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Abstract. Complex projective space CPn with the Fubini-Study metric,
and the odd-dimensional constant curvature sphere S2n+1 have recently been
characterized by the spectrum of the Laplacian on 2-forms. In this paper,
CPn and £f2n+1 are characterized among the classes of compact Kaehler and
Sasakian manifolds, respectively, by the spectrum of the Laplacian on p-
forms for any fixed p.

1. Introduction. Let (M, g) be a compact connected Riemannian
manifold with complex structure J and Riemannian metric g, and denote
by Δ = —(dd* + d*d) the real Laplacian acting on p-forms, where d is
the operator of exterior differentiation and d* is its adjoint with respect
to g. Then, for each p = 0, 1, 2, , n, we have the spectrum of Δ:

Specp(M, g) = {0 ^ λlj3> ^ X2,P ^ ^ Xk)P ^ 1 - -} ,

each eigenvalue being repeated as often as its multiplicity. Hodge theory
implies that 0 6 Specp(M, g) if and only if the p-th Betti number bp(M)
is not zero, and its multiplicity is then bp(M). The following theorems
were obtained in [4] and [5]. (It is assumed here and in the sequel that
M is connected.)

THEOREM A. Let (M, g) be a compact Kaehler manifold with
Spec2(M, g) = Spec2(CPΛ, g0) where (CPnJ g0) is complex projective n-space
with the Fubini-Study metric g0. Then, (M, g) is holomorphίcally
isometric with (CPn, g0) for all n.

THEOREM B. Let (M, g) be a compact Sasakian manifold with
Spec2(ifcf, sr) = Spec2(S2n+1, g0), where (S2n+\ g0) is the (2n + l)-dimensional
sphere with constant curvature kQ. Then, g is a metric of constant
curvature k = k0.

Theorem A is the only case known where the geometry of (M, g) is
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completely determined by Specp(ikf, g) for some fixed p and in all dimen-
sions. However, (M, g) is assumed to be a Kaehler manifold. Similarly,
if we restrict ourselves to the class of Sasakian manifolds, that is the
class of normal contact Riemannian manifolds, Theorem B may be
considered as another example where the geometry of (M, g) is completely
determined by Specp(ikf, g) for some fixed p and in all dimensions.

The crucial point in proving Theorem A is that b2(M) is one, and
in establishing Theorem B that b2(M) vanishes. This is the reason for
taking p = 2. This fact concerning b2(M) is used only to show that M
is cohomologically Einstein. For other values of p this may not be the
case, but if this is assumed the following results are obtained (see sec-
tions 3 and 2 for the definitions of cohomologically Einstein Kaehler and
Sasakian manifolds).

THEOREM 1. Let {M, g) be a compact cohomologically Einstein Kaehler
manifold with Speep(ikf, g) = Specp(CPTO, g0) for p fixed, 0 <̂  p ^ 2n. Then,
(ikf, g) is holomorphίcally isometric with {CPn, g0) for all n and p with
the following possible exceptions: (i) n and p satisfy the relation p2 —
2np + n(2n — l)/3 = 0, and (ii) p = 1 or 2n — 1, n = 1, , 7.

THEOREM 2. Let (M, g) be a compact cohomologically Einstein
Sasakian manifold with Specp(M, g) = Specp(S2n+1, g0) for p fixed, 0 <Ξ
p ^ 2n + 1. Then, g is a metric of the same constant curvature as g0

for all n and p with the following possible exceptions: (i) n and p
satisfy the relation p2 — (2n + l)p + n(2n + l)/3 = 0, and (ii) p — 1 or
2n, n = 2, , 6.

REMARK 1. The equations p2 — 2pn + n(2n — l)/3 = 0 and p2 —
p(2n + 1) + n(2n + l)/3 = 0 may be written in the form

(1.1) p*

where m = 2n and 2n + 1, respectively. The Diophantine equation (1.1)
has infinitely many solutions with m and p positive integers. In fact,
we have p = (l/2)(m±[m(m + 2)/3]1/2). If follows that m(m + 2) = 3r2,
where r is a positive integer. Setting q = m + 1, we obtain q2 — 3r2 = 1.
This is the well-known Pell's equation. The positive integer solutions
(q, r) = (qk, rk), k = 1, 2, , are given by qk + VΎrk =•• (2 + l/T) fc, k =
1, 2, •••. It now follows easily that all positive integer solutions of (1.1)
have the form (m, p) = (mk, pk) or (m, p) = (mkf mk — pk), k = 1, 2, ,
where

rrti = 6 , pi=p 1 , m k + 1 = 5 m k - 6 p k + 1 , p k + 1 = m k — p k , k = 1 , 2 , ••• .
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REMARK 2. All complete intersection manifolds in CPn+r of dimension
n ^ 3 are cohomologically Einstein.

