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Introduction. Freitag and Kiehl [1] showed that Hubert modular
cusp singularities of dimensions greater than two are rigid. On the
other hand, we saw in [7] that there are many other 3-dimensional cusp
singularities. Ogata [2] recently showed that those 3-dimensional cusp
singularities are not rigid. The purpose of this paper is to obtain more
precise information on deformations of 3-dimensional cusp singularities.

Let (V, p) be a 3-dimensional cusp singularity which is not of the
Hubert modular type. In Section 1, we calculate certain cohomology
groups, which are related to deformations of the singularity {V, p). In
Section 2, we first construct a family (^, gf) -> D, over a polydisk D,
of deformations of a resolution (U, X) of the singularity {V, p). Next,
contracting <%f simultaneously, we obtain a family 3^ -> D of deformations
of the singularity (V, p). Finally, we see that the family Γ - > ί ) is a
versal family. Hence the cusp singularity (V, p) is neither taut nor
smoothable.

1. Calculations of cohomology groups. We fix a 3-dimensional pair
(C, Γ) in S? (see [7]), throughout this paper. Recall that C is an open
convex cone in NR, that Γ is a subgroup in Aut(iV) preserving C and
that S: = (C/R>o)/Γ is a compact topological surface, where N = Z3. Also
recall that we obtain from (C, Γ), a 3-dimensional cusp singularity (V, p)
with V\{p} — (Rz + \/ — lC)/N Γ, where N Γ is the semi-direct product
of N and Γ.

Assume first that X(S) < 0 and that S is orientable. Let T = JV(g) Cx

and let CT = iV(g) ϋ(l)9 where 17(1) = {z e Cx 11 z | = 1}. Then we have two
Γ-equivariant exact sequences:

where the third arrows are the maps induced by exp(2πi/ —1?): C—>C*.
From these short exact sequences, we have the following long exact
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sequences of the cohomology groups with respect to the F-actions:

H\Γ, T)->H\Γ, N)-+H\Γ, Nc)-+H\Γ, T)->H\Γ, N) ,

H\Γ9 CT) — H\Γ, N) — H\Γ, NR) -> H\Γ, CT) -> H\Γ, N) .

The first purpose of this section is to calculate H\Γ, L) for L = N, NR

and Nc. Let

Z\Γ, L) = {φ: Γ-> L19>(77') - ?>(7) + 7^(7') for 7, 7 ' G Γ } ,

B\Γ,L) = {dl:Γ-+L\leL} ,

where δi is the map sending 7 to 7ί - I. Then Z\Γ, L) and B^Γ, L)
are iΓ-modules and H\Γ, L) = Z\Γ, L)jB\Γ, L), where K = Z (resp. R,
resp. C) if L = N (resp. JVΛ, resp. iVc).

LEMMA 1.1. B\Γ, L) ~ K\

PROOF. It is sufficient to show that the linear map L3l\-*δleB\Γ, L)
is injective, because L = N(x)K and N~Z3. Suppose not. Then there
exists a nonzero element n in L such that Ύn = n for all 7 in Γ. Hence
for any point x0 in C*, the orbit Γxo:= {ΎXO\Ύ eΓ} under Γ must be con-
tained in the plane {xeNgl (x, ri) = (x0,n)}, where C* : = {x e Ng\ (x, y)>0
for all 2/eC\{0}} is the dual cone of C. However, (C*, Γ) is in Sf by
[7, Lemma 1.6], a contradiction (see the proof of [7, Lemma 1.1]). q.e.d.

Let X be the Euler number of the compact orientable surface S =
(C/R>o)/Γ and let y19 72, , 78 be generators of Γ with the relation
71727Γ172~

1 77-î Γ1 = 1, where s = — 1 + 2.

LEMMA 1.2. Z\Γ, L) ~ KB8~\

PROOF. Let φ be an element in Z\Γ, L). Then by the cocycle
condition, we have

0 = <p(71727Γ172-
1 7ΓΛ7Γ1)

= 9i<P(7i) + 02^C/2) + + g8φ(Ύ8) ,

where

g2k+1: = h2k+1ak with h2k+1: = (1 - α^/ΐWΛ1) ,

^ + 2 : = h2k+2ak72k+1 wi th Λ2ft+2: = (1 - ak+{r£+1ai;1)

for fc = 0 through s/2 - 1 and ak: = 71727Γ172"
1 72fc_172fc72"fc

1_172~A:

