z) = L(x + 1y) : = [ll=|* + [[y|]* + 2{/|=|*llyll* — (- )},
L*(z) = L*(x + 1y) : = sup{|¢ - 2|; L(¢) = 1}
= @ 2)[l2l* + wll* + {(lel® — [yl + 4G - v)2321,

where 2z, £€C?, and z-£=2¢ + 285 + - + Zanbary %, YE R, (see
Druzkowski [1]).
We put

B(r):={zeC*"; L(z) < 7} for 0<r = o
and
Blr]:= {zeC**; L(z) < 7} for 0=r<oo.

Let us denote by < (B(r)) the space of holomorphic functions on B(r).
Then ~(B(r)) is an FS space. & (B()) = £(C**") is the space of entire
functions on C¢*'. Let us define

@ (B[r]) : = ind lim 2(B(r")) .
r'>r
Then ~(B[r]) is a DFS space.
Let N be a norm on C¢*. For » > 0 we put
X, yv:i={fe(C*™); sup f@exp(—=7N(z)) < o} .

Then X, y is a Banach space with respect to the norm
Ifll..x = sup |f(2)| exp(—rN(z)) .
zecd+1
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Define
Exp(C***: (r: N)) := proj lim X, » for 0=7r< o,
r'>r

Exp(C**: [r: N]) := ind lim X, y for 0<r< .

r'<r

Exp(C?*: (r: N)) is an FS space and Exp(C?*™:[r: N]) is a DFS space.
Exp(C?*) = Exp(C?*: [: N]) is independent of the choice of the norm
N and is called the space of entire functions of exponential type.

Exp'(C*™), £'(C*™), &'(B(r)) and ©'(B[r]) denote the spaces dual to
Exp(C*tY), 2(C*Y), «(B(r)) and *(B[r]), respecrively.

S={zecC*;z2+ 2t + --- + 2%, =1} is the complex sphere. For
1< r = we put

Sr):=Br)nS={z=2+1iyeS |yl < —1/r)/2}
and for 1 <r < o
Sirl= BlrinS={e =2 + e S: |yl < (r — 1/r)/2}.
It is clear that S = .§an+‘~= S[1] and S = §(<).
Let us denote by <~(S(r)) the space of holomorphic functions on

Sr) equipp~ed with the topology of uniform convergence on every compact
subset of S(r). We put

& (8[r]) := ind lim 2(8()) -

2(S(r)) is an FS space and ~(S[r]) is a DFS space. 2 (S[1]) is the
space of real analytic functions on S. Exp(S) denotes the restriction to
S of Exp(C*™). &'(8(r)), @'(S[r]) and Exp'(S) denote the spaces dual to
o®’8r), ~@S[r]) and Exp(S), respectively. We have the following
sequence of functional spaces on S (cf. Morimoto [6], [7]):

(1.1) Exp'(S)>2'(8)o 2 (S[r]) o 2’ (8(r))> 2" (S[1]) .

If fis a function or a functional on S, we denote by f, the =n-th
spherical harmonic component of f:

1.2) fa(8) = N(n, d){f, P,o( -s)y for seS,
where

s _Cn+d—-—1n+d—2)
1.3) N(n,d) =dim H,,; = w1d — D1

and P, ; is the Legendre polynomial of degree » and of dimension d + 1.
We put L,(x) = ||z|* P,ua-z/|lx|]) for fixed «€S. Then L, is the
unique homogeneous harmonic polynomial of degree » with the following
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properties:
1.4) L,(Ax) = L, (x) for all AeO(d + 1) such that Ada=a.
(1.5) L(a)=1.

We see that f, belongs to H,; for n = 0,1, ---. We can characterize

the functional spaces in (1.1) by the behavior of the spherical harmonic
development as follows.