We should like to thank the referee for pointing out several gaps
and errors, and for making other useful comments.

2. The spectrum. The Minakshisundaram-Pleijel-Gaffney asymptotic
formula is given by

Σexp(λΛ,pt) = ^ L _ g a i t 9 t *

where m — dim M. The coefficients aίtP, ί = 0, 1, 2, have been computed
by Patodi [8] (see also [1]):

(2.1) aOtP= ( m ) v , V=vόl(M),

(2.3) α 2 , = ( (Cx \R\* + C2|S|2 + C3p*)d V ,

where \R\2 = Σ RίjklRiJkι> \S\2 = Σ RijRφ Raui and jf?̂  being the compo-
nents of the curvature and Ricci tensors R and S, respectively, and p
is the scalar curvature. The coefficients Cif i = 1, 2, 3, are given by

1 / m \ j / m - 2 \ i / m - - 4
O l " 180\ p I 12V p - 1 ) + 2 [p - 2

r = λ( m\ „ λ(m ~ 2) + L(m - *
72\ p / 6 \ P - 1 / 2 \ P - 2

By introducing the Weyl conformal curvature tensor C with
components

2

m —
+ QjkRil "~ 9jlRik)

(m — l)(m — 2)

α2>p may be expressed in the form

(2.4) a2fP == j ^ [<λ |C|2.+
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For Kaehler manifolds, by introducing the Weyl projective curvature
tensor W (see [4]) whose components are

n + l

α2)3, may be written in the form

(2.5) a2tP =\M[PI\ W\2 + P2(|S|2 - -£-) + Pzp
2~\dV ,

where

Pi — C\ * Pi'=z —~vι + C2 , P 3 — — —τfii + C2 + C3 .
m + 2 m(m + 1) m

If Spec^M, g) = Specp(M', ^'), then dim ikf = dim M', V = V, bp(M) =
and α2,p = α2>p, where the prime indicates corresponding quantities

in M'. Moreover, it follows from (2.2) that

= \ p'
Jjf'

dV

if p2 - mp + m(m - l)/6 Φ 0.
The following statement was proved in [4].

LEMMA 1. Let (CPn, g0) be complex projective space with the Fubini-
Study metric gOf and (M, g) be a Kaehler-Einstein manifold. Then, if
p = p0> where p and p0 are the scalar curvatures of g and g0, respective-
ly, vol(M, g) ^ vol(CPΛ, g0) with equality if and only if (Λf, g) is isometric
with (CPn, ffo)

Lemma 1 will be useful in the proof of the following:

LEMMA 2. Let (M, g) be a compact Kaehler manifold with
Specp(M", g) = Specp(CPn, g0) for a fixed p, 0 52 p ^ 2n. Assume that p2 —
2np + n(2n — l)/3 Φ 0 and for some xeR

(2.6) ( (|S|2 - xp2)dV = ( (|S? - xpt2)dV',9
Jjf 3cpn

where the prime indicates corresponding quantities in (CPn, g0). Then,
(i) if X < l/2n, (M, g) is holomorphically isometric with (CPn, gQ)

for every n and p satisfying Px ^ 0, Pa > 0, and
(ii) if λ ^ l/2n, (M, g) is holomorphically isometric with (CPn, g0)
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for every n and p satisfying Px ^ 0 , (λ — l/2w)P2 + P 8 > 0.

PROOF. Since W = 0 and |S' |2 = pri/2n, formula (2.5) yields

(2-7) j ^ [ p j W\> + P 2 ( | S | 2 - £ - ) + PW - p'*)jd 7 = 0 ,

which for some constant μ may be written in the form

(2.8) j ^ [p j TF|2 + j«Pt(|S|* - £•) + (1 - j«)P2((|Sr - xpη

+ (λ. - ^-)|O2) + P3(|O
2 - ,o'2)](ίF = 0 .