16 Γ for
λ; > 0 and a0 = 1. Hence we have the exact sequence:

where the second arrow sends φ to (^(7j, <p(72), , <p(7β)) and the third
arrow G sends (Zlf Z2, , ls) to grji + g2l2 + + g8l8- Therefore, it is
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sufficient to show that the rank of the image of G is equal to 3. Suppose
not. Then hxh + h2h + + h8L must be contained in a submodule M
of rank 2. On the other hand β2k+1: = αfc+1τ2fc+2αΓ = (1 — h2k+1) and
β2k+2: = ak+1Ί2k+1<Xkx = (1 — h2k+2) wi th k running from 0 through s/2 — 1

are generators of Γ, because βu+iβ^+Φtk-^i — cx^^+^k1 and β2k+1β2k+2

βik+iβ^βik+i = αfe72fc+2α^1. Hence the orbit Γy under Γ of any point y
in CaNR must be contained in the plane y + M', where M' = M®R, M
or Mf]NR(^NR) according as L = Z, R or C. Thus we have the same
contradiction as in the proof of Lemma 1.1. q.e.d.

By Lemmas 1.1 and 1.2, we have:

PROPOSITION 1.3. H\Γ, N) ~ Z~zχ © torsion, H\Γ, NR) ~ R*χ and
H\Γ, Nc) ^ C-*χ.

PROPOSITION 1.4. The connected components of the unit elements in
H\Γ, T) and H\Γ, CT) are an algebraic torus (Cx)~3χ and a compact
real torus Z7(1)~3Z, respectively, of dimensions — 3Z.

PROOF. The map H\Γ, N) -> H\Γ, L) is induced by the injective
map Z\Γ, N)-+Z\Γ9 L) and Z\Γ9 N)®K= Z\Γ, L), where K = R or
C and L = ΛΓ(x) K. Hence coker(iΓ(Γ, N) -> JΪ^Γ, L)) - (i^/Z)"3Z q.e.d.

Now we consider the case where S = (O/R>0)/Γ is not orientable with
the Euler number Z. Also in this case, Lemma 1.1 continues to hold,
άimz Z\Γ, N) = άimR Z\Γ, NR) = dimc^^Γ, Nc), by the proof of Lemma 1.2
and hence dimz H\Γ, N) = dimΛ H\Γ, NR) = άimc H\Γ, Nc). Therefore,
we see as in the proof of the above proposition that the connected com-
ponents of the unit elements in H\Γ, T) and H\Γ, CT) are an algebraic
torus and a compact real torus, respectively. Moreover, the dimensions
of the tori are not smaller than — 3Z, by [2, Theorems 1 and 3]. Thus
we conclude that 3-dimensional cusp singularities are not taut, by [8,
Proposition 3.2], if they are not Hubert modular cusp singularities, because
then 1 < 0, by [7, Theorem 3.1 and Corollary 3.2].

2. Versal families of deformations of 3-dimensional cusp singu-
larities. We keep the notations in the previous section. Recall that
we have a resolution (Z7, X) —• (V, p) of the cusp singularity (V, p) such
that the exceptional set X is a toric divisor (see [7] and [8]). Here U
and X are the quotient spaces under Γ of an open set U of a non-
singular torus embedding T emb^) of T and the union of its 2-dimensional
orbits X, respectively, such that U\X = ord"x(C) is the inverse image
of the cone C under the map ord: T^>NR induced by —log | |: C*^>R.
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First, we construct a finite open covering of X. We note that
(N, Σ) is a Γ-in variant non-singular r.p.p. decomposition of NR with | Σ \
( : = Vioeio) = CU{0}. For each 3-dimensional cone a = R^l1 + R^l2 + R^l*
in Σ, let

o(η, δ) = {xΨ 4- xΨ + xΨlx1 + x2 + xz>η, x\ x\ xz > -δ}

and let £7σ0?, δ) be the interior of the closure of ord" 1^)?, δ)) in Temb(Σ).
Let σx, σ2, , σ% be representatives of 3-dimensional cones in Σ modulo
Γ, i.e., Ui£ί ssiirer'ft7i = CU{0} and α < Φ Ίσ5 for any 7 in Γ, if ί =£;?. Let

for large enough η > η' > 0 and for small enough <?' > δ > 0, where
q: U->U is the quotient map under Γ. Then I7yC U} and {Ϊ7,} is an open
covering of X. Moreover, we may impose the following assumption,
replacing Σ by a non-singular subdivision of it, if necessary.

ASSUMPTION 1. For each pair (i, j), the set {Ί eΓ\σiΓ\Ίσύ Φ {0}} is
not empty if and only if 17/Γl TJ) Φ 0 and then it consists of only one
element, which we denote by yiS. Then clearly 7« = 1 and j i t = Ύi}1.
Moreover, 7fcί = 7^-7^, if ?7fc'Π J7/ Π Uί Φ0, because then e x * Π 7 * ^ Π 7 ^ ^
{0} and σin7ifσ<9fc{0}.

