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Introduction. Freitag and Kiehl [1] showed that Hilbert modular
cusp singularities of dimensions greater than two are rigid. On the
other hand, we saw in [7] that there are many other 3-dimensional cusp
singularities. Ogata [2] recently showed that those 3-dimensional cusp
singularities are not rigid. The purpose of this paper is to obtain more
precise information on deformations of 3-dimensional cusp singularities.

Let (V, p) be a 3-dimensional cusp singularity which is not of the
Hilbert modular type. In Section 1, we calculate certain cohomology
groups, which are related to deformations of the singularity (V, p). In
Section 2, we first construct a family (%, &2°)— D, over a polydisk D,
of deformations of a resolution (U, X) of the singularity (V, p). Next,
contracting 22° simultaneously, we obtain a family 2 — D of deformations
of the singularity (V, p). Finally, we see that the family ¥ —D is a
versal family. Hence the cusp singularity (V, p) is neither taut nor
smoothable.

1. Calculations of cohomology groups. We fix a 3-dimensional pair
(C, ") in & (see [T7]), throughout this paper. Recall that C is an open
convex cone in Ng, that I' is a subgroup in Aut(N) preserving C and
that S:= (C/R.,)/I" is a compact topological surface, where N = Z3. Also
recall that we obtain from (C, I'), a 3-dimensional cusp singularity (V, p)
with V\{p} = (R* + V' —1C)/N- I, where N -I" is the semi-direct product
of N and I'.

Assume first that X(S) < 0 and that S is orientable. Let T= N®C*
and let CT = N® UQ1), where U(1) = {z€C*||z| = 1}. Then we have two
I-equivariant exact sequences:

0—-N—->N—->T—-1,
0>N—->Nz—>CT—-1,

where the third arrows are the maps induced by exp(2z1 —1?): C— C*.
From these short exact sequences, we have the following long exact
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sequences of the cohomology groups with respect to the I'-actions:
H(I, T)—> HXI'y, N> H'I", N)—H'I", T)y—HYI', N),
HYI',CT)— HYI', N)— HXI'", N;) > HXI', CT)— HXI', N) .
The first purpose of this section is to calculate HXI", L) for L = N, Ng
and N;. Let
ZNI, L) = {p: ' - L|p(¥Y") = () + Yvp(¥') for =v,7'el},
B(I', L) ={6l: " — L|le L},
where 6l is the map sending v to vl — 1. Then ZYI', L) and B'({[, L)

are K-modules and HY(I", L) = Z'(I", L)/BXI", L), where K = Z (resp. R,
resp. C) if L = N (resp. N, resp. Ng).

LemmaA 1.1. BYI', L) = K.

Proor. It is sufficient to show that the linear map L3l+—dl e B'(I", L)
is injective, because L = N® K and N ~ Z® Suppose not. Then there
exists a nonzero element n in L such that Y» = n» for all v in I'. Hence
for any point x, in C*, the orbit I'z,:= {vx,|Y € I'} under I' must be con-
tained in the plane {x € N¥|{(x, n) = {x,,n)}, where C*:= {x € Ng|<{x,y) >0
for all y e C\{0}} is the dual cone of C. However, (C*, I') is in & by
[7, Lemma 1.6], a contradiction (see the proof of [7, Lemma 1.1]). q.e.d.

Let X be the Euler number of the compact orientable surface S =
(C/R.,)/" and let v, 7, ---,7, be generators of I" with the relation
VYT e Yt =1, where s = —X + 2.

LemMA 1.2. Z¥I', L) = K*~2.

PROOF. Let @ be an element in Z'', L). Then by the cocycle
condition, we have

0 =@V, v 0T Yt e YY)