By (2.6), this becomes

(2.9) j ^ [PJ PF|2 + ̂ P2(|S|2 - £ - )

+ (( λ - ir)P 2 + Ps - ( λ - ii>μP¥ - p n ) ] d v = °
since |S' |2 = p'2/2n. If λ ^ l/2n9 we take μ = 0. Formula (2.9) then
becomes

L [ P i

Since I pdV = \ p'dV, Schwarz's inequality yields
JM JM'

(p2

with equality if and only if p = p\ The conditions on the Pt in (ii) give

rise to [ (p2 - p'2)dV = 0, so p = o'. Hence, by (2.6)
JM

L ( | S | 2 -

= ί f|S'|2 - J 2 U V F ' = 0 .

But, |S|2 ^ /O2/2», so |S|2 = /02/2», that is g is an Einstein metric. Apply-
ing Lemma 1, it follows that (M, g) is isometric with (CPn, go)

If λ < 1/2% and P 2 Φ 0, take μ to be of the same sign as P2, and
\μ\ to be so large that (λ - l/2n)Pt + P 3 - (λ - l/2n)μP2 > 0. Then, by
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(2.9), p = p' and |S|2 — ρ2/2n = 0. Again, by Lemma 1, (M, g) is isometric
with (CPn, g0). Finally, let X < l/2n and P2 = 0. Then, from (2.7) and
(2.6), g is an Einstein metric, so again by Lemma 1 we obtain the desired
conclusion.

LEMMA 3. Let (M, g) be a compact Riemannian manifold with
Specp(ikf, g) = Specp(Sm, g0) for a fixed p, 0 ^ p ^ m, where Sm is the m-
dimensional sphere with metric of constant curvature k0. Assume that
p2 — mp + m(m — l)/6 Φ 0 and for some xeR

\ (|S|2 - xpηdV = \ (|S? - xpn)dV ,

where the prime indicates corresponding quantities in (Sm, g0). Then,
(i) if x < 1/m, g is a metric of constant curvature k0 for every m

and p satisfying Q, ^ 0 , Q3> 0, and
(ii) if x ^ 1/m, g is a metric of constant curvature k0 for every m

and p satisfying Qλ ^ 0 , (λ — l/m)Q2 + Q3 > 0.

The proof is similar to that of Lemma 2.

Let {My g) be a Kaehler manifold, / its almost complex structure,
and Ω its fundamental 2-form. Consider the 2-form S given by S(X, Y) =
S(X, JY). M is said to be cohomologically Einstein if [S] = a[Ω] for
some a e R, where [S] and [Ω] are the cohomology classes of H\M, R)
represented by S and Ωf respectively.

LEMMA 4 (Ogiue [6]). Let (M, g) be a cohomologically Einstein Kaehler
manifold. Then,

3. Contact manifolds. An m ( = 2n + l)-dimensional C°° manifold is
called a contact manifold if it carries a global 1-form η, called the contact
form, with the property η Λ (dη)n Φ 0 everywhere. The classical example
is the bundle of unit tangent vectors to an oriented (n + l)-dimensional
manifold. An odd-dimensional sphere possesses a contact structure which
is not of this type. J. Martinet showed that every compact 3-manifold
carries a contact structure. A compact Hodge manifold B has a contact
manifold canonically associated with it as a circle bundle with B as base
space. Thus, the class of contact manifolds is quite extensive.

An almost contact structure (φ, Xo, η) on a (2n + l)-dimensional C°°
manifold M is given by an affine collineation φ, a vector field Xo, and a
1-form η satisfying



SPECTRAL RIGIDITY 569

rj(X0) = 1 , φX0 = 0 and φ2 = -I + η (x) Xo .

In this case, a Riemannian metric # can be found with

η = <7(X0, •) and fffoX, Γ) = - (

for any vector fields X and Y.
A contact manifold with contact form η has an underlying almost

contact Riemannian structure (φ, Xo, η, g) such that e/(X, φY) = c?̂ (X, F)
If the almost complex structure J on MxR defined by J(X,fd/dt) =
(φX — fX0, τj(X)dfdt) is integrable, the almost contact structure is said
to be normal. In this case, the unit vector field Xo is a Killing field.
Moreover, g(R(X, Xo) Y, Xo) = g(φX, Φ Y) and

(3.1) S(X, Xo) = 2nη(X) .