LeEmMMA 1.1 (Morimoto [7, Theorems 5.1 and 6.1]). If f, is the n-th
spherical harmonic component of f, then

(1.6) £ € Exp'(8) = lim sup(||l,/n1)"" = 0.,

(1.7 fe 2'(8) =lim sup| £, [i" < e ,

(1.8) fe'Slr) =limsw|fli"<r A=sr< o),
(1.9) feo'Sr) = lim sup||f,[i" <r (1 <7< ),
(1.10) FeL(S) = {l|fullumosn,.. €1,

(1.11) feoS(r) = lirglliupllf,.llé’" Slr A<r=<o),
(1.12) feoSr]) =limsup|f,[i" <1/r A7 <),
(1.13) fe2(S) =limsup||f "= 0.

The Fourier-Borel transformation P, for a functional T € Exp’(C?*) is
defined by

P, T(z) : = {T., exp(i\é - 2)) for zeCét,

where A eC, » #0, is a ﬁxec} constant. We define the transformation
P, for a functional f’ e Exp'(S) by

P,f'(2) := {f% expiné-2)) .
The following is known:

THEOREM 1.2 (Morimoto [7, Theorem 7.1]). The transformation P,
establishes the linear topological isomorphisms

(1.14) P: Exp'(S) 5 oy(C*+)

(1.15) P: 2'(8) 5 Exp,(C*)
where we put
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(€M) := {F e 2(C*™); (A. + M)F(z) = 0},
Exp,(C**") : = Exp(C*™) N Z(C*) ,
and A, = (0/02,) + (0/02.)* + +++ + (0/02441)%
We define a complex cone M by
M={zeC""; 2+ 22+ -+ +2%,=0,2%0}.

M is identified with the cotangent bundle of S minus its zero section
(cf. Ii [3], Rawnsley [9], [10]). P, (C?*') denotes the space of homogene-
ous polynomials of degree » on C¢*. Holo(M) and P,(M) denote the
restriction to M of ~2(C**') and P,(C%'"), respectively. We define the
subset N of M by

N={z=a+wel; || = llyl =1},

where «, y € R®*. The unit cotangent bundle to S is identified with the
subset N and we have N =~ O(d + 1)/O(d — 1). dN denotes the unique

O(d + 1) invariant measure on N with SN 1dN =1. We define the inner
product
(@ ¥dxi= | PEW@IN
and the norm
lelly = <P, PI¥"
LEMMA 1.3. If a and B belong to S, the following formula is valid.

oy AN — 1l T(d + 1)/2) .
(1.16) SN -y BraN = T LA P a0

PrROOF. Denote by Fl(a, B8) the left hand side of (1.16). Then for
any orthogonal matrix A

F(Aa, AB) = SN (z- Aa)"(z- AB)"AN

@ Aa + Y- Aa)"(w- AR + 1y - AR)"AN

Sz=z+z‘yeN
— S (A2 ) (A% - B)"dN .
N
Sinece dN is O(d + 1)-invariant we get
1.17) F(Aa, AB) = F(a, B)
for any AeO(d + 1). As a function of a, F(a, B) belongs to H,, since
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(z-a)"eH,, if ze M. Similarly, as a function of 3, F(a, B) belongs to
‘Hm,d'

Suppose n = m. There exists an AeO(d + 1) such that Aa = 8 and
AB = a. Then (1.17) gives
(1.18) Fla, 8) = F(B, a) .
If we fix «, (1.18) implies that F(a,R)eH,;NH,, Since H,;N
H, ; = {0}, we have
1.19) Fla, B =0 if n#+m.

Next we assume n = m. For all AeO(d + 1) such that Aa = a we
have from (1.17) F(a, AB) = F(Aa, AB) = F(a, B). Therefore F(a, ), as
a function of B3, is a homogeneous harmonic polynomial of degree » and
satisfies (1.4). So we obtain
(1.20) F(a, 8) = CP, (- B) ,

where

_ g — P! T((d + 1)/2)
¢ SN 2+ af"dN T'(n + (d + 1)/2)

(e.f. Rawnsley [10, Appendix]). (1.16) follows from (1.19) and (1.20).
q.e.d.