= g1¢(71) + g.P(V) + -0 + ga¢(7s) ’
where

Gt - = Ryt with Ay i= 1 — Vo)) 5
Gorvo ' = Ropiol Yoy With Ry o= (1 — o Yan0i?)
for k=0 through s/2 -1 and a,:= 7,777+« Vot YaYa Y € I for
k>0 and a, = 1. Hence we have the exact sequence:
G
0—-ZNI',L)—L*— L,

where the second arrow sends @ to (@(7,), p(7,), + -+, #(7,)) and the third
arrow G sends (I, 1, ---,1,) to gl, + gl, + --- + g,l,. Therefore, it is
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sufficient to show that the rank of the image of G is equal to 8. Suppose
not. Then AL + h,L + -+ + h,LL must be contained in a submodule M
of rank 2. On the other hand R, := @i Vorti® = A — hyy) and
Bapre i = QYo' = (1 — hyy,) with k running from 0 through s/2 —1
are generators of I, because Bu%.Bu4:Bu+1 = AYur®i' and Bt iBo+s
Bok 11842841 = A Yopioi*. Hence the orbit I'y under I' of any point ¥
in CcC N must be contained in the plane y + M', where M' = MQ R, M
or M N Ngx(S% Np) according as L= Z, R or C. Thus we have the same
contradiction as in the proof of Lemma 1.1. q.e.d.

By Lemmas 1.1 and 1.2, we have:

ProPOSITION 1.8. H'I', N) = Z ¥ @ torsion, H'", Nx) =~ R™* and
H\I', N¢) = C™.

PROPOSITION 1.4. The connected components of the umnit elements in
HYI', T) and H'T,CT) are an algebraic torus (C*)™ and a compact
real torus UQ)™™, respectively, of dimensions —3X.

PrROOF. The map H'(I', N)— H'(I', L) is induced by the injective
map Z'(I", N)—ZYI', L) and Z'(I', NYQ K = Z'(I", L), where K = R or
C and L = N® K. Hence coker(H(I', N)— H'(I", L)) = (K/Z)™ q.e.d.

Now we consider the case where S = (C/R.,)/I" is not orientable with
the Euler number X. Also in this case, Lemma 1.1 continues to hold,
dim, ZY(I", N) = dimg Z*(I", Ny) = dim¢ Z'(I", N¢), by the proof of Lemma 1.2
and hence dim;HYI", N) = dim H'(I", Ni) = dimc H'(I", N¢). Therefore,
we see as in the proof of the above proposition that the connected com-
ponents of the unit elements in H'(I", T) and HYI', CT) are an algebraic
torus and a compact real torus, respectively. Moreover, the dimensions
of the tori are not smaller than —3X, by [2, Theorems 1 and 3]. Thus
we conclude that 3-dimensional cusp singularities are not taut, by [8,
Proposition 3.2], if they are not Hilbert modular cusp singularities, because
then X < 0, by [7, Theorem 3.1 and Corollary 3.2].

2. Versal families of deformations of 3-dimensional cusp singu-
larities. We keep the notations in the previous section. Recall that
we have a resolution (U, X)— (V, p) of the cusp singularity (V, p) such
that the exceptional set X is a toric divisor (see [7] and [8]). Here U
and X are the quotient spaces under I of an open set U of a non-
singular torus embedding T emb(Z) of T and the union of its 2-dimensional
orbits X, respectively, such that U\ X = ord*(C) is the inverse image
of the cone C under the map ord: T— N induced by —log| |: C*— R.
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First, we construct a finite open covering of X. We note that
(N, 2) is a [-invariant non-singular r.p.p. decomposition of Np with | Y|
(:= Uyez0) = CU{0}. For each 3-dimensional cone ¢ = Ry)l'+ Rxil*+ R:l?
in 3, let

o(m, 0) = {x'l' + 2*l* + 2*l®|x* + o* + 2* > 7, o', 2%, 2 > —0}
and let U,(7, 6) be the interior of the closure of ord~'(c(7, §)) in Temb(Z).

Let ¢, 0, + -+, 01 be representatives of 3-dimensional cones in Y modulo
I, ie., Ucjsrrer¥o; = CU{0} and o, # 7o; for any v in I', if 4+ j. Let

U;=qU, 8, U =003,

for large enough » >%" >0 and for small enough ¢ >4 >0, where
q: U—>U is the quotient map under I. Then ﬁjc U; and {U,;} is an open
covering of X. Moreover, we may impose the following assumption,
replacing 3 by a non-singular subdivision of it, if necessary.

AsSUMPTION 1. For each pair (4, j), the set {vyerl'|o;Nvo; # {0}} is
not empty if and only if U/NU; # @ and then it consists of only one
element, which we denote by <,;. Then clearly 7v,=1 and 7v; = 7.
Moreover, 7,; = 7.7, if U, NU;NU; + @, because then ¢, N 70,070, #*
{0} and ;N 7,0, # {0}.