The standard contact Riemannian structure on an odd-dimensional
sphere is normal.

Set S(X, Y) = S(X, φY). Then, S is a skew symmetric bilinear form
on M. An almost contact manifold is said to be cohomologίcally Einstein
if [S] = α[Φ], where Φ(X, Y) = g(X, φY) and aeR. If the almost contact
structure underlies a contact structure then Φ = dη> and so [S] = 0.

A normal contact Riemannian manifold is sometimes called a Sasakian
manifold.

LEMMA 5. Let (M, g) be a compact cohomologίcally Einstein Sasakian
manifold. Then, there exists a 1-form a on M such that S = da and
a(X0) = const.

PROOF. Since S is exact, we set S — dβ. Let H denote the isometry
group preserving S. Then, H is a compact Lie group. Let Ho be the
1-parameter group of diffeomorphisms of M generated by Xo. Then, since
Xo is a Killing field, Ho is a group of isometries. Moreover, since
i(XQ)S = 0, Lxβ = (i(XQ)d + di(X0))S = 0, where Lx and i(X) are the
Lie derivative and interior product by X, respectively. The elements of

Ho therefore preserve S and so HoaH. Set a = 1 h*(β)dh, where h is

an arbitrary element of H, and dh is the invariant measure on H normaliz-

ed by the condition I dh = 1. Then,
JH

da = \ h*(dβ)dh = [ h*{S)dh = ( Sdh = S .
JH JH JH

Clearly, h*(a) = a for any heH, so LXoa — 0. Since di(X0)a = £ϋτoα —
ί(X0)da = 0, we conclude that α(X0)

 = i(Xo)(x = const.
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LEMMA 6. Let (M, g) be a compact cohomologically Einstein Sasakian
manifold of dimension 2n + 1. Then,

L ( |S|2 - - f + 2 ρ ) d v + - Ϊ F ( L
 ρd v)=2n{2n+1)v

PROOF. The following relations may be found in [2]:

(3.2) ΓZXO = -φX,

(3.3) (TtfXY) = Φ(X, Y) ,

(3.4) (Vxφ) Y = g(X, Y)X0 - η{ Y)X ,

(3.5) {VXΦ){ Yy Z) = η{ Y)g{X, Z) - η(Z)g(X, Y) ,

for any vector fields X, Y and Z on M. By direct computation, (3.1)-
(3.5) give rise to

(3.6) d*Φ = 2nη ,

(3.7) d*Φ2 =

(3.8) i(φ)S = —(P - 2n) ,
2

(3.9) i(Φ2)S2 = —{p2 - 2|S|2 - Anp + I2n2) ,
2

(3.10) ί(S)0? Λ Φ) = —(/o — 2^))7 ,

where i is the adjoint of exterior multiplication that is, if < , > denotes the
local scalar product with respect to the Riemannian metric g, (i(a)β, 7> =
</3, a A 7>, where a, β and 7 are forms of degrees p, q and q — p,

respectively. Denote by (α, β) = \ <α, /5>dF the global scalar product.

By (3.6), (3.8) and Lemma 5, (1/2) j (^ - 2^)d F = (ΐ(Φ)S, 1) = (S, Φ) =

(dα, Φ) = (α, d*Φ) = 2w(α, 17) = 2nα(X0)F. Thus,

(3.11) a(χ0) = J^-\ {p-2n)dV.

By (3.7), (3.9)-(3.11) and Lemma 5, (1/2) ( (p2 - 2|S|2 - 4np + l2tf)dV =

(i(Φ2)S\ 1) = OS2, Φ2) = (d(aAS), Φ2) = (aAS, d*Φ2) = 4 ( n - l)(αΛS, ηAΦ) =

4(n- l ) (α, i(S)(rjAΦ)) - 2(n - l)a(X0) \ (p - 2n)dV = ((n - Γ(

]2 JJlf

, from which the lemma follows.
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4. Proofs of Theorems 1 and 2. By Lemma 4,

571

so by Lemma 2, (M, g) is holomorphically isometric with (CPn, g0) for all
n and p satisfying Px ^ 0 and (1/2 - l/2w)P2 + P3 > 0. We shall need
the following:

LEMMA 7. PJyi, p) ^ 0 /or αW ̂  α^d p, 0 ^ p ^ 2n, with the possible
exception of p = 1, p = 2n — 1 /or τ& = 1, , 7.