We put for ' eExp'(S) and ze M.

Ff'@): = {fi, &%) .
Ff’ is the restriction of P_,f’ to M.
Then we have:

LEMMA 1.4 (cf. Ii [3]). The transformation F: f'— Ff' is a one-to-
one linear mapping of H,, onto P, (M) and we have

(1.21) 905 = CLFf, Fg)y  for f,9€H,,,
where

35 = | feiaGias

and

(1.22) c =2nTmn+ @+ 1D2)Nmnd
i r(d + 1)/2)

ProoF. It is known that there exists a system of N(n, d) points
Q, Oy ***, Ay €8 such that P, J(a,- ), k=1,2, .-+, N(n, d), is a basis
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of H,;. Therefore for every fe H,, there exist a, a, +++, @y(na €C
such that

N(n,d)
(1.23) f8) = > &P, iar-8) se8S

k=1

(see, for example, Miiller [8, Theorem 3]). If z belongs to M, then

N(n,d)
Ff(z) = kz=',1 a; SS P, i(a; - s)e**ds

N(n,d)

=3 3 | Posa-s)s-2)mds

=30 | P 5)(s- 2)ds,
k=1 m) Js

since (s-2)"€H,, and H,; 1 H, ; if m # n. This shows that
(1.24) Ffl =3 —% (-2
' & mINm,d)

Thus Ff belongs to P,(M). For f(s) = D3 ? a P, (a-s) and g(s) =
S>Siwd b P, (- 8)€ H,, we have

(1.25) Gde= _ 5 abi| P 9P 9ds

1<k,l<N(n,d)

a.b,
1sk,z§‘v<n,d) N(n, d)
On the other hand we have from (1.24) and (1.16)

Pn,d(ak ‘) .

— akgl n! I'((d + 1)/2) .
(1.26) (Ff, Fgyy = 1sk,l§lv(n,d) ! Nn, d)) I'(n + (d + 1)/2)Pn,d(ak ay)
r'(d + 1)/2) Fad o g.b, P, (a,-a) .

T W N, )l + (d + 1J2) €7 Nn, d)

(1.25) and (1.26) give (1.21) and (1.22). (1.21) shows that F' is injective.
Sinee dim P,(M) = N(n, d), we can prove the surjectivity of F. q.e.d.

2. Integral transformation F'. Now we define the following sub-
spaces of Holo(M):

@1  Exp(M, r):= 0 {ycHolo(M); sup [y(2)| exp(—7'"||z]]) < oo},
22)  Exp[M, r]:= U {y&Holo(M); sup |y(2)|exp(—7’]l2]) < e},

(2.3) Exp(M) = Exp[M, ],
where ||z]| = [l + |l = (l=l* + [[y[]")* for x, y e R**".
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Our first main theorem in this paper is the following:
THEOREM 2.1.
2.4) F is a one-to-one linear mapping of Exp'(S) onto Holo(M) .
(2.5) F is a one-to-one linear mapping of &'(S) onto Exp(M) .
(2.6) F is a one-to-one linear mapping of ' (S[r]) onto
Exp(M, rV/2) for 1 £ r < oo .
2.7 F is a one-to-one linear mapping of &' (S(r)) onto
Exp[M, rV2] for 1 <r < o .
(2.8) F is a one-to-one linear mapping of 2(8(r)) onto
Exp(M, 1/(V'2 r) for 1 S r < o .
2.9) F is a ome-to-one linear mapping of <(S[r]) onto
Exp[M, 1/ 2 r)] for 1<r < .
(2.10) F is a one-to-one linear mapping of < (S) onto Exp(M, 0) .