By this assumption, the restriction qt: Uσ.(η\ δ') -> 17/ to &σ.()y', δ') of
the quotient map q:U->U is a biholomorphic map and Ulf]Uj is con-
nected or empty.

Next, we define a local coordinate on each Z7/. Fix a basis (w1, w2, n3)
of iV. Let α* = R*Ji+R*Ji+R*Ji, let (R, IJ, R) = (n1, tι2, ^ 3 )Λ (A, e GL(iV))
and let (m19 m2, m3) be the basis of Hom(iSΓ, Z) dual to (I}, if, if). Then
we have the holomorphic immersion:

ψt: U- <=+ Γemb({faces of σj) ^ C3

sending 2 to (eim^iq^iz)), e(m2)(q7\z)), e{m^{qiι{z))), where e(m): Γemb({faces
of σJ)->C is the natural extension of the character m(g)Cx: T->CX of
m e Kom(N, Z). For each pair (i, i) with ϋ/ Π Ϊ7; ̂  0 , let /* : ψ4( t// ΓΊ Dy) ->
ψy( t// Π U}) be the composite of the restriction of ψz1 to ψt( Ό[ Π t/y) and
ψj. Then /y< is written in terms of monomials, i.e.,

Uw\ w\ w ) = ( π (^α)ααl, Π (wa)aa2, Π (^α)
\a—i α=l α=l

where (aaβ) = t{Aj1ΊHA^). Hence we have the maximal set Wάi among open
sets in C8 on which the analytic continuations of fSi are holomorphic.
Clearly WH is defined by wa Φ 0 or wawβ Φ 0 according as σt Π 7<y(Xy is a
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2-dimensional cone or a 1-dimensional cone and Wu = C3. We denote by
fjif the analytic continuation of fH to WH. Then we easily see that
Λ<( Wh) = Wid and that {w e U U<) n WH \ fH(w) e fj( U,)} = U 17, n *7, ).

Let ϋΓ be a complementary subspace of B\Γ, Nc) in i^CΓ, Nc) and
let D be a polydisc in H. In the following, we construct a family over
D of deformations of the pair (17, X) by patching up
For each pair (i, j) with Z 7 / n ϋ ϊ ^ O , let

-F*(w, ?>) = (φfH(w), φ) (w, ?>) e T7i4x Z>

where ^ = exp(2τri/::Ίί{A7V(/yii)}) and (φ1, φ\ φ*)(z\ z\ zz) = {φ1z\ φ2z\ φ3z3).
Then Fjt is a biholomorphic map from WJt xDto Wtj x D. If Ό[ Π C/,- Π Ul Φ
0 , then ^ = FkjoFόi on (TΓA<Π Wάi)xDΦ 0, because yki = ΊkfίH. If D
is small enough, then we may assume the following:

ASSUMPTION 2. The closures of {(w, φ) e (ψt( £/,) n TΓΛ) x D | Fdi(w, φ) e
fjiU^xD} and Fdi((φt(Ut)ΓlWJt)x0)^(17^x0 are contained in fXCZ/Π
ί7/) x Z> and ψy( C// Π ί7/) x D, respectively, for each pair (i, j) with ?7/ Π

DEFINITION 2.1. p ^ g for two points p and g in ψJiU^xD and
D, respectively, if 17/n Uj Φ 0 , if p e WHxD and if FH(p) = q.

LEMMA 2.2. The relation in Definition 2.1 is an equivalence relation
in the disjoint union of {ψiiU^xD}^^.

PROOF. Since the reflexive law and the symmetric law are trivial,
we only prove the transitive law. Let p, q and r be points in ^{U^xD,
ψβ(Uό)xD and ψk(Uk)xD, respectively, and assume that p~q and that
q ~ r. Then by Assumption 2, q is contained in both <fά( TJ[ Π 17/) x D and
Ψi( U; n Ul) x D. Hence Ul ΠU;nUlΦ0 and Fki(p) = Fkύ(F5i{p)) = Fkj(q) = r.
Thus we have p ~ r. q.e.d.

Let ^ = (HΪ=iih(£fi)x£>)/~ b e t h e quotient space of Πί=1 ψl Ut) x D
by the above equivalence relation.

LEMMA 2.3. ^ is a Hausdorff space.

PROOF. Let p and q be points in ψiϋU^xD and ψά(U5)xD, respec-
tively, and suppose that Up Π Uq Φ 0 for any neighborhoods Up and Uq

of p and g, respectively. Then there exist sequences {pa} and {qa} of
points in (ψ€( I7J Π TΓΛ) x D and (^( Z75 ) Π Wί3) x D converging to p and q,
respectively, with Fdi(pa) = qa. By Assumption 2, psψ^UlnUDxDc:
WHxD and ί ^ p ) = q. Hence p ~ q. q.e.d.