By this assumptiog, the restriction gq;: ﬁ,i(n’, N — U, to ﬁ,i(n’, 0") of
the quotient map ¢: U— U is a biholomorphic map and U;N U] is con-
nected or empty.

Next, we define a local coordinate on each U;. Fix a basis (n!, n?, n°)
of N. Leto,=R:li+R. 2+ R:0E let (I}, I3 I3 = (n!, n?, n®)A, (A, € GL(N))
and let (m,, m,, m,;) be the basis of Hom(N, Z) dual to (I}, % I5). Then
we have the holomorphic immersion:

2 U = T emb({faces of o,}) = C*

sending z to (e(m,)(q;'(2)), e(m,)(q;(2)), e(m,)(q;*(2))), where e(m): T emb({faces
of ¢,}) > C is the natural extension of the character m ® C*: T— C* of
m € Hom(N, Z). For each pair (¢, j) with U; N U; #@, let f;: 4 (U; N U;) —
¥ (U N Uj) be the composite of the restriction of ;' to 4, (U;N U;) and
4r;. Then f;; is written in terms of monomials, i.e.,

fuwt, w0t = (@9, @y, ITw)=),

where (a,;) = (A77;;4;). Hence we have the maximal set W;, among open
sets in C® on which the analytic continuations of f;, are holomorphic.
Clearly W;, is defined by w* # 0 or w"w? # 0 according as o,N7;0; is a
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2-dimensional cone or a 1-dimensional cone and W,, = C®. We denote by
f i the analytic continuation of f; to W,. Then we easily see that
FilW;) =W,; and that {w ey (U) N Wj| fi(w) € Uy} = 4(U.N U)).

Let H be a complementary subspace of B'I", N¢) in Z*(I', N¢) and
let D be a polydisc in H. In the following, we construct a family over
D of deformations of the pair (U, X) by patching up {y(U,) X D} <;<1-

For each pair (¢, 7) with U/ N U} = @, let
Fji(wr @) = (@fji(w)! @) (w’ (P) € Wjix D ’

where Z=exp(2rV —14{A;7'9(7,)}) and (¢, 9%, P°)(2, 2%, 2°)=(P'2!, P2, P°2°).
Then F';; is a biholomorphic map from W;;xD to W,;xD. If U/NnU;N Uy #
@, then F\;, = F,;oF;, on (W,,N W;)xD # @, because 7,, = 7,¥Vj; If D
is small enough, then we may assume the following:

ASSUMPTION 2. The closures of {(w, )€ (v+(U,)N W;,) X D|F;(w, @) €
v;(U;)x D} and F;,((4(U) N W;) X D) Nap;(U;) x D are contained in (U N
U))xD and +4U/NU})x D, respectively, for each pair (¢, 7) with U/N
Ui +o.

DEFINITION 2.1. p ~ ¢ for two points p and ¢ in ~,(U;)xD and
v;(U;) X D, respectively, if U/NU; # @, if pe W;;xD and if F;(p) = q.

LEMMA 2.2. The relation in Definition 2.1 is an equivalence relation
wn the disjoint union of {y;(U,;) X D} c;<1.

PrRoOF. Since the reflexive law and the symmetric law are trivial,
we only prove the transitive law. Let p, ¢ and = be points in +,(U,) x D,
vi(U;)x D and +,(U,) x D, respectively, and assume that p ~ ¢ and that
g ~ r. Then by Assumption 2, ¢ is contained in both ~,(U;N Uj)x D and
vi(UjNUz)xD. Hence U NU;NUi+@ and F,(p)=F,;(F;(p))=F,i(q)="r.
Thus we have p ~ 7. q.e.d.

Let 2 = (I1i-, v:(U,) x D)/~ be the quotient space of [T, v(U,) XD
by the above equivalence relation.

LEMMA 2.3." % is a Hausdorff space.

PrROOF. Let p and ¢ be points in ,(U,)xD and +;(U;)x D, respec-
tively, and suppose that U,NU,# @ for any neighborhoods U, and U,
of p and ¢, respectively. Then there exist sequences {p,} and {q,} of
points in (¢, (U)N W;)x D and (y;(U;) N W,;)x D converging to p and g,
respectively, with F(p,) = ¢,. By Assumption 2, pe(U/NUj)xDC
W;;xD and F;(p) =q. Hence p~q. q.e.d.