PROOF. By (1.14) F is a linear mapping of Exp’(S) into Holo(M).
Conversely, if « belongs to Holo(M) there exist ¢ € 2 (C%™) and +,¢
P (C**) (n=0,1, ---,) such that

Fu=y and §) = 53.6)
for any zeC?*. It is known that
2.11) F(2) = F(t2) 44

2’m' lel=p "+

for any 0 > 0. We put |[#|lw,vzpo = SUDjai=vzp [¥(2)] and ¥, = Ply. If 2
belongs to N then ||z|| =172. Hence we get from (2.11)

@12)  suwply @l =swplf I Bat| < oo, -
zeN seN | 20T

ltl=p ¢t

Put K, := sup,cy|¥.(2). (2.12) implies that lim sup,-. K./* < 1/p for any
0> 0. Hence we see

(2.13) limsup K}* = 0.

n—o0

From Lemma 1.4 there exist f,e H,; (n =0,1, ---) such that
(2.14) Ff, =+,

and
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(2.15) Ifalls = V'C, ll9pally -

Since V'C, = {(n! I'(n + (d + 1)/2)N(n, d))/I"((d + 1)/2)}** < al'(n + d), where
a is a constant independent of %, (2.13) and (2.15) give

(2.16) fll: = al'(n + d)K,
and
1/n
(2.17) lim sup (Lllf,,]lz) =0.
n—00 ’I'I,!

fli= S, f. belongs to Exp'(S) by (1.6) and (2.17). Moreover, (2.14)
implies that

FfG) = (Fi, & = 3| fuoerds = S FRe) = (@) .

Therefore, we get F(Exp'(S)) = Holo(M).

Let f' = 3=, f2 ¢ Exp’(S) and Ff' = 0. From the proof of Lemma 1.4,
{(z+-a)"; & € S} spans P,(M). From this fact and (1.16) we see that P,(M) L
P,(M) with respect to {, >y if m # n. Hence Ff, =0 on N, because
Ff, is in P,(M). Thus Ff, = 0 on M, since Ff, is a homogeneous poly-
nomial. Therefore, we obtain f, = 0 and f’' = 0 by Lemma 1.4. Hence
we have (2.4).

F is a one-to-one linear mapping of #’(S) into Exp(M) from (1.15)
and (2.4). Conversely, if « belongs to Exp(M), there exists 4 € &2(C**)
such that |, = 4 and that for some positive constants C and A

(2.18) |9 (2)] < Celi=!! for any zeM.

We put ¢ = 3324, and .|y = +,, where 4, is given by (2.11). (2.11)
and (2.18) imply

K, =suply,(2) = sup 07" lp(t2)
= sup p‘"CeA“"“S sup _ o "Cetel®

T zeN,itI=p llzl{=vY2

since tNCM for any teC\{0}. Hence we have

(2.19) K, < pCe*  forany p>0.
Since inf{p™"e"**; p > 0} = (V' 2 Ae/n)" we get
(2.20) K, < CO/ T Aejny .

There exist f,e H,, (n =0, 1,2, ---) which satisfy (2.14) and (2.15). By
(2.16) and (2.20) we have

| full: £ aCT(n + d)(V' 2 Ae/n)" .

Since lim sup,_. (n"e~™ 2zn/n!)’* = 1 by Stirling’s formula, we have
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(2.21) lim sup || £,]|¥* < lim sup {aCl'(n + d)(V 2 Ae/n)*n"e~™ 2xn/n !}/

=1V 2A4A< «.

