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In the recent papers [4] and [5], Ogawa has developed the theory of
a noncausal stochastic integral and proved that this integral naturally
contains the symmetric integral of Stratnovich-Fisk as a special case.
In this paper we give an extension of his result.

1. Introduction and preliminaries. First of all, we briefly review
Ogawa's result. Let {W(x, ω): 0 5g x ^ 1} be a one-dimensional Wiener
process on a complete probability space (Ω, F9 P), φ = {φn{x)} be a complete
orthonormal system (CONS, for short) in L2([0, 1]) and set Kn(x, y) =
ΣZ=i Φk(%)Φk(y) In this section we assume that every random function is
B([0, 1]) x F-measurable and satisfies the condition P(\ F\x, ω)dx< °° j — 1.
We say that F is ^-integrable if

lim [ F(x, ω) Γ Kn(x, y)d° W(y)dx
n-*oo Jo JO

exists in probability and denote the limit by \ F(x)dφW(x). Here

S i Jo

Kn(x, y)d° W(y) stands for the usual Ito (forward) integral. If the
0

limit does not depend on the choice of a CONS φ, then we say that F is

universally integrable and denote it by I F(x)dW(x). Let G(x, ω) be a
Jo

causal (i.e., adapted to the family of σ-fields Fx — σ{W(y): 0 ^ y ^ x})
random function and H(x, ώ) be a (not necessarily causal) random function
whose sample paths are of bounded variation with probability one. We
say that the random function F(x, ώ) of the form( 1 ) F(x, ω) = H(x, ω) + [ G{y, ω)d° W{y)

Jo

is a quasi-martingale.

THEOREM (Ogawa [4] and [5]). (1) Every quasi-martingale is φ-
integrable if and only if the following condition is satisfied:

(2) sup 1 ul(x)dx < °o .
n Jo
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Here un(x) = 1 Kn(x, y)dy. Furthermore, if H(x, ω) in (1) is causal, then
Jo

the integral I F(x)dφW(x) coincides with the symmetric integral of

Stratnovich-Fisk \*F(x)dW(x) ( = [Fix)d°Wix) + (1/2) ΓG(x)dx\
Jo \ Jo Jo /

(2) Let Fix) be a quasi-martingale of the form (1) and assume that
G(x) is a quasi-martingale again. Then, Fix) is universally integrable.

REMARK 1. It is easily seen that the condition (2) is satisfied for
the trigonometric, Haar and Walsh systems. But it is unknown whether
(2) is valid for a general CONS in L2([0, 1]).

The purpose of this paper is to show that if we replace the usual
Ito integral by the extended Ito integral (E.I.I., for short) in the defini-
tion of the quasi-martingale (1), we also obtain an analogous theorem.
For the reader's convenience, we recall the basic facts concerning the
E.I.I, following [6], which gives a rather systematic survey of recent
developments in this theory, mainly due to the Soviet school (such as
Daletskii-Paramonova, Shevljakov, Skorokhod etc.).

Let W be a Gaussian random measure on the Borel σ-field #([0, 1])
induced by a Wiener process {Wix): 0 <; x <̂  1} and L2([0, l]p) =
{/0&i> * '>%p) εL2i[0, l]p); real-valued and symmetric in p variables} for
each positive integer p. We denote by I \ f(x19 , xp)dWix^ dW(xp)

Jo Jo

the p-th multiple Wiener integral of /e£2([0, l]p) with respect to W.