By this lemma, ^ is a complex manifold. Let π:^ -+D be the
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natural projection and let <%f = Uί=1 {(w\ w\ w\ φ) e φt(Ut) xD\wιw2wz = 0}.
Then π is a smooth holomorphic map and Xφ: = <%f Π π~ι(φ) are compact
divisors in Uφ: = π~\φ) for all φ in D, if D is small enough. Clearly,
there is an immersion U0

<=^U mapping Xo onto X. Hence Xo is contracti-
ble to a point.

PROPOSITION 2.4. Xφ~Xm ( : = X/{Θ(Ύ)Ύ\ΎeΓ}) for any φ in Dy

where θ is the image of φ under the map Z\Γ, Nc) —> Z\Γ, T) induced
by exp(2ττv/:=:ϊ?): Nc-+ T. Hence Xψ is a toric divisor. (See [8, §3].)

PROOF. Let Xt: = {ψt( Ut) x D} Π XΨ and let rt be the restriction to Xt

of the composite q7loψ7loPi of the maps pt: ψ{( Ut) x D-+ψt( Ut), ψϊ1: ψt( Ut) —> Ut

and qϊγ;Ul^Uai(η',b')tzU, where p έ is the natural projection. Then

Ui=i Xί = X?) and the image r/XJ under r, is contained in X Let st be

the composite of rt and the quotient map X^Xm under {^(7)7|τeΓ}.

Then Si*. Xt °-> JSΓW] is a holomorphic immersion. Moreover, we see by an

easy calculation that s^Pi) — Sy(py) for any points pt and p5 in J^ and

Xj, respectively, if and only if Fjt(pt) = pά. Hence we have a holomorphic

immersion s:Xφ^>Xm. Since Xψ is compact, s is an isomorphism, q.e.d.

LEMMA 2.5. For each positive integer i, dimH\Uφ, έ?Uφ) are constant
for φ small enough.

PROOF. Consiser the exact sequences:

0 -> <?U9(-Xφ) -> &Uφ -*&Xφ^0.

Let /: (Uo, Xo) —»(Vo, p0) be the contraction map. If we choose an open
set in ^ so that f(U0) = Vo is a Stein space, then iϊ̂ CC7"o, έ?UQ(-X0)) =
R%έ?uo(-Xo) = 0 for i > 0, by [7, Theorem 2.3]. Then by [5, Satz 1]
and [4, Theorem 1.6], we have H\Uφf έ?Uφ(-XΨ)) = 0 for i > 0 and for
φ small enough. Hence we have H\Uφ, έ?Uφ) cz H\Xφy έ?Xψ) for i > 0.
On the other hand, dim H\XΨ, έ?Xψ) = dim H\X*9 έ?X() ( = dim H%S, C))
for i > 0, because X^ are toric divisors whose dual graphs are equal to
that of X (see the proof of [7, Proposition 2.7]). Hence dimfl"'(ϊ79, έ?Uφ) =?

U0,&Uo). q.e.d.

By this lemma and [3], for D small enough, J2f can be simultaneously
blown-down in ^ . Hence we obtain a family 3^ —• D over Z) of deforma-
tions of the isolated 3-dimensional singularity (F o, p0), which is isomorphic
to some open set of (V, p).

THEOREM 2.6. The family ^*—>D is versal, i.e., the infinitesimal
deformation map (the Kodaira-Spencer map) p: T0(D) —> Tγ0 is bijective.
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PROOF. Since <%r\<3f ->D is a family of deformations of the complex
manifold U0\X0, we have the infinitesimal deformation map p': T0(D) —•
H\U0\X0, Θ), where Θ is the sheaf of germs of vector fields on Uo. Since
D is a polydisc in Hι(Γ, Nc) and since there is a canonical isomorphism
H\Γ,NC)~H1(UO\XO,Θ) ([2, Theorem 1]), the map p' is bijective, by
the construction of ^ . Hence the map p must be bijective, because a
canonical injection 7V0—>H1(U0\X0, Θ) is bijective, by [6] and [2, Theorem
1]. q.e.d.

COROLLARY 2.7. The cusp singularity {V, p) is not smoothable.

REMARK. Also for any higher dimensional pair (C, Γ) in JS^ we can
construct a versal family, over a small polydisc in ίPCΓ, Nc)9 of defor-
mations of the cusp singularity (V, p) = Cusp(C, Γ), in the same way.
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