(2.21) and (1.7) show that f' = 3i7.,f,€ '(S) and we have (2.5).
Let f' =32, fa be in 2'(S[r]) A £ r < o) and put ¥ = 374, =
Ff'. Then we have for ze M

(2.2 Wo) = (i expe- ) = 3| filoerds

=0

=33 L fie)s - omds
=0 m=0 ! Js

=31\ fios-2rds,
n=0 1 Js
since (s-2)"e¢H,, and H,, L H,, if n # m. (2.22) implies that
(2.23) (@) = 2= | fie)s - 2yds
For z=2 + 1ye M we get
(2.24)  supls-zP = sup [[[Pls - (/|l=]]) + is - W/llYIDF = |l = [|2]f/2 -
From (2.23) and (2.24) we see that

(2.25) (2| < %Hf,:uz(nzuh/‘z“r :

If we put o:=limsup,.. | fall¥", then o < by (1.8) and for any ¢ >0
there exists k. > 0 such that

(2.26) sup [[fili* <p+esr+e.
By (2.25) and (2.26) we have

@2) W@l s 3@l s 3 amlsldn 2
+ 3 n)r + (lellv 2 < Cuexp(r + )|zl 2)

for all ze]lﬁ where C, is a constant. From (2.27) we see that €
Exp(M, r/v"2). _Therefore, F is a one-to-one linear mapping of <'(S[r])
into Exp(M, r/v"2). Conversely, if 4 = 3\=_, 4, belongs to Exp(M, r/\/2),

then there exists ¥ = >\v_, ¥, € 2(C**") such that |, = +, ¥.lx = ¥, and
that

(2.28) sup [¥(2)exp(—7'||z]|/V"2)] < oo for any ' >r.
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(2.18), (2.20) and (2.28) imply
(2.29) K, = C.(r'e/n)"

for any #' > r and a constant C,.. If Ff, =+, for f,eH,,(n=0,1,2,--.),
from (2.16) and (2.29) we have

lim sup || £,[l" = o'
n-—co

for any ' > r. Hence we get
(2.30) lim sup [|£,[l" = ~
and (1.8) and (2.30) imply f' = 32, f.€ &'(S[r]). Thus we have (2.6).
Similarly, we get from (1.9)
F(&'(S(r)) CExplM, vV 2] .
On the other hand, if = 32, 4, belongs to Exp[M, /1 2], there exists
T = Doy ¥, € @(C*) such that |y = ¥, Yuly = ¥, and that
(2.81) sup [F(@)exp(—7’|lz]|V 2)] < e

for some ' < r. (2.31) implies
(2.32) K, < C(r'e/n),

where C is a constant. For f,eH,, (n=0,1, ---) such that Ff, = 4,
(2.16) and (2.82) give

(2.33) limsup | £l =7 <7r.
(1.9) and (2.33) show f' = 3=, f, € 2'(S(r)) and we obtain (2.7).
Using (1.11), (1.12) and (1.13) we can prove (2.8)-(2.10) similarly.

q.e.d.
Next we consider the image of L*S) by F.

LEmMMA 2.2 (c.f. Ii [3, Lemma 2.1]). We denote the modified Bessel
Sunction K, by

K,(r) = Swexp(—fr cosh t)coshytdt (Reyv > —(1/2),0 < r < ),
K_(r) = K,(r)
and define the function 0,(r) as follows:

S arHEL(2r) Gf d is odd)

=0

(2.34) our) =1,
%a,r’*“/‘”K,_u,z)(m) @f d is even) .
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Then we can uniquely determine k and a, { = 0,1, «--, k) which satisfy
2.35) r Pl 0y = G, for all m=0,1,2 - .

0

Proor. It is known that

(2.36) [ K andr = gramer (B2 2)r(£52),

where a > 0 and Re ¢z > |Re v|.
First we assume that d is odd. From (2.84) and (2.36) we get

@an  |"rsomar = s S ar(n + & + Dr(n +1+ 2 - L,

If (2.35) is valid, from (1.3), (1.22) and (2.37) we have

(2-38) i%azf@ + 8 ;r 1>F(n +1+ 9 er 1)

=0

=CF<n+ d;1>F(n+d—1)(2n+d—1)

for any n=20,1,2, ---, where C is a positive constant. Thus we have

(2.39) gall‘<n+l+d;1)/r<n+ dzl)

=4C(2n+d—1)F(n+d—1)/F<n+ d;’l).