Let Hi[0, l]kxΩ) = L2([0, l]kxΩ) and Hp([0, l]kxΩ) = {[ " ' Γ/te, ' , &*;

V» ' , yP)dWiyi) dWiyp)eHi[0, l]kxΩ);feUi[0, l]k+»), fix!, , xk; •) e

L2([0, 1]P)J (for convenience, we set iϊo([O, l]kxΩ) = L2([0, l]fc)). Then, by

the theorem of Wiener-Ito expansion, it holds that

H([0, l] fc x Ω) = Σ HPi[0, l]k x Ω) (direct sum) .
2>=0

That is, every element F(xί9 •••,%) of iί([0, l] f exi2) is represented in the

form

oo

JΓ \JL>ι, , JL>]c) — / ^ £* <p\yjι, f X]c) >

where FPixlf , xp) = j * - JVP(a?i, , xk; 2/i, , VP)dW(y1) dWiyp),
fp 6 L2([0, l]k+p) and fp(χ19 °.. xk) °.) e L2([0, l]p). In this notation, the inner
product iF, G)mίOfllkxΩ) on the Hubert space Hi[0, l]kxΩ) can be written
as follows:
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(F, G)iίao,ύkχΩ)

= - E [ J O JQ F(X19 , xk)G(xίf , a * ) ^ dxkj

= Σ # [ Ύ ( Fp(xl9 •> Xk)G,(x19 , &*)&! da;*]
P=O LJo Jo J

oo ri p

= Σ P ! I ••• I fP(Xι, "'fXkfVif '"yVp)
P=O Jo Jo

X ff (fψ ••• Ύ * 11 ••• 11 \ri'/y /7/y» Λ / ' ? / / 7 / l /

We also define HΛnlte([0, 1]* x Ω) by

= U Σfl,([O, ΐ\hxΩ)
n = 0 p = 0

Let FeH([0, l]*χβ). If the series
oo ri ri

Σ v \ \ Λ(«i, •••,«*; xt+if Vi, , Vp-
P=O Jo Jo

converges in £Γ(42) for almost every point (xlf , xk+1) e [0, 1]&+1, then
the sum is called the stochastic derivative of F and denoted by
[DF](x19 , xk; xk+1). The stochastic derivative of higher order is defined
by

DΨ = D{D^ιF) (D°F = F) ,

whenever the right-hand side makes sense. For each nonnegative integer
I, let

H{l)([0, l]kxΩ) = {FeH([0, l]kxΩ); D*F is defined and belongs to
ff([0,l]Hixi2) f o r i = 0 , l , ••.,?}

a n d

iϊ(oo)([0, l]kxΩ) = n HU)([0, l]kxΩ) .

Then, it is obvious that ίΓn([0, l]fcxi2) becomes a Hubert space with the
inner product

I

(Ff G)Ha)iioti\kxΩ) = Σ (DjF9
3=1

= Σ Σ ίpi/(p - ΛD^ΓΓ Γ ̂ G , ^ (te,l
ί=0J>=ί LJO Jo J

= Σ Σ {Vlliv - 3)\)P\ \ " \fp9pdx, dxudy, ~ dyk .
j=0 p=j Jθ Jθ

Evidently, the stochastic derivative D is a bounded linear operator on
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Hu\[0, l]»χβ) with range in ^'-'([O, l]k+ιxΩ).
We now define the E.I .I . Let F(x)eH([0, l]xΩ) and set

Λ ( y » •••' v>+ι) = Σ
a

where σ runs over all permutations of {1, 2, , p + 1}. If the series

Σ [ [?,(Vu -", y^ύdWiyd dW(yp+1)
2>=0 JO JO

converges in H(Ω), then the sum is denoted by I F(x)dW(x) and called
the E.I.L of F.

The following lemmas easily follow from the definition.

LEMMA 1 ([7], [8]). Let I be a positive integer. Then, for every
FeH{l)([0, I]xi3), the E.LI, exists and satisfies the inequality

ITfXaOdWίaoll ^ (
I Jo UHU-ihΩ)

Here Cι denotes a positive constant which only depends on I.