PROOF. Px(n, 0) = P^n, 2ri) = 1/180 > 0, and

0 , n ^ β .P,K 1) = Pfa, 2n - 1) =

For w ^ 4 and 5 <L p ^ 2n — 2,

P . C P) =

where

A(n, p) = 2w(2w - l)(2n - 2)(2n - 3)

- 30(2^p - p2)[2n2 + n -

Fix n and consider A(w, p) as a function of the continuous variable p.
Then,

dp
= -60(n - n - 6(2np -

A j

A
/ I

/ 1
<n, / ι

\ / '

•

V\
t

4

\

1 \

! \
y \

6 \f4/8

FIGURE
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The critical points of A(n, p) are px = n, p2 = n - [(2/3)w2 -
and p3 = n+[(2/S)n2 - (l/6)τι]1/2. Since A(n, pd = 2n(2w - l)(23tι2 - 16Λ+6) > 0
for w ^ 4 , and A(n, p2) = A(w, jp8). = (w/6)(36n8 - 348w2 + 249w - 72) > 0
for w ^ 9, we obtain A(w, p) > 0 ίor 5 <Z p ^,2n — 2, n^9. However,
for n = 4, 5, 6, 7 and 8, A(w, p2) = A(n, pz) < 0, Consider, for example,
the case n = 4. Then, p2 = 4 - i/ϊδ = 0.837 , p8 = 4 + i/ΪO = 7.162 ,
A(4, 0) > 0, A(4,1) < 0, A(4, 2) > 0, so the graph of A(4, p) is as in the
Figure. It follows that A(4, p) > 0 for p Φ 1, 7. Similarly, A(n, p)^0
for n = 5, 6, 7, 8 and p Φ 1, 2n — 1. In the same way, Px{nf 2) >̂ 0,

, 3) > 0 and P^w, 4) > 0.

LEMMA 8. For all n and p, 0 ^L p <L 2n, except n — 2, p = 2,

The proof is similar to that of Lemma 7.

We now complete the proof of Theorem 1. For n = 2, p = 2, the
theorem was proved in [4]. For all other n and p, with the possible
exception of p = 1 and p = 2w — 1, n = 1, , 7, the theorem is a con-
sequence of Lemmas 7 and 8.

The proof of Theorem 2 employs Lemmas 3 and 6, and is similar to
that of Theorem 1.

REMARKS, (a) For p = 0 and 1, Theorem 1 was proved by Chen
and Vanhecke [3].

(b) For p = 1 or 3 and n = 2, Theorem 1 may be proved if one
replaces the cohomologically Einstein condition by the stronger condition
b2(M) = 1. Indeed, in this case, bt(M) = 6t(CP2), i = 0, , 4, so the
Euler-Poincare characteristic χ(M) = X(CP2). By the Gauss-Bonnet formula

(4.1) (

From Lemma 2.

(4.2)

Moreover, (2.3) implies

<4-8> L ( - i | B | ' + $S |" - & v = L(-1ύm'+ro|SΊ"
The relations (4.1)-(4.3) give rise to
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=[ \R'\2dV', ( | S | W = ( | S ' | W , ( p2dV=\ pndVf,
)CP2 Jjtf Jcp2 J M J C P 2

> 2 Jjtf JCP2

from which

and this implies that # in an Einstein metric with p = p' It follows
from Lemma 1 that (Af, g) is isometric with (CP2, g0). Thus, ί/ (M, g) is
a compact Kaehler manifold with b2(M) = 1, and if Speĉ Λf, g) =
Spec1(CP2, 0o) (or Spec3(M, #) = Spec3(CP2, &)), ίftew (Λf, g) is holomorphi-
cally isometric with (CP2, go)

(c) The case p = 1 and w = 1 in Theorem 2 was proved by Tanno [9].
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