Since d = 3, we have d — 1 = (d + 1)/2. Hence the right hand side of
(2.39) is a polynomial of » of degree (d — 1)/2. Thus we obtain

(2.40) k=({d—-1)/2,
and

(2.41) a,=8C>0,
and we can determine a,, a,, - -, a,_, uniquely.

Next we assume that d is even. (2.34) and (2.36) imply

(2.42) S: rrilo (r)dr = % 12:‘8 a,l“(n + i§l>l“ (n + 1+ %)

and we get similarly

(2.43) lz:.) a,r(n Y4 %) /F(n + %)

_ _ _ a
= 4C@n +d — DI'(n + d 1)/F<n + 2)
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for n=20,1,2, --.. Therefore we get

(2.44) k=d/2

and

(2.45) a,=8C>0,

and a, a,, -+, a;_, are determined uniquely. q.e.d.

REMARK 2.8. (1) Since it is known that

— 12 —r N (n + 5)!
Koun(r) = (mf2r)"e™ 3 T — Pl @y
for n =0,1, 2, -.-, there exists a polynomial P,.(r) of degree d/2 such
that o (r) = e P,,(r), if d is even. This fact coincides with a result of
Ii ([8, Lemma 2.1]). Though K, (r) is not defined at » =0, p,(0) is well
defined for even d by this fact.
(2) If dis odd, we have for » >0

246)  lo) S 3y lelr K@)

(d—1)/2
< IZ_‘(,) lag| P K s(21) = €7 2P gy (1)

where P,_,,, is a polynomial of degree (d — 1)/2, since 0 < K (r) < K, ,5(7).
Hence p,(r) is well defined at » = 0.
(8) If d is odd, by (2.41) a,_,, > 0. Hence we have for » > 0

04r) 2 aK2r) — 3 o K@)

k—1
= Kk(Z'r)<akr"“ - 12 lazlr"“‘) ,
=0

where we put k:= (d — 1)/2. Therefore p,(r) > 0 for r sufficiently large.
For even d it is trivial by (1) that o,(r) > 0 for » sufficiently large.
Now we define a measure g; on M by

(2.47) | fodu = | r(| frerane)osmar .
We define a subspace P(M) of Holo(M) by

(2.48) P(M) : = {y € Holo(M); {4, ¥Du < oo},

where

(2.49) P = | PP

By Remark 2.3, (3) we can prove the following in the same way as
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in the proof of Ii [38, Theorem 2.5].

THEOREM 2.4 (cf. Ii [3, Theorem 2.5]). F is a unitary isomorphism
of L*S) onto P(M) with respect to {, )5 and {, dy.

REMARK 2.5. Similarly, we can prove for odd d the results in Ii [3,
Corollary 2.6-Theorem 2.11] given for even d.

3. The Fourier-Borel transformations of ~'(S(r)) and ~'(S[r]).
In this section we consider the images of #'(S(r)) and #'(S[r]) by the
Fourier-Borel transformation P,. Our second main theorem in this paper
is the following:

THEOREM 3.1. The transformation P, establishes linear topological
180morphisms

3.1) P: @' (8(r) > Expy(C*: [\ L*]) 1< 7 < ),
(3.2) P @'(S[7]) S Exp(C*: (M L*) (L <7 < o),
where

Expy(C**: [In]7: L*]) 1= &x(C**™) N Exp(C**: [\ 7: L*])
and
Exp,(C**: (A 7: L*)) := &,(C*) N Exp(C**: (I\|r: L*)) .
We need the following theorem in order to prove the theorem.
THEOREM 3.2 (Martineau [4]). Suppose n€C, n #0. The Fourier-
Borel transformation P, establishes the linear topological isomorphisms

3.3) Py ©'(Blr]) 5 Exp(C**: (N r: L¥) ,

(8.4) Py &' (B(r)) S Exp(C*: [\ 7: L*]) .
PROOF OF THEOREM 3.1. Since #'(S(»))cExp'(S)n &' (B(r)) we have
Py (S(r))) CExp,(C*+: [ r: L*])

by (1.14) and (3.4). Hence P, is a one-to-one linear mapping of #'(S(r))
into Exp,(C%*: [|An|7: L*)).