LEMMA 2 ([6, Corollary 3.3]). Let F e Hω([0, I]2 x Ω) and G e L2([0, 1]).
Then,

[ dxG{x) T F{x, y)dW{y) = Ύ dW(y) [ F(x, y)G(x)dx .
Jo Jo Jo Jo

LEMMA 3 ([6, Proposition 3.4]). Let FeH{2)([0, l]2xi2). Then,

\D([ F(X, y)dW(y))\x; z) = F{x, z) + Ύ [DF](x, y; z)dW{y) .
l _ \ J o / J Jo

For 0 <; a ^ b <; 1, we set

Γ F(x)dW(x) = [ liaM(x)F(x)dW(x) .
Ja Jo

It is proved in Shevljakov [7] (see also [6, Proposition 5.2]) that if F(x)
'Cx

is causal, then the E.LI. I F(y)dW(y) exists and equals the Ito integral
\XF(y)d°W(y).
Jo

The following lemma connects the E.I.L with the noncausal stochastic
integral investigated by Ogawa.

LEMMA 4. Let FeHω([0,l]xΩ). Then, F is φ-integrable if and
only if

lim [ [ [DF](x; y)Kn(x, y)dxdy
n-*oo Jo Jo
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exists in probability. In this case, it holds that

[ F(x)dΦW(x) = [ F(x)dW(x) + lim Γ [ [DF](x; y)Kn{x, y)dxdy .
JO JO n-*oo Jo Jo

REMARK 2. Formulas of this kind were obtained in [1], [2] and [8].
See also [6, Theorem 4.1].

2. Main result. We now state our theorem.

THEOREM. (1) Let HeH{z)([O,l]xΩ) and set G(x) = [*H(y)dW(y).

S X Jo

G(y)dW(y) is universally integrable and satisfies the
0

equality
(3) *[aF(x)dW(x) = ΛaF(x)dW{x) + (1/2) \° G(x)dx

Jo Jo Jo

+ \adx'\X[DG](z;x)dW(z).
Jo Jo

(2) Let φ = {φn} be a CONS in L2([0, 1]) and assume that the con-
dition (2) is fulfilled. Then, for every GeH{2)([0, l]xΩ), F(x) =
*Cx

1 G(y)dW{y) is φ-integrable and satisfies the equality
Jo

\aF(x)dΦW(x) = ΛaF{x)dW{x) + (1/2) \aG(x)dx + [dx \* [DG](z, x)dW(z) .
Jo Jo Jo Jo Jo

(3) Let GeH{2)([0, l]xΩ) and assume that the sample paths of G
'Cx

are of bounded variation with probability one. Then, F(x) = I G(y)dW(y)
Jo

is universally integrable and satisfies the equality (3).

To prove the theorem, we begin with several lemmas.

LEMMA 5. Let GeHω([0, l]xΩ). Then,
(4) [dx T [DG](z; x)dW(z) = lim [dx [ [' [DG](z; y)dW{z)Kn{x, y)dy

Jθ Jo π->oo Jo Jo Jo

in H(Ω) for each a e [0, 1].
PROOF. By Lemma 2, we have

\adx \X[DG](z; x)dW{z) - '[dW(z) \a[DG](z; x)dx
Jo Jo Jo Jz

and

[dx [ λX[DG](z; y)dW{z)Kn{x, y)dy
Jo Jo Jo

= '[dW(z) [dx [ [DG](z; y)Kn{x, y)dy .
Jo Jz Jo
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Set

H(z) = lίQ>al(z)[[DG](z;x)dx
Jz

and

\\ \ [ ; y)Kn(x, y)dy .

By Lemma 1, it suffices to show that HU) converges to H in ίf(1)([0, l]xΩ)
as n->°°. By ParsevaΓs equality, H{n) converges to H dz x dP-almost

everywhere and {HM(z)}2 is bounded by [ {[DG](z; y)}2dyeH([0, l ]χβ) , so
Jo

that, by Lebesgue's dominated convergence theorem, H{n) converges to
H in H([0, l]xΩ) as n—> °°. Similarly, noting that

[DH](z; u) = l[0iβl(2) Γ[# 2G](r, a?
J

and

[DHM](z; u) = l [ O i β ](
Jo

we can show that DHίn) converges to DH in H([0,1]2 x Ω) as n —* °°.
Therefore, HM converges to H in ίf!l)([0, ϊ]xΩ) as %-> <*>.

LEMMA 6. For eαcΛ HeH«\[0, l]xΩ), set G(x) = ^H(y)dW(y).

Then, G e H(2)([0,1] x Ω) and

(5) (1/2) \aG(x)dx = lim (" ίte (" G{y)Kn(x, y)dy
Jθ 7i->oo Jo Jo

m H(β) /or each a e [0,1].

PROOF. From Lemma 1, it immediately follows that G e ίΓ2)([0,1] x Ω).
We show the equality (5). By Lemma 2 and the symmetric property of
Kn(x, y),

(1/2) [aG{x)dx = (1/2) λadW(z)H(z) ['dz
Jθ Jo Jz

and

S α Cx 'Ca Ca Γa

dx \ G(y)Kn(x, y)dy = \ d W(z)H(z) \ dy \ Kn(x, y)dx
0 Jo Jo Jz Jy

= (1/2) ΛadW{z)H{z) [ady [*Kn(x, y)dx .
Jθ Jz Jz

Because \ dy \ Kn(x, y)dx converges to I dx uniformly in z as n-^> °of
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\ j lKn(x, y)dx converges to l[0,α](z)#(z) J°dx in H{1)([0, l]xΩ).

Therefore, by Lemma 1, we obtain the equality (5).

LEMMA 7. The condition (2) is satisfied if and only if the following
equality is valid for every g e L2([0, 1]):

(6) (1/2) [ g(x)dx = lim [ dx [ g(y)Kn(x, y)dy .
Jθ n-*oo Jo Jo

InHhis case,

(7) I cte I g(y)Kn(x, y)dy ^ const. \ g\x)dx .
I Jo Jo Jo

PROOF. It is known that the condition (2) is equivalent to the
equality

(1/2) Γ g{x)dx = lim Γ dx \* g(x)KΛ(x, y)dy
Jθ n-»oo Jo Jo

([3, p. 342, Exercise 23], see also [5, Proposition 1]). The equality (6)
easily follows from this fact. We now prove the inequality (7):

l \o dX Jo
= I \ dx [ g{y)Kn(x, y)dy - I dx I g(y)Kn(x, y)dy

I Jo Jo Jo Jx

^ 2Jl + sup Γ ul{x)dx\ [ g\x)dx .
I n Jθ ) Jo

COROLLARY. // the condition (2) is fulfilled, then the equality (5)
holds for every G 6 £Γ([0,1] x Ω).

PROOF OF THEOREM. In any case, it is easily seen that Fe
H{1\[0, l]xΩ) by Lemma 1, and that

[DF](x; y) = lί0,mΊ(y)G(y) + T [DG](z; y)dW(z)
Jo

by Lemma 3. Therefore, by Lemma 4, it suffices to show that the
equalities (4) and (5) hold. In the cases of (1) and (2), it has already
been proved in Lemmas 5, 6 and Corollary. In the case of (3), we have
only to note that the equality (6) holds for every function g of bounded
variation without any condition on φ = {φn}.

REMARK 3. (1) If GeίΓ2)([0, l]xΩ) is causal, then it easily follows
that

[dx [X[DG](z;x)dW(z) =
Jo Jo
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for each a e [0,1]. Therefore, our theorem coincides with that of Ogawa.
However, Ogawa's theorem is not completely contained in our result,
because there is a causal random function in if([0, 1] x Ω) which does not
belong to ίf(1)([0, l]xΩ) (see [6, p. 139, Example]).

(2) It is easy to construct a random function Gei/(2)([0, l]xΩ)
dx \ [DG](z; x)dW(z) does not equal zero. Therefore, our

0 JO

theorem shows the existence of a noncausal random function which is
0-integrable, though the E.I.I, only deals with a random function in
#([0, l]xΩ).
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