By this lemma, % is a complex manifold. Let #: % — D be the
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natural projection and let 27 = U;_, {(w", w’, w’, @) € ¥(U,) X D|w'w*w® = 0}.
Then 7 is a smooth holomorphic map and X, := &2 Nn~'(p) are compact
divisors in U,:= n(p) for all ¢ in D, if D is small enough. Clearly,
there is an immersion U,=U mapping X, onto X. Hence X, is contracti-
ble to a point.

PROPOSITION 2.4. X, =~ Xin (:= X/{6(v)Y|vel}) for any @ in D,
where 0 1is the image of @ under the map Z'(I", N¢)— Z*(I', T) induced
by exp(2my —12): Nc— T. Hence X, is a toric divisor. (See [8, §3].)

Proor. Let X;:= {4, (U)xD}NX, and let r, be the restriction to X
of the composite g;oqr;op, of the maps p,: ¥, (U,) X D—r,(U,), 4ri*: 4r( Ui);U,
and g¢;%: U{;U',,i(n’, 8")c U, where p, is the natural projegtion. Then
Ui-, X; = X, and the image r,(X,) under 7, is~contained in X. Let s; be
the composite of 7, and the quotient map X — X, under {6(v)v|vel}.
Then s;: X; <> Xj4 is a holomorphic immersion. Moreover, we see by an
easy calculation that s;(p,) = sj(p;) for any points p, and p; in X, and
X, respectively, if and only if F';(p,) = p;. Hence we have a holomorphic
immersion s: X, —» X5, Since X, is compact, s is an isomorphism. q.e.d.

LEMMA 2.5. For each positive integer 1, dim H(U,, &y,) are constant
for @ small enough.

PrOOF. Consiser the exact sequences:
O_*ﬁ[]w(—X;o)_)ﬁU?‘_)ﬁX?_‘)O .

Let f: (U, X,) — (V,, p,) be the contraction map. If we choose an open
set in 77 so that f(U;) =V, is a Stein space, then HY(U,, &y (—X,)) =
Rf @y (—X,) =0 for © >0, by [7, Theorem 2.3]. Then by [5, Satz 1]
and [4, Theorem 1.6], we have HU,, &Zy(—X,)) =0 for i >0 and for
@ small enough. Hence we have H'(U,, &y,) = H Xy @Px,) for i > 0.
On the other hand, dim HY(X,, &) = dim H'(X,, &5) (=dim H¥(S, C))
for © > 0, because X, are toric divisors whose dual graphs are equal to
that of X (see the proof of [7, Proposition 2.7]). Hence dim H*(U,, Cy,) =
dim H(U,, Zy,). q.e.d.

By this lemma and [3], for D small enough, 22”7 can be simultaneously
blown-down in 2. Hence we obtain a family 7~ — D over D of deforma-
tions of the isolated 3-dimensional singularity (V,, »,), which is isomorphic
to some open set of (V, p).

THEOREM 2.6. The family 7 — D 1is versal, t.e., the imfinitesimal
deformation map (the Kodaira-Spencer map) p: To(D)— T3, is bijective.
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ProOOF. Since Z2\2 — D is a family of deformations of the complex
manifold U\ X,, we have the infinitesimal deformation map p’: T,(D) —
HY(U,\ X,, ®), where @ is the sheaf of germs of vector fields on U,. Since
D is a polydisc in H'(I", N.) and since there is a canonical isomorphism
HYI'y, N¢) = H(U\ X,, ©) ([2, Theorem 1]), the map p’ is bijective, by
the construction of 7. Hence the map o must be bijective, because a
canonical injection T}, — H'(U,\ X,, 0) is bijective, by [6] and [2, Theorem
1]. q.e.d.

COROLLARY 2.7. The cusp singularity (V, p) is not smoothable.

REMARK. Also for any higher dimensional pair (C, I') in &%, we can
construct a versal family, over a small polydise in HI", N¢), of defor-
mations of the cusp singularity (V, p) = Cusp(C, I'), in the same way.
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