Conversely, let 4 be in Exp,(C***:[|A|r: L*]). If we put |, =
there exist ' < r and C > 0 such that

l¥(2)] < Cexp(in7'L*(2)) = Cexp(INl 7’ ||2]l/v/2)
for any ze M. So we get
(8.5) [y (—iz/\)| < Cexp(r' |2V 2)  for vYzeM.
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Now we put ¢r_,2(z) : = ¥(—12/\). Then y_,/; belongs to Exp[}, r/V' 2] from
(3.5). By (2.7) there exists f’' e &'(S(r)) such that

(3.6) Fff =4 -

Since 4 € Z(C**), we can find #’ € Exp’(S) such that 4 = Ph’ by (1.14).
Since J(—1iz/\) = Ph/(—1z/n) = Fh'(2) for all z€ M, we have from (3.6)

(3.7 FR = Ff'.
By Theorem 2.1 and (8.7) we get b’ = f’ and § € Py('(S(r))). P, and P;*

are continuous by (8.4) and the closed graph theorem. Therefore, we
obtain (8.1). Using (8.3) and (2.6), we can prove (3.2) similarly. q.e.d.

Now we define the topology of Holo(M) to be the quotient topology
o) A (M) since Holo(M) = ~(C**Y)|,, where we put #(M):=
{ferC*); f=0 on M}. We also define the topologies of Exp(M),
Exp(M, rV'2) (1 £ r < «) and Exp[M, v/ 2] (1 < r £ ) similarly since
we have Exp(M) = Exp(C**)|y, Exp(M, vV 2) = Exp(C***: (r: L*))|, A <
r < o) and Exp[M, r/v' 2] = Exp(C**': [r: L*])|y (1 < r £ ) by Theorem
2.1.

Then by Theorems 1.2, 2.1 and 3.1 and the closed graph theorem,
we have:

COROLLARY 3.3. The transformation F establishes the following
limear topological isomorphisms

(3.8) F: Exp'(S) 5 Holo(M) .

(3.9) F: 2'(8) 5 Exp(M) .

(3.10) F: 2'(S[r]) S Exp(M, r\V/2)  for 157 < o .
(3.11) F: 2'(8(r)) S Exp[M, v\ 2]  for 1<r < o .

COROLLARY 3.4. (i) For any fe &(C**) there exists a unique g€
(C**Y) such that f =g on M.

(ii) For any fe & (C*) such that sup,.y |f(z)|exp(—A|z|]) < o for
an A >0, there exists a unique g € Exp,(C**™) such that f =g on M.

(iii) Assume that 1=r < . For any feo(C**") such that
SUp, e » | FR) exp(— N7 ||2]|/V2) < o for Yo' >, there exwists a umique
g € Exp,(C***: (]\|r: L)) such that f=g on M.

(iv) Assume that 1<r < . For any feo(C*™) such that
SUD, e x| f(2) exp(— N 7' ||2]]V2) < oo for some ' < r, there exists a umique
g € Exp,(C*™: [IAn|r: L*]) such that f= g on M.
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Proor. (i) If f belongs to <~ (C*") f_,, also belongs to ~(C**).
Then by Corollary 3.3 there exists f’eExp’(g) such that Fif' = f_,; on
M. If we put g = P,f’, g belongs to &(C*") and f=g on M by (1.14).
The uniqueness follows from the injectivity of F.

By Theorem 1.2, Theorem 3.1 and Corollary 3.3 we can prove (ii),
(iii), (iv) similarly. q.e.d.

REMARK. When d = 1 (the case of the unit circle), Corollary 3.4 is
known (see Morimoto [5